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The chief difficulty Alice found at first was in managing her flamingo: she
succeeded in getting its body tucked away, comfortably enough, under her
arm, with its legs hanging down, but generally, just as she had got its neck
nicely straightened out, and was going to give the hedgehog a blow with its
head, it would twist itself round and look up in her face, with such a puzzled
expression that she could not help bursting out laughing: and when she had
got its head down, and was going to begin again, it was very provoking to
find that the hedgehog had unrolled itself, and was in the act of crawling
away. . .Alice soon came to the conclusion that it was a very difficult game
indeed.

Lewis Carroll, Alice’s Adventures in Wonderland
(An allegory for econometrics)
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Preface

This textbook was prepared for the 15-week semester Introductory Econometrics course
at the University of Missouri. The class focuses on statistical description, prediction,
and “causality,” including both structural parameters and treatment effects. Description
and prediction (forecasting) with time series are also covered. Students learn to think
probabilistically, understand prediction and causality, judge whether various assumptions
hold true in real-world examples, and apply econometric methods in R.

As usual, this textbook may be used to teach different types of classes. In full, the
textbook provides a 15-week semester class that assumes a previous class in probability
and statistics. That prerequisite could be skipped if more time is spent on the “review”
material in the first few chapters. Calculus is avoided but could be added in the usual
places. A shorter class could omit the time series material. Of course, any material may
be expanded, condensed, or skipped, as the instructor desires.

Some complementary, complimentary texts and courses deserve mention. Economet-
rics professor Matt Masten has a “Causal Inference Bootcamp” video series,1 as well
as some “Causal Inference with R” free courses on DataCamp.2 Relevant videos are
linked at the beginning of each chapter in this textbook. Stanford statistics professors
Trevor Hastie and Rob Tibshirani created a free introductory machine learning (statisti-
cal learning) course, focusing more on prediction and estimation.3 Their course uses their
free textbook (James, Witten, Hastie, and Tibshirani, 2013) that includes R examples.4

Hastie, Tibshirani, and Friedman (2009) also provide their more advanced statistical
learning textbook for free.5 For econometrics texts focused on prediction and time se-
ries, see Diebold (2018a,b,c).6 The forecasting book by Hyndman and Athanasopoulos
(2019) is at https://otexts.com/fpp2 and uses R. Finally, Hanck, Arnold, Gerber, and
Schmelzer (2018) mirror the structure of the (expensive) textbook of Stock and Watson

1https://mattmasten.github.io/bootcamp
2https://www.datacamp.com/community/open-courses
3https://www.edx.org/course/statistical-learning
4https://statlearning.com
5https://web.stanford.edu/~hastie/ElemStatLearn
6http://www.ssc.upenn.edu/~fdiebold/Textbooks.html
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xvi

(2015), providing many R examples to illustrate the concepts they explain.7

One distinguishing feature of this textbook is the development of the ideas of (and
distinctions among) statistical description, prediction, causal inference, and structural
estimation in the simplest possible settings. Other texts combine these with all the
complications of regression from the beginning, often confusing students (like my past
self).

A second distinguishing feature is that this text’s source files are freely available.
Instructors may modify them as desired, or copy and paste LATEX code into their own
lecture notes, subject to the Creative Commons license linked on the copyright page. I
wrote the textbook in Overleaf, an online (free) LATEX environment that includes knitr
support, so most of the R code and output is in the same .Rtex files alongside the LATEX
code. Graphs are either generated from code in the .Rtex files or else from a single .R file
also provided in the source material. You may see, copy, and download the entire project
from Overleaf8 or from my website.9

Third, I provide learning objectives for the overall book and for each chapter. This
follows current best practices for course design. Upon request, I can provide a library of
multiple choice questions, labeled by learning objective. (Empirical exercises are already
at the end of each textbook chapter.)

Fourth, in-class (or online) discussion questions are included along the way. When I
teach in person (30–40 students), I prefer to punctuate lectures with such questions every
20–30 minutes, where students first discuss them for a couple minutes in small groups
of 2–3 students, and then volunteer to share their group’s ideas with the whole class for
another couple minutes. This provides an active learning opportunity, a time for students
to realize they don’t understand the lecture material (so they can ask questions), practice
discussing econometrics with peers, and (if nothing else) a few minutes’ rest.

Thanks to everyone for their help and support: my past econometrics instructors, my
colleagues and collaborators, my students (who have not only inspired me but alerted me
to typos and other deficiences in earlier drafts), and my family.

David M. Kaplan
Summer 2018 (edited Summer 2020)
Columbia, Missouri, USA

7https://www.econometrics-with-r.org
8https://www.overleaf.com/read/fszrgmwzftrk
9https://kaplandm.github.io/teach.html
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Textbook Learning Objectives

For good reason, it has become standard practice to list learning objectives for a course
as well as each unit within the course. Below are the learning objectives corresponding
to this textbook overall. Each chapter lists more specific learning objectives that map to
one or more of these overall objectives. The accompanying exercises are also classified
by learning objectives. I hope you find these helpful guidance, whether you are a solo
learner, a class instructor, or a class student.

The textbook learning objectives (TLOs) are the following.

1. Define terms from probability, statistics, and econometrics, both mathematically
and intuitively.

2. Describe various econometric methods both mathematically and intuitively, includ-
ing their objects of interest and assumptions, and the logical relationship between
the assumptions and corresponding theorems and properties.

3. Interpret the values that could be estimated with infinite data, in terms of descrip-
tion, prediction, and causality (or economic meaning).

4. Explain the frequentist/classical statistical and asymptotic frameworks, including
their benefits and limitations.

5. Provide multiple possible (causal) explanations for any statistical result, distin-
guishing between statistical and causal relationships.

6. For a given economic question, dataset, and econometric method, judge whether
the method is appropriate and judge the economic significance and statistical sig-
nificance of the results.

7. Using R (or Stata): manipulate and analyze data, interpreting results both eco-
nomically and statistically.
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xviii TEXTBOOK LEARNING OBJECTIVES



Notation

Much of the notation below will not make sense until you get to the corresponding point
in the textbook. The following is primarily for your reference later.

Variables

Usually, uppercase denotes a random variable, whereas lowercase denotes a non-random
(fixed, constant) value. The primary exception is for certain counting variables, where
uppercase indicates the maximum value and lowercase indicates a general value; e.g., time
period t can be 1, 2, 3, . . . , T , or regressor k out of K total regressors. Greek letters like
β and θ usually denote non-random (fixed) population parameters.

Estimators usually have a “hat” on them, like θ̂. Since estimators are computed from
data, they are random from the frequentist perspective. Thus, even if θ is a non-random
population parameter, θ̂ is a random variable.

I try to put “hats” or bars on other quantities computed from the data, too. For
example, a t-statistic would be t̂ instead of just t (which looks like a non-random scalar).
The sample average of Y1, . . . , Yn is Ȳ .

Estimators and other statistics (i.e., things computed from data) may sometimes have
a subscript with the sample size n to remind us that their sampling distribution depends
on n. For example, θ̂n, t̂n, and Ȳn.

Symbols

In addition to the following symbols, vocabulary words and abbreviations (like “regression”
or “OLS”) can be looked up in the Index in the very back of the textbook.

=⇒ implies; see Section 6.1
⇐= is implied by; see Section 6.1
⇐⇒ if and only if; see Section 6.1
lim
n→∞

limit (like in pre-calculus)
plim
n→∞

probability limit; see Section 3.6.3

xix



xx NOTATION

≡ is defined as
≈ approximately equals
∼ is distributed as
X ⊥⊥ Y X and Y are statistically independent; see Section 6.2.5
N(µ, σ2) normal distribution with mean µ and variance σ2

N(0, 1) standard normal distribution
FY (·) cumulative distribution function (CDF) of Y ; see Section 2.3
1{·} indicator function; see (2.1)
P(A) probability of event A
P(A | B) conditional probability of A given B; see Section 6.2.3
E(Y ) expectation (mean) of Y ; see Section 2.3
E(Y | X = x) CMF (a function of x); see Section 6.3
E(Y | X) conditional expectation of Y given X; this is a random variable
n∑

i=1
summation from i = 1 to i = n

Var(Y ) variance of Y ; see (3.20)
Var(Y | X = x) conditional variance (a non-random value); see Section 6.7.1
Var(Y | X) conditional variance (a random variable)
Cov(Y,X) covariance
Corr(Y,X) correlation
{a, b, . . .} a set (containing elemnts a, b, etc.)
i = 1, . . . , n same as i ∈ {1, . . . , n} (integers from 1 to n)
j = 1, . . . , J same as j ∈ {1, . . . , J} (integers from 1 to J)
s ∈ S element s is in set S
Ê(Y ) expectation for sample distribution; see Section 3.4.1
Ȳn

1
n

∑n
i=1 Yi; same as Ê(Y ); see Section 3.4.1

θ̂ estimator of population parameter θ; see Section 3.4
argmin

g
f(g) the value of g that minimizes f(g)

argmax
g

f(g) the value of g that maximizes f(g)



Chapter 1

Getting Started with R (or Stata)

=⇒ Kaplan video: Course Introduction

Depends on: no other chapters

Unit learning objectives for this chapter

1.1. Run statistical software (R/RStudio or Stata) [TLO 7]

1.2. Write code to do basic data manipulation, description, and display [TLO 7]

You will use R (or Stata) for the empirical exercises in this textbook. The code
examples in the textbook are all in R.

No previous experience with any statistical software is assumed. Consequently, the
primary goal of the empirical exercises is to develop your confidence and experience with
statistical software, applying the text’s methods and ideas to real datasets. Toward this
goal, there are lots of explicit hints about the code you need to write.

If you actually do have previous experience (or above-average interest), then the em-
pirical exercises may feel too boring. You could try figuring out alternative ways to
code the solution, or coding alternative analyses, etc. You can also explore other online
resources like one of the free DataCamp courses.1

Due to the many excellent resources online (see Section 1.4), there are many people
who can write R code, but most do not understand how to properly interpret econometric
results or judge which method is most appropriate. So, overall, this class/textbook focuses
more on understanding econometrics than coding.

1https://www.datacamp.com/community/open-courses

1

https://youtu.be/dwMR3eYnz0E
https://www.datacamp.com/community/open-courses
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1.1 Comparison of R and Stata

I like both R and Stata statistical software, and I have used both professionally. They
excel in different ways mentioned below.

For this textbook/class, I focus on R for the following reasons.

1. It’s widely used in the private sector, government, and academia alike, in many
fields (including economics).

2. It’s free to download/use, and can even be used through a web browser.

3. It has many econometric/statistical functions available, and creators of new econo-
metric/statistical methods often provide code in R.

4. There are many online resources for learning R and getting help.

In comparison, Stata:

1. is widely used in economics and certain social sciences, but less so in fields like data
science and statistics.

2. is not free, and can’t be used in a browser; but is free to use in many campus
computer labs.

3. is easier to use for standard econometric methods, and has some new econometric
methods (while others take a few years to be implemented).

4. also has good help files (documentation) and online support.

1.2 R

1.2.1 Accessing the Software

There are three ways you could run R: downloaded onto your own computer, through a
web browser (in the cloud), or on another computer like in a campus computer lab.

Other computers or web browser versions may have the core R software but lack
certain packages needed for the empirical exercises. In some cases, you can simply install
the necessary packages with a single command (e.g., in Mizzou computer labs). In other
cases, you may be prohibited from installing packages, in which case you won’t be able
to complete the exercises, so make sure to check this first.

Through a Web Browser

There are many free options for using R through a web browser, and they evolve quickly.
This means both new and improved options becoming available, as well as existing options
disappearing, even from major companies (e.g., Microsoft Azure Notebooks was “retired”).
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For Mizzou students, Software Anywhere offers free web browser access to RStudio as
well as a variety of other software (including Stata). From the Software Anywhere web
page,2 click the “Getting Started” tab and follow the instructions. Once logged in, it’s
essentially the same as if you had installed RStudio on your own computer. Technical
assistance: https://doit.missouri.edu/tech-support/

Another good option is RStudio Cloud (name changed to Posit Cloud in 2022). It’s
free, reliable, and the same RStudio interface as if you downloaded RStudio, so you can
learn from the latter half of my RStudio video. To get started:

1. Go to https://posit.cloud/ in any web browser
2. Click the GET STARTED FOR FREE button (or else “Log In” if you already have

an account)
3. Follow the instructions to sign up for a free account
4. Start using RStudio like it were on your own computer
5. Install necessary packages like usual: see Section 1.2.2
6. After you log out and later log in, click “Untitled Project” (feel free to rename) to

get back to where you were

At http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=rstudio you
can also use the RStudio interface through a web browser, without even making an ac-
count, but 1) it does not run the most current version of R, 2) it cannot save your files
from one session to the next, 3) you have to install the packages every time. But these are
not critical problems for this class: older R versions are fine, you can save your code/out-
put in a text file on your own computer, and it only takes 1 line of code (and under 1
minute) to install the packages.

The following options are not as good for our class, so details are omitted.
• CoCalc (no account required): https://cocalc.com
• Google CoLab (requires Google account): https://colab.research.google.com/
drive/1BYnnbqeyZAlYnxR9IHC8tpW07EpDeyKR

• DataCamp Workspace (requires free account): https://www.datacamp.com/workspace
• Gradient by Paperspace (free account required): https://gradient.paperspace.
com/

In a Mizzou Computer Lab

You can check which Mizzou computing sites/labs have your favorite software on the
Computing Sites Software web page.3 Scroll down to RStudio to see where you can use
R with RStudio. However, sometimes there are classes or other events in computer labs;
you can check the weekly schedule posted near the door to find a free time, or you can
check online.4

2https://doit.missouri.edu/services/software/software-anywhere
3https://doit.missouri.edu/services/computing-sites/sites-software
4https://doit.missouri.edu/services/computing-sites and click the lab name

https://doit.missouri.edu/tech-support/
https://youtu.be/BUNaRhQOeaI
https://posit.cloud/
http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=rstudio
https://cocalc.com
https://colab.research.google.com/drive/1BYnnbqeyZAlYnxR9IHC8tpW07EpDeyKR
https://colab.research.google.com/drive/1BYnnbqeyZAlYnxR9IHC8tpW07EpDeyKR
https://www.datacamp.com/workspace
https://gradient.paperspace.com/
https://gradient.paperspace.com/
https://doit.missouri.edu/services/software/software-anywhere
https://doit.missouri.edu/services/computing-sites/sites-software
https://doit.missouri.edu/services/computing-sites
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After you log into the computer in the computer lab, open RStudio from the Start
menu. (RStudio calls R itself in the background; you don’t have to open R directly.)
Then just start typing commands, and hit Enter to run them.

The computer labs don’t currently have the necessary packages pre-installed, but you
can easily install them. Note that you’ll have to do this every time you log in (because
any files you download/save get deleted when you log out), but you can just run the same
line of code when you start RStudio each time.

Also, make sure to email yourself your code (or otherwise save it, if you haven’t
finished and uploaded to Canvas) before you log out, because your files get deleted when
you log out.

Downloading Software

=⇒ Kaplan video: Getting Started with R/RStudio

You’ll download two pieces of software: R itself, and RStudio. Both are free. R has
all the functions you need. RStudio makes the interface nicer and makes things easier for
you.

On Windows:
• Download the .exe installer file for R: Google “R Windows” or try https://cran.r-
project.org/bin/windows/base and click the “Download. . . ” link near the top.

• Open the downloaded .exe installer and follow the instructions.
• Download the .exe installer file for RStudio Desktop (free version): Google “RStu-

dio download” or try https://www.rstudio.com/products/rstudio/download/
#download

• Open the downloaded .exe installer and follow the instructions.

On Mac:
• Download the .pkg file for R: Google “R Mac” or try https://cran.r-project.
org/bin/macosx

• Open the file and follow the usual Mac installation procedure.
• Download the .dmg file for RStudio Desktop (free version): Google “RStu-

dio download” or try https://www.rstudio.com/products/rstudio/download/
#download

• Open the file and follow the usual Mac installation procedure.

On Linux, etc.: if you can figure out how to run something besides Windows or Mac,
you can probably figure out how to download a couple files by yourself, but please let me
know if not.

Regardless of OS, after both are installed, you only ever need to open RStudio, never
R. Once you open RStudio, just type a command and hit Enter to run it.

https://youtu.be/BUNaRhQOeaI
https://cran.r-project.org/bin/windows/base
https://cran.r-project.org/bin/windows/base
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download
https://cran.r-project.org/bin/macosx
https://cran.r-project.org/bin/macosx
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download
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1.2.2 Installing Packages

You may need to install certain packages to do the empirical exercises. This can be done
with a single command in R. You should double-check the package names required for
each exercise, but it would be something like:

install.packages(c('wooldridge','lmtest','sandwich','forecast','survey'))

With R on your own computer, you only need to run this once (not every time you use
your computer), but with a web interface or computer lab, you may need to run this code
every time you start a session in R. You can check which packages are already installed
with installed.packages()

A bit about the packages:

• wooldridge (Shea, 2018) has datasets originally collected by Wooldridge (2020)
from various sources.

• lmtest and sandwich (Zeileis, 2004; Zeileis and Hothorn, 2002) help construct
confidence intervals (and other things) appropriate for economic data.

• survey (Lumley, 2004, 2019) has functions for dealing with complex survey sam-
pling.

• forecast (Hyndman, Athanasopoulos, Bergmeir, Caceres, Chhay, O’Hara-Wild,
Petropoulos, Razbash, Wang, and Yasmeen, 2020; Hyndman and Khandakar, 2008)
has methods for forecasting.

1.3 Stata

1.3.1 Accessing the Software

There are three ways you could run Stata: in a campus computer lab, through Miz-
zou’s Software Anywhere, or (if you purchase your own copy) downloaded onto your own
computer.

Empirical exercises only require built-in commands. Stata has additional commands
available for download, but none are needed for the exercises, so any (internet-connected)
computer with Stata is sufficient.

In a Mizzou Computer Lab

You can check which Mizzou computing sites/labs have your favorite software on the
Computing Sites Software web page.5 Scroll down to Stata to see where it’s available.

5https://doit.missouri.edu/services/computing-sites/sites-software

https://doit.missouri.edu/services/computing-sites/sites-software
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However, sometimes there are classes or other events in computer labs; you can check the
weekly schedule posted near the door to find a free time, or you can check online.6

After you log into the computer in the computer lab, open Stata from the Start menu
(the actual name is somewhat longer, like “StataSE 15 (64-bit)”). Ideally, you should open
the do-file editor, and save a .do file, but for this class you could just type commands into
the short, horizontal space at the bottom labeled “Command.” You type a command and
hit Enter to run it.

Also, make sure to email yourself your code (or otherwise save it, if you haven’t
finished and uploaded to Canvas) before you log out, because your files get deleted when
you log out.

Purchasing and Downloading Software

Student pricing is shown on the Stata website.7 Currently (Spring 2020), the cheapest
option is the 6-month Stata/IC license. Other, more expensive licenses are fine, too.

The software is delivered via download. Follow instructions for installation, and con-
tact Stata if you have any technical difficulties.

Software Anywhere (Mizzou)

From the Software Anywhere web page,8 click the “Getting Started” tab and follow the
instructions. Once logged in, it’s the same as if you were sitting at a computer in a Mizzou
computer lab (see above).

Technical assistance: https://doit.missouri.edu/tech-support/

1.3.2 Installing Additional Commands

Like in R, there are additional Stata commands that can be easily downloaded and in-
stalled. Commonly, this can be done with the command ssc install followed by the
name of the command.

For the exercise sets, the only additional command you’ll need is bcuse. You can
install this with the command ssc install bcuse. If you’re in a computer lab, you may
need to run this command every time you start Stata; if you have it on your computer,
just once is sufficient. This command makes it easy to load the datasets from Wooldridge
(2020).9

6https://doit.missouri.edu/services/computing-sites and click the lab name
7https://www.stata.com/order/new/edu/gradplans/student-pricing
8https://doit.missouri.edu/services/software/software-anywhere
9Descriptions: http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html

https://doit.missouri.edu/tech-support/
https://doit.missouri.edu/services/computing-sites
https://www.stata.com/order/new/edu/gradplans/student-pricing
https://doit.missouri.edu/services/software/software-anywhere
http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html
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1.4 Optional Resources

If you only want to learn enough R (or Stata) to do well in this class, then you may skip
this section. If you’d like to learn more on your own, these resources might help you get
started in the right direction.

1.4.1 R Tutorials

Eventually, you will be able to simply Google questions you have about R. There are lots
of people on the internet really excited about helping you figure stuff out in R, which is
great.

However, when you are first getting started, it may help to go through a basic tuto-
rial. You are welcome to Google “R basic tutorial” yourself, or you could try one of the
following.

1. Section 2.3 (“Lab: Introduction to R”) in James, Witten, Hastie, and Tibshirani
(2013)

2. Section 1.1 in Hanck et al. (2018)

3. Sections 1.1–1.3 in Heiss (2016)

4. Sections 2.1–2.5 in Kleiber and Zeileis (2008) [Chapter 2 is free on their website]

5. Chapter 2 in Kaplan (2020)

6. Professor Sebastian Wai’s introductory R notes

7. No longer free after first chapter: datacamp.com courses like Introduction to R10

1.4.2 R Quick References

At first, it may help to have some quick reference “cheat sheets.” 11,12

1.4.3 Running Code in This Textbook

If you’d like, you should be able to copy code directly from the textbook .pdf file and
paste it into R. Sometimes, you need to install a certain package first. This can be done
either manually or with the R function install.packages(). For example, to install
package mgcv, run the command install.packages('mgcv') within R.

10https://www.datacamp.com/courses/free-introduction-to-r
11https://www.rstudio.com/wp-content/uploads/2016/10/r-cheat-sheet-3.pdf
12https://cran.r-project.org/doc/contrib/Short-refcard.pdf

https://sites.google.com/site/waisebastian/notes
https://datacamp.com
https://www.datacamp.com/courses/free-introduction-to-r
https://www.rstudio.com/wp-content/uploads/2016/10/r-cheat-sheet-3.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
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1.4.4 Stata Resources

For Stata, helpful cheat sheets (quick references) are available for free13 as well as various
tutorials.14

13https://www.stata.com/bookstore/statacheatsheets.pdf
14https://www.stata.com/links/resources-for-learning-stata

https://www.stata.com/bookstore/statacheatsheets.pdf
https://www.stata.com/links/resources-for-learning-stata
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Empirical Exercises

Empirical Exercise EE1.1. In either R or Stata, create a script (a sequence of com-
mands, with one command per line) to do the following. The data are from a New York
Times article on December 28, 1994.

a. R: load (and install if necessary) package wooldridge:
if (!require(wooldridge)) {
install.packages('wooldridge'); library(wooldridge)

}

Stata: run ssc install bcuse to ensure command bcuse is installed, and then
load the dataset with bcuse wine, clear

b. View basic dataset info with R command ?wine or Stata command describe

c. View the first few rows of the dataset with R command head(wine) or Stata com-
mand list if _n<=5

d. Rename the alcohol column, which measures liters of alcohol from wine (consumed
per capita per year).

R: names(wine)[2] <- 'wine'

Stata: rename alcohol wine

e. Add a column named id whose value is just 1, 2, 3, 4, 5, etc.

R: wine$id <- 1:nrow(wine)

Stata: generate id = _n

f. Display the countries with fewer than 100 heart disease deaths per 100,000 people.

R: wine$country[wine$heart<100]

Stata: list country if heart<100

g. Display the rows for the countries with the 5 lowest death rates, sorted by death
rate.

R: wine[order(wine$deaths)[1:5],]

Stata: sort deaths followed by list if _n<=5

h. Add a column with the sum of heart and liver disease deaths per 100,000.

R: wine$heart.plus.liver <- wine$heart + wine$liver

Stata: generate heart_plus_liver = heart + liver

i. Generate a variable with the squared death rate.

R: wine$deaths.sq <- wine$deaths^2

Stata: generate deaths_sq = deaths^2
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j. Display the sorted death rates.

R: print(sort(wine$deaths))

Stata: sort deaths followed by list deaths

k. R: create a vector with the proportion of total deaths (per 100,000) caused by heart
disease with command heart.prop <- wine$heart/wine$deaths and then name
the entries by country with names(heart.prop) <- wine$country and print the
named vector of heart disease death proportions, rounded to three decimal places,
with print(round(heart.prop, digits=3))

Stata: add a column with the proportion of heart deaths to total deaths with
command generate heart_prop = heart / deaths

l. Create a histogram of liver deaths.

R: hist(wine$liver)

Stata: histogram liver

m. Create a scatterplot of liver death rates (vertical axis) against wine consumption
(horizontal axis).

R: plot(x=wine$wine, y=wine$liver)

Stata: scatter liver wine

n. R only: make the same plot but with axes starting at zero, adding the argu-
ments xlim=c(0,max(wine$wine)) and ylim=c(0,max(wine$liver)) to the pre-
vious plot() command
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Analysis of One Variable
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Introduction

This textbook explores methods to answer three types of economic questions, each detailed
in Part I:

1. Description (how things are/were: statistical properties and relationships)

2. Prediction (guessing an unknown value, without interfering)

3. Causality (how changing one variable would affect another, all else equal)

For example, imagine you are interested in income. Depending on your job, you may
want to answer a different type of question, like:

1. Description: how many adults in the U.S. have an income below $20,000/yr? What’s
the mean income among U.S. adults? What’s the difference in mean income between
two socioeconomic or demographic groups, like those with and without a college
degree?

2. Prediction: for advertising purposes, what’s the best guess of the income of an
unknown person visiting your company’s website? What’s the best prediction if
you also know their zip code (where they live)?

3. Causality: for a given individual, how different would her income be if she had a
college degree than if she didn’t, keeping everything else about her (parents, height,
social skills, etc.) identical? How different would her income be if she were a man,
all else equal? If she were white?

Description helps us see. It summarizes an incomprehensible mass of numbers into
specific, economically important features we can understand. By analogy: knowing the
color of each of 40,000 pixels in a photograph is not as valuable as knowing it’s a cat.

Prediction aids decisions dependent on unknowns. The example questions above con-
sider the purpose of advertising, where correctly guessing a person’s income helps decide
which ad is most effective. In other private sector jobs, you may need to predict future
demand to know how many self-driving cars to start producing, or predict future oil prices
to aid a freight company’s decisions. In government or non-profit work, optimal policy

13
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may depend on predicting next year’s unemployment rate. In each case, as detailed in
Section 2.5, the “best” prediction depends on the consequences of the related decision.

Causality also aids decisions. The example question about the causal effect on income
of a college degree matters for government policies to subsidize college (or not), as well as
individual decisions to attend college. With business decisions, like changes to advertising
or website layout, the causal effect on consumer behavior is what matters: does the
change itself actually cause consumers to buy more? Among the three types, questions of
causality are the most difficult to answer. Learning about causality from data has been
a primary focus of the field of econometrics.

Of course, not all important questions concern description, prediction, and causality.
Policy questions usually involve tradeoffs that ultimately require value judgments. For
example, how much future wellbeing is worth sacrificing to be better off right now? How
much GDP is worth sacrificing to decrease inequality? Should a school have honors classes
that help the best students at the expense of the other students? Each of these policy
questions requires a subjective value judgment that cannot be answered objectively from
data.

That said, each policy question also depends on objectively quantified description,
prediction, and causality. For example, the policy question about decreasing inequality
depends on the current levels of GDP and inequality (description) as well as the causal
effect of the policy (e.g., tax) change on GDP and inequality (causality). The future/pre-
sent wellbeing tradeoff depends on the current level of wellbeing (description) as well as
future levels (prediction). The honors class tradeoff depends on the causal effect of hon-
ors classes on different types of students (causality) as well as the current mix of student
types (description) and future mix (prediction).



Chapter 2

One Variable: Population

=⇒ Kaplan video: Chapter Introduction

Chapter 2 studies a single variable by itself. This setting’s simplicity helps us focus on
the complexity of fundamental concepts in probability, description, and prediction. This
fundamental understanding will help you tackle more complex models later, in this class
and beyond.

If you’ve previously had a probability or statistics class, then most of this chapter
may be review for you, although the optimal prediction material is probably new. If you
haven’t, then now is your opportunity to catch up.

Unit learning objectives for this chapter

2.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

2.2. Describe and distinguish among different types of populations, including which is
most appropriate for answering a certain question [TLO 3]

2.3. Compute, describe, and interpret the mean for different types of random variables,
for description and prediction [TLO 3]

2.4. Assess the most appropriate loss function and prediction in a real-world situation
[TLO 6]

2.5. Compute mean loss and the optimal prediction in simple mathematical examples
[TLO 2]

2.1 The World is Random

=⇒ Kaplan video: “Before” and “After” Perspectives of Data
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https://youtu.be/tsoJICiM290
https://youtu.be/2qeLBg47MIo
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2.1.1 Before and After: Two Perspectives

Consider a coin flip. The two possible outcomes are heads (h) and tails (t). After the flip,
we observe the outcome (h or t). Before the flip, either h or t is possible, with different
probabilities.

Let variable W represent the outcome. After the flip, the outcome is known: either
W = h or W = t. Before the flip, both W = h and W = t are possible. If the coin is
“fair,” then possible outcome W = h has probability 1/2, as does W = t. (Recall it is
equivalent to write 1/2, 0.5, or 50%.)

The “after” view sees W as a realized value (or realization). It is either heads or
tails. Even if the actual “value” (heads or tails) is unknown to us, there is just a single
value. For example, in physics the variable c represents the speed of light in a vacuum;
you may not know the value, but c represents a single value.

Instead, the “before” view sees W as a random variable. That is, instead of repre-
senting a single (maybe unknown) value like in algebra, W represents a set of possible
values, each associated with a probability. In the coin flip example, the possible outcomes
are h and t, and the associated probabilities are 0.5 and 0.5.

Other terms for W include a random draw (or just draw), or more specifically a
random draw (or “randomly drawn”) from a particular probability distribution. Seeing
the population as a probability distribution (see Section 2.2), we could say W is ran-
domly sampled from its population distribution, or if there are multiple random variables
W1,W2, . . . (e.g., multiple flips of the same coin), we could say they are randomly sampled
from the population or that they collectively form a random sample; see Section 3.2 for
more about sampling.

Notationally, in this textbook, random variables are usually written uppercase (like W
or Y ), whereas realized values are usually written lowercase (like w or y). This notation
is not unique to this textbook, but beware that other books use different notation. (For
more on notation, see the Notation section in the front matter before Chapter 1.)

Example 2.1 (Kaplan video). Let R = 1 if it rains in Columbia, MO on Tuesday
and R = 0 if not. If today is Monday, then either outcome is possible, so we have
the “before” view: R is a random variable, with some probability of R = 0 and some
probability of R = 1. If instead today is Wednesday, then what happened Tuesday is
already determined, so we have the “after” view. If it rained, then R = 1; if not, R = 0.
There is only a single value, not multiple possible values. Even if we don’t know the
realized value r, we know it’s just a single value.

2.1.2 Before and After Sampling

Extending Section 2.1.1 are the before sampling and after sampling perspectives, or
“before observation” and “after observation.” Similar to Section 2.1.1, “before” corresponds
to random variables, whereas “after” corresponds to realized values. Before sampling a
unit (person, firm, etc.) from a population, we don’t know which one we’ll get, so there
are multiple possible values. After sampling, we can see the specific values we got.

https://youtu.be/m0XBukuRf9I
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Example 2.2. Imagine you plan to record the age of one person living in your city. You
take a blank piece of paper on which you’ll write the age. As in Section 2.1.1, after you
find a person and write their age (“after sampling”), that number can be seen as a realized
value, like w. In contrast, before sampling, there are many possible numbers that could
end up on your paper. It’s not that peoples’ ages are undetermined; they each know their
own age. But before you “sample” somebody, it’s undetermined whose age will end up on
your paper. It could be your neighbor DeMarcus, age 88. It could be your kid’s friend
Lucia, age 7. It could be your colleague Xiaohong, age 35. The random variable W is
like your blank paper: it has many possible values, like W = 88, W = 7, or W = 35.

Discussion Question 2.1 (web traffic). Let Y = 1 if you’re logged into the course
website and Y = 0 if not.

a) From what perspective is Y a non-random value?
b) From what perspective is Y a random variable?

There is always a “before” view from which data samples (like ages) can be seen
as random variables, although sometimes it requires some additional peculiar thought
experiments, like imagining we first “sample” one universe out of many, like with the
superpopulation in Section 2.2.

In Sum: Before & After

Before: multiple possible values =⇒ random variable
After: single observed value =⇒ realized value (non-random)

2.1.3 Outcomes and Mechanisms

Knowing everything about a coin does not fully determine the outcome of a single coin
flip. For example, even if we flip two identical coins (i.e., same probability of heads) at
the same time, one may get heads while the other gets tails. Mathematically, with two
coins represented by W and Z, even if they are “identical” in that P(W = h) = P(Z = h)
and P(W = t) = P(Z = t), we could still sometimes observe W = h and Z = t. More
abstractly: knowing everything about random variable W does not fully determine any
particular realization w. Even if random variables W and Z have the same properties,
specific realizations W = w and Z = z may differ.

Conversely, a single coin flip’s outcome does not tell us everything about the coin
itself. For example, consider a “fair” coin W with P(W = h) = P(W = t) = 1/2 (50%
chance of either heads or tails), and biased coin Z with P(Z = h) = 0.99 (99% heads).
By chance, we may flip both and observe W = h and Z = h. But the fact that they
both came up heads once does not imply that the coins themselves are identical. More
abstractly: observing a single realization W = w does not tell us all the properties of
random variable W .
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We usually want to learn about the underlying mechanisms, like the coin itself. The
“before” view in Section 2.1.1 lets us describe the underlying properties that we want to
learn, like a coin’s probability of heads, P(W = h).

The coin flip is a metaphor for more complex mechanisms. In economics, instead of
learning how coin flip outcomes are determined, we care about the underlying mechanisms
that determine a wide variety of outcomes like unemployment, wages, inflation, trade
volume, fertility, and education. The underlying mechanism is often called the data-
generating process (DGP).

Example 2.3. Let Y = 1 if somebody is currently employed. Imagine we are interested
specifically in the probability of being employed for a 40-year-old with a master’s degree
in economics. That is, we want to know P(Y = 1), from the before view. However,
sampling a single person from that population cannot teach us the probability. Even
sampling five people does not teach us the probability (although it can help us make a
better guess).

2.2 Population Types

=⇒ Kaplan video: Population Types

This section describes different population types and how to determine which is
most appropriate for a particular economic question, which in turn helps determine which
econometric method is most appropriate.

In this textbook, the population is modeled mathematically as a probability distribu-
tion. This is appropriate for the infinite population or superpopulation below, but not
the finite population. Consequently, it is most important to distinguish between the finite
population and the other two types.

The finite population cares more about the “after” view: which outcomes actually
occurred? The other two population types care more about the “before” view, describing
properties of the underlying mechanisms that generated the outcomes (the DGP).

2.2.1 Finite Population

In English, “population” means all the people living in some area, like everybody living
in Missouri. In econometrics, this type of population is called a finite population.
Other examples of finite populations are all employees at a particular firm, all firms in a
particular industry, all students in a particular school, or all hospitals of a certain size.

The finite population is appropriate when we only care about the outcomes of the
population members, not the mechanisms that determine such outcomes. For example, if
we want to know how many individuals in Missouri are currently unemployed, then our
interest is in a finite population. That is, we don’t care why they’re unemployed, and we
don’t care about the probability that they’re unemployed; we only care about whether or
not they are currently unemployed.

https://youtu.be/2LkQBA6pL-M
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2.2.2 Infinite Population

Sometimes a finite population is so large compared to the sample size (i.e., the number of
population members we observe) that an infinite population is a reasonable approxi-
mation. For example, if we observe only 600 individuals out of the 6+ million in Missouri,
econometric results based on finite and infinite populations are practically identical.

Although “infinite” sounds more complex than “finite,” it is actually simpler math-
ematically. Instead of needing to track every single member of a finite population, an
infinite population is succinctly described by a probability distribution or random vari-
able. For example, a finite population would need to consider the employment status
of all 6+ million Missourians, because sampling somebody unemployed then reduces the
number of unemployed individuals remaining in the population who could be sampled
next. In contrast, an infinite population considers realizations of a random variable W
with some probability of having value “unemployed.” There is no effect of removing one
individual from an infinite population because 1/∞ = 0.

Besides this convenience, sometimes there is no finite population (however large) that
answers your question. For example, imagine there’s a new manufacturing process for
carbon monoxide monitors that should sound an alarm above 50ppm. Most work properly,
but some are faulty and never alarm. Specifically, this manufacturing process corresponds
to some probability of producing a faulty monitor. This is similar to the probability of
the coin flipping process producing a “heads.” Mathematically, the manufacturing process
can be modeled as random variable W with some probability of the value “faulty.” If you
want to learn this probability (i.e., this property of the manufacturing process), then there
is no finite number of monitors that can exactly answer your question; no finite number
of realizations exactly determines P(W = faulty). This is an infinite population question.

2.2.3 Superpopulation

One variation of the infinite population is the superpopulation (coined by Deming and
Stephan, 1941). This imagines (infinitely) many possible universes; our actual universe
is just one out of infinity. Thus, even if it appears we have a finite population, we could
imagine that our universe’s finite population is actually a single sample from an infinite
number of universes’ finite populations. The term “superpopulation” essentially means
“population of populations.” Our universe’s finite population “is only one of the many
possible populations that might have resulted from the same underlying system of social
and economic causes” (Deming and Stephan, 1941, p. 45).

For example, imagine we want to learn the relationship between U.S. state-level un-
employment rates and state minimum wage levels. It may appear we are stuck with a
finite population because there are only 50 states, each of which has an observable un-
employment rate and minimum wage. However, observing all 50 states still doesn’t fully
answer our question about the underlying mechanism that relates unemployment and
minimum wage, so a finite population seems inappropriate. But we can’t just manufac-
ture new states like we can manufacture new carbon monoxide monitors, so an infinite
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population also seems inappropriate. The superpopulation imagines manufacturing new
entire universes, each with 50 states and the same economic and legal systems. Given
these underlying systems and mechanisms, the states’ unemployment rates can be seen
as random variables, with various probabilities of the possible values. To answer our
economic question, we need to learn about the properties of these random variables, not
merely the actual unemployment in our actual 50 states.

2.2.4 Which Population is Most Appropriate?

Practically, you need to decide which econometric method to use to answer a particular
question. This decision depends partly on which population type is most appropriate.
Specifically, finite-population methods differ from other methods that are appropriate for
either superpopulations or infinite populations. Because they are less commonly used in
econometrics, finite-population methods are not covered in this textbook.

Consequently, it is most important to judge whether or not a finite population is more
appropriate than the other types. Which is most appropriate depends on your question
(i.e., what you want to learn).

The finite population is most appropriate if you could fully answer your question by
observing every member of a finite population. If not, then a superpopulation or infinite
population is more appropriate.

The distinction is described by Deming and Stephan (1941, p. 45). They say the finite
population perspective is more appropriate for “administrative purposes” or “inventory
purposes,” whereas the superpopulation perspective is more appropriate for “scientific
generalizations and decisions for action [policy],” as well as “prediction” (assuming you
want to predict values outside the finite population, like in the future).

In Sum: Population Type

Hypothetically, could a finite number of observations fully answer your question?
No =⇒ superpopulation or infinite population, modeled as probability distribution
(as in this textbook)
Yes =⇒ finite population (use different methods unless sample is much smaller than
population)

Example: Coin Flips

Imagine the president flips a coin 20 times and then randomly selects 10 observations to
report to you; which population types is most appropriate? It depends on your question.

The finite population is most appropriate if you only care about the outcomes of those
20 flips. For example, this may be true if the president was flipping the coin to make a
major military decision that you care about (like, “invade if at least 10/20 heads”). Then,
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knowing the 20 flip outcomes is enough to learn the decision. Further, the sample size is
a fairly large proportion (10/20), so approximating 20 as infinity seems inappropriate.

The infinite population is more appropriate if you care about the properties of the
coin. For example, even with a fair coin (p = 1/2), maybe only 5 of 20 flips came up
heads. You don’t care that the finite-population proportion of heads was 1/4; you care
about the p = 1/2 property of the coin itself. You still have uncertainty about p even
after observing all 20 outcomes.

Other Examples

Consider the employment status of individuals in Missouri. A finite population is more
appropriate if you want to document the actual percentage of Missouri individuals un-
employed last week. A superpopulation is more appropriate if you want to learn about
the underlying mechanism that relates education and unemployment. That is, knowing
each individual’s employment status fully answers the first question, but not the second
question.

Consider the productivity of employees at your company (you’re the CEO). If you
want to know each employee’s productivity over the past fiscal quarter, then a finite
population is more appropriate. If you want to learn how a particular company policy
affects productivity, then a superpopulation is more appropriate. That is, knowing each
employee’s productivity fully answers the first question, but not the second question.

Discussion Question 2.2 (student data). Imagine you’re a high school principal. You
have data on every student, including their standardized test scores from last spring.

a) Describe a specific question for which the finite population is most appropriate, and
explain why.

b) Describe a specific question for which an infinite population or superpopulation is
most appropriate, and explain why.

2.3 Description: Population Mean

Like most econometrics textbooks, this textbook models the population as a probability
distribution. Section 2.2 helps you distinguish when this is appropriate.

Description of a population is thus description of a probability distribution. Some
distributions are completely described by a single number, like a coin’s probability of
heads. Others are very complicated, so they are summarized by particular features like
the mean and standard deviation.

Specifically, the population mean is discussed here. A random variable’s mean is a
probability-weighted average of its possible values. This is the most important feature for
understanding the rest of this textbook (regression, average treatment effects, etc.). Other
distributional features are also important, and I hope you can learn about them in an-
other class/book, perhaps someday in “Distributional and Nonparametric Econometrics”
(Kaplan, 2020).
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Remember: there is no data yet. In practice (and starting in Section 3.4), you use
data to learn about the population, to answer questions about description, prediction, or
causality. Here, we consider what could possibly be learned, specifically for description.

In Sum: Population Mean for Different Variable Types

Binary: E(Y ) = P(Y = 1) in (2.3)
Discrete: E(Y ) =

∑J
j=1 P(Y = yj)yj in (2.4); same units of measure as Y

Categorical: no mean
Continuous: qualitatively similar to discrete; same units as Y
Linearity: E(aY + bZ) = aE(Y ) + bE(Z) as in (2.9)

2.3.1 Binary Variable

A binary variable has two possible values. Other terms for a binary variable are
dummy variable, indicator variable, and Bernoulli random variable. In eco-
nomics, “dummy” and “binary” are most common.

Unless otherwise specified, a binary variable’s two possible values are 0 and 1. For
writing mathematical models, these values are usually more convenient than values like
“heads” and “tails.” Mathematically, this can be indicated by Y ∈ {0, 1}: the value of Y
must be in the set that includes only the numbers 0 and 1. (Notationally: the set {0, 1}
is different than the interval [0, 1] that also contains 0.23 and 0.444 and all other real
decimal numbers between 0 and 1.)

Mathematically, binary variables are often defined using the indicator function.
The indicator function 1{·} equals 1 if the argument is true and 0 if false:

1{A} =

{
1 if A is true
0 if A is false. (2.1)

Example 2.4. Many important variables are binary:
• whether the economy is in a recession (1) or not (0);
• whether somebody has a college degree (1) or not (0);
• whether a pharmaceutical drug is branded (1) or generic (0);
• whether somebody is employed (1) or not (0);
• whether a retailer is a franchise (1) or not (0).

Example 2.5 (Kaplan video). Consider defining a binary random variable Y based on
the coin flip random variable W . Recall that the possible values of the flip are W = h
(heads) and W = t (tails). We now want Y = 1 to indicate heads, and Y = 0 tails.
Mathematically,

Y = 1{heads} = 1{W = h} =

{
1 if W = h (heads)
0 if W = t (tails). (2.2)

https://youtu.be/5p7dhN3_6ZU
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Other examples can also be written with an indicator function. For example, Y =
1{recession}, Y = 1{branded}, or Y = 1{franchise}.

For binary Y , the mean E(Y ) is

E(Y ) =

1∑
j=0

(j) P(Y = j) =

j=0︷ ︸︸ ︷
(0) P(Y = 0)+

j=1︷ ︸︸ ︷
(1) P(Y = 1) = P(Y = 1). (2.3)

Thus, we can interpret the mean as the probability of Y = 1.
For terminology, the mean E(Y ) is also called the expected value or expectation.

These names explain the letter E in the mathematical notation.
However, the terms “expectation” and “expected value” cause much confusion. They

are technical terms whose meanings differ greatly from their common colloquial English
meaning. For example, if you say in plain English, “I expect the value will be 0.5,” it
means you think there’s a high probability that the value will exactly equal 0.5. This is
not what E(Y ) = 0.5 means. In fact, with a binary Y , it is impossible to have Y = 0.5,
even if E(Y ) = P(Y = 1) = 0.5. We may expect (colloquially) Y = 1 if P(Y = 1) is high,
or we may expect (colloquially) Y = 0 if P(Y = 0) is high, but it is impossible to have
Y = E(Y ) (unless p = 1 or p = 0), which is very confusing. I suggest you say to yourself
“mean” every time you see E(Y ) (or “expected value” or “expectation”).

2.3.2 Discrete Variable

A binary variable is a special case of a discrete variable, which has any countable
number of possible values.

Example 2.6. Many important variables are discrete:
• an individual’s years of education;
• number of children in a household;
• the number of times a stock has split since its IPO;
• the number of trading partners a country has;
• number of students in a classroom.

The units of measure are important for interpreting a discrete variable and its dis-
tribution. For most discrete variables, like number of children, the units are obvious.
Sometimes it is not immediately obvious, like “number of students”. . . per room, or per
grade, or per school? Or “number of bills passed”. . . in one month, or one year, or one
term?

Generalizing the binary mean in (2.3), the mean of discrete Y can be written in terms
of the J possible values yj (j = 1, . . . , J) and their probabilities:

E(Y ) =

J∑
j=1

P(Y = yj)yj = P(Y = y1)y1 + · · ·+ P(Y = yJ)yJ . (2.4)
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If Y is binary, then J = 2, y1 = 0, and y2 = 1, in which case (2.4) simplifies to (2.3).
The mean gives a rough sense of whether the distribution has high or low values,

weighted by their probability.

Example 2.7 (Kaplan video). Consider J = 3, and the possible values are 1, 2, and 3,
so y1 = 1, y2 = 2, and y3 = 3. Imagine P(Y = yj) = 1/3 for all j = 1, 2, 3. Plugging all
these values into (2.4),

E(Y ) =

1︷︸︸︷
y1

1/3︷ ︸︸ ︷
P(Y = y1)+

2︷︸︸︷
y2

1/3︷ ︸︸ ︷
P(Y = y2)+

3︷︸︸︷
y3

1/3︷ ︸︸ ︷
P(Y = y3) = (1/3) + (2/3) + (1) = 2.

(2.5)

Example 2.8. Consider random variables W and Z, with P(W = 0) = P(W = 2) = 1/2
and P(Z = 2) = P(Z = 4) = 1/2. Then,

E(W ) = (0)(1/2) + (2)(1/2) = 1, E(Z) = (2)(1/2) + (4)(1/2) = 3, (2.6)

reflecting that Z tends to have higher values.

Example 2.9 (Kaplan video). Imagine W and Z both have possible values j = 1, 2, 3, 4,
but P(W = j) = j/10, whereas P(Z = j) = (5− j)/10. Although the possible values are
identical, W has higher probability of the higher values, which is reflected by its larger
mean:

E(W ) =
4∑

j=1

(j)(j/10) = (1)(1/10) + (2)(2/10) + (3)(3/10) + (4)(4/10) = 3,

E(Z) =

4∑
j=1

(j)(5− j)/10 = (1)(4/10) + (2)(3/10) + (3)(2/10) + (4)(1/10) = 2.

Beware: the mean is sensitive to very large values, so it does not reflect the value of the
“average member of the population.” (Such very large values are often called “outliers.”)
If you want to learn about the “average person” (or average firm, or average hospital,
etc.), then you want the median, not the mean.

Example 2.10. Let Y denote hourly wage ($/hr) for a population with three equally-
likely types of individuals. The possible values are y1 = 10, y2 = 20, and y3 = 270. The
probabilities are P(Y = yj) = 1/3 for j = 1, 2, 3. The “average person” is in the middle,
paid $20/hr. But the mean is, in $/hr,

E(Y ) = (10)(1/3) + (20)(1/3) + (270)(1/3) = 300/3 = 100. (2.7)

This $100/hr mean wage is way higher than what the “average person” earns ($20/hr).
The reason is that the extremely high value $270/hr brings the mean way up.

https://youtu.be/YtsTJ--uz-0
https://youtu.be/YtsTJ--uz-0
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Example 2.11 (Kaplan video). Let P(Y = 10) = 0.99 and P(Y = 3010) = 0.01. The
“average person” is one of the 99% who make $10/hr, but the mean is four times larger,
$40/hr:

E(Y ) = (10)(0.99) + (3010)(0.01) = 9.9 + 30.1 = 40. (2.8)

The mean helps capture the aggregate earnings rate of the population as a whole, but it
does not capture the typical wage of the average population member.

The mean has a useful property called linearity. Formally: the mean of a linear com-
bination of random variables equals the linear combination of their means. For example,
given random variables Y and Z, and non-random constants a and b,

E(aY + bZ) = aE(Y ) + bE(Z). (2.9)

Here, aY + bZ is a linear combination of random variables Y and Z. Thus, the mean of
the linear combination of Y and Z equals the linear combination of the means E(Y ) and
E(Z).

2.3.3 Categorical or Ordinal Variable

A categorical variable’s possible values are “categories,” not numbers. This was true of
several examples in Section 2.3.1, like whether a retailer is a franchise or not, or whether
a pharmaceutical drug is branded or generic. In Section 2.3.1, such values were coded as
0 or 1 for convenience. Generally, categorical variables can have more than two possible
values.

Example 2.12. Many important variables are categorical:
• non-franchise retailers could be categorized further as national chain, regional chain,

or independent;
• geographic region (north, south, east, west);
• mode of transportation (car, bike, train, etc.);
• industry (like NAICS industry code);
• college major (economics, English, ecology, electrical engineering, etc.).

The previous examples’ categories have no particular order to them, so they constitute
nominal variables (or nominal categorical variables). Often these are simply called
categorical variables.

In contrast, an ordinal variable (or ordinal categorical variable) has categories
with a natural order, usually from “low” to “high.”

Example 2.13. Many important variables are ordinal:
• bond rating (e.g., D, C, . . . , AA+, AAA);
• self-reported health status (poor, fair, good, excellent);
• teaching evaluation responses (disagree, neutral, agree);
• letter grades (F, C, B, A; although often A is 4.0 and C is 2.0, there is nothing

intrinsic in the letter grade system that suggests A is exactly twice as good as C).

https://youtu.be/YtsTJ--uz-0
https://www.census.gov/eos/www/naics/index.html
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Categorical variables, whether nominal or ordinal, do not have a mean. It is not
possible to average “good” and “excellent” because we don’t have numeric values for such
categories; there’s no such thing as “good and a half.” (Some people assign numbers like
3 and 4, but these are totally arbitrary, so the resulting analysis may also be totally
arbitrary; don’t do that.)

However, categorical variables can be used to generate binary variables, which do have
a mean. Although laters chapters do not explicitly allow categorical variables, you could
incorporate them (into regressions and such) by defining appropriate dummy variables.

Example 2.14 (Kaplan video). Consider a teaching evaluation response with possible
values “disagree,” “neutral,” and “agree.” Using the indicator function from (2.1), define
W = 1{disagree}, X = 1{neutral}, Y = 1{agree}. Then using (2.3), E(W ) = P(W = 1)
is the probability of “disagree,” E(X) = P(X = 1) is the probability of “neutral,” and
E(Y ) = P(Y = 1) is the probability of “agree.”

2.3.4 Continuous Variable

A continuous variable differs from a discrete variable in some strange technical ways,
but the intuition is the same. This textbook primarily uses discrete variables because
the math is simpler. You could imagine a continuous variable as a discrete variable
with a very (infinitely) large number of possible values packed very (infinitely) tightly
together. Indeed, many variables typically treated as “continuous” are actually discrete,
like monetary values that have discrete units (like $0.01). Practically, the difference is
negligible.

Example 2.15. Many important variables are modeled as continuous:
• market concentration measures (like market share of largest firm or HHI);
• a country’s per capita annual meat consumption;
• percentage growth of GDP (or sales, or stock price, etc.);
• crime rates (e.g., a city’s number of property crimes per year per 10,000 people).

Always specify units of measure. For example, if Y is the distance from an indi-
vidual’s residence to their workplace, it is meaningless to say Y = 15 because 15 is just a
number, not a measure of distance. It could be 15 km, but it could also be 15mi, which is
24 km; or it could even be measured in meters or feet (or parsecs, though unlikely). The
mean shares the same units as the variable itself. Units always matter greatly, whether
for description, prediction, or causality.

Continuous random variables share the same intuition for the mean and the same
linearity property from (2.9). Computing the mean of a continuous random variable by
hand requires calculus, so it is not covered in this textbook.

2.4 Prediction: Developing Intuition

=⇒ Kaplan video: Intuition for Prediction

https://youtu.be/LGEGx3vTyzE
https://youtu.be/oZ6uPvp4L1Y
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What does prediction mean? It may seem surprising to discuss prediction without
any data, and with a completely known distribution. In English, usually prediction means
using what you know now to “predict” what will happen in the future (e.g., “Beware the
Ides of March!”). In econometrics and statistics, prediction shares the qualities of guessing
something unknown using something known, but the details differ. (Predicting the future
is a special case of prediction called forecasting; see Part III.)

To develop intuition, this section introduces prediction concepts through a simple
example. The two main goals are

1. to show that there is no single best prediction because “best” depends on the ultimate
purpose of the prediction, and

2. to begin translating intuition into formal mathematics.
Toward the first goal, the view of “prediction” here is broad, perhaps verging on “statistical
decision theory” (making optimal decisions using statistics).

In the running example, you predict whether it will rain, where

Y : random variable representing rain (Y = 1) or no rain (Y = 0),
y : realized value of Y ,
g : your guess/prediction of rain (g = 1) or no rain (g = 0),

L(y, g) : loss function quantifying how bad it is to have guessed g when it’s really y.

The loss function is essentially a negative utility function. If you had a utility function
u(y, g) that says how good it is to have guessed g when the truth is y, then you could
simply use L(y, g) = −u(y, g). Because higher loss is bad, good consequences can be
represented by negative values like L(0, 0) = −10, or alternatively loss functions can be
normalized to have L(y, y) = 0 by expressing loss relative to that best-guess case (g = y).

Understanding the role of the loss function is crucial. I have seen PhD students
puzzled by their results because they did not use an appropriate loss function. Even the
fanciest machine learning predictions cannot choose your loss function for you (and they
may default to something totally inappropriate for your application).

2.4.1 Easy: “Predict” Current Weather

Imagine you’re standing outside, and you want to “predict” whether or not it’s currently
raining. This is the “after” view of Section 2.1.1: instead of multiple possible values of
random variable Y , you see the realized value y, with no uncertainty.

You make a simple $1 bet with your friend: if you guess right (g = y = 0 or g = y = 1)
then you win $1, but if you guess wrong (g ̸= y) then you lose $1. For simplicity, imagine
you have a linear utility function (no risk aversion), so the loss function is just how much
money you lose (so negative is winning):

L(0, 0) = L(1, 1) = −1, L(0, 1) = L(1, 0) = 1. (2.10)

Obviously, you guess g = y. You are correct. You win $1.

https://en.wikipedia.org/wiki/Ides_of_March#Assassination_of_Caesar
https://en.wikipedia.org/wiki/Ides_of_March#Assassination_of_Caesar
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To formally show that g = y is optimal, compute L(y, 0) and L(y, 1), and pick g to
minimize loss. If y = 1, so L(y, 0) = 1 and L(y, 1) = −1, then “guessing” g = 1 minimizes
loss because −1 < 1. If y = 0, so L(y, 0) = −1 and L(y, 1) = 1, then “guessing” g = 0
minimizes loss because −1 < 1. Thus, the best “guess” is indeed g = y.

2.4.2 Minimizing Mean Loss

Consider predicting tomorrow’s weather Y if P(Y = 1) = 0.4 (40% probability of rain)
and P(Y = 0) = 0.6. For your bet, should you predict rain?

Analogous to maximizing mean utility in microeconomics, we can choose g to minimize
mean loss. This doesn’t guarantee winning every time, but over the long-run (if you bet
many times), it generates the lowest total loss. (Mean loss is sometimes called “expected
loss” or “risk,” but those phrases are more confusing due to their different meanings in
common English.)

The mean loss is computed separately for each possible guess, here g = 0 and g = 1.
With g = 0, L(Y, 0) is a random variable: using (2.10), its possible values are −1 (if
Y = 0) and 1 (if Y = 1). That is, L(Y, 0) is a random variable with

P(L(Y, 0) = −1) = P(Y = 0) = 0.6, P(L(Y, 0) = 1) = P(Y = 1) = 0.4. (2.11)

Thus, using the expected value formula (2.4), mean loss when guessing no rain (g = 0) is

E[L(Y, 0)] = P(Y = 0)L(0, 0) + P(Y = 1)L(1, 0) = (0.6)(−1) + (0.4)(1) = −0.2. (2.12)

Similarly, with g = 1,

E[L(Y, 1)] = P(Y = 0)L(0, 1) + P(Y = 1)L(1, 1) = (0.6)(1) + (0.4)(−1) = 0.2. (2.13)

The optimal guess is g = 0 because it minimizes mean loss: E[L(Y, 0)] < E[L(Y, 1)].

2.4.3 Different Probability

Consider Section 2.4.2 but with P(Y = 1) = 0.7. Intuitively, rain being more likely might
change the optimal prediction from “no rain” to “rain.”

Analogous to (2.12) but with P(Y = 1) = 0.7, mean loss for g = 0 is

E[L(Y, 0)] = P(Y = 0)L(0, 0) + P(Y = 1)L(1, 0) = (0.3)(−1) + (0.7)(1) = 0.4. (2.14)

Similarly, mean loss for g = 1 is

E[L(Y, 1)] = P(Y = 0)L(0, 1) + P(Y = 1)L(1, 1) = (0.3)(1) + (0.7)(−1) = −0.4. (2.15)

Opposite Section 2.4.2, now E[L(Y, 1)] < E[L(Y, 0)]: g = 1 minimizes mean loss, so
g = 1 is the best prediction for your bet. This shows how the distribution of Y can affect
the optimal prediction.
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2.4.4 Different Loss Function

Now consider P(Y = 1) = 0.4 as in Section 2.4.2, but with a different loss function.
Specifically, if you correctly predict rain, you win $10 (i.e., −10 loss), but otherwise
L(y, g) is the same as in (2.10):

L(0, 0) = −1, L(1, 1) = −10, L(0, 1) = L(1, 0) = 1. (2.16)

Intuitively, even though rain is less probable than no rain, the much larger payoff for
correctly predicting rain might make us want to bet on rain.

Given the loss function in (2.16) and P(Y = 1) = 0.4, the mean loss for g = 0 is

E[L(Y, 0)] = P(Y = 0)L(0, 0) + P(Y = 1)L(1, 0) = (0.6)(−1) + (0.4)(1) = −0.2. (2.17)

Similarly, mean loss for g = 1 is

E[L(Y, 1)] = P(Y = 0)L(0, 1) + P(Y = 1)L(1, 1) = (0.6)(1) + (0.4)(−10) = −3.4. (2.18)

Opposite Section 2.4.2, now E[L(Y, 1)] < E[L(Y, 0)]: g = 1 minimizes mean loss, so
g = 1 is the best prediction for your bet. This shows how the loss function can affect the
optimal prediction.

2.5 Prediction: Generic Results

=⇒ Kaplan video: Optimal Prediction

2.5.1 Optimal Prediction: Generic Example with Two Choices

In Sum: Optimal Prediction

1. Choose appropriate loss function L(y, g): quantifies how bad it is to guess g
when the true value is y

2. Optimal prediction: the value of g with smallest mean loss E[L(Y, g)]

The following generalizes the approach of Section 2.4.2. The possible values of Y are now
Y = a and Y = b (before, a = 0 was no rain, and b = 1 was rain). Like before, there are
only two choices of g: g = a or g = b (you could only guess rain, or no rain).

Step 1 is to write down the loss function, based on the consequences of correct and
incorrect predictions, like in (2.10) and (2.16). That is, write out the numeric values of
L(a, a), L(a, b), L(b, a), and L(b, b).

https://youtu.be/itYpOHC6Vdc
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Step 2 is to compute the mean loss for each possible guess g. Generalizing (2.12)
and (2.13),

E[L(Y, a)] = P(Y = a)L(a, a) + P(Y = b)L(b, a),

E[L(Y, b)] = P(Y = a)L(a, b) + P(Y = b)L(b, b).
(2.19)

Step 3 is to pick the g that minimizes E[L(Y, g)]. If E[L(Y, a)] < E[L(Y, b)], then g = a
is the optimal predictor; if E[L(Y, b)] < E[L(Y, a)], then g = b is the optimal predictor;
or if E[L(Y, a)] = E[L(Y, b)], then g = a and g = b are equally good (or, equally bad!).

Example 2.16. Let P(Y = a) = 0.7 = 1−P(Y = b). Step 1: imagine L(a, a) = L(b, b) =
0, L(a, b) = 5, L(b, a) = 7. Using (2.19), Step 2 yields

E[L(Y, a)] = P(Y = a)L(a, a) + P(Y = b)L(b, a) = (0.7)(0) + (0.3)(7) = 2.1, (2.20)
E[L(Y, b)] = P(Y = a)L(a, b) + P(Y = b)L(b, b) = (0.7)(5) + (0.3)(0) = 3.5. (2.21)

Step 3 says g = a is the optimal prediction because E[L(Y, a)] < E[L(Y, b)].

Example 2.17. Imagine you work at a carnival where people pay five tickets to see
if you can guess their age. If you guess correctly, they win nothing; if incorrect, they
win a big stuffed animal. Because they pay five tickets regardless of your guess, that
does not enter the loss function. For simplicity, imagine everyone is either 20 or 25
years old, with P(Y = 20) = 0.6 and P(Y = 25) = 0.4. Step 1: let s be the value of
the stuffed animal that’s “lost” if you’re wrong, so L(20, 25) = L(25, 20) = s, whereas
L(20, 20) = L(25, 25) = 0. Step 2: mean losses are

E[L(Y, 20)] = (0.6)L(20, 20) + (0.4)L(25, 20) = (0.6)(0) + (0.4)(s) = 0.4s,

E[L(Y, 25)] = (0.6)L(20, 25) + (0.4)L(25, 25) = (0.6)(s) + (0.4)(0) = 0.6s.

Step 3: because 0.4s < 0.6s, it’s better to guess g = 20.

2.5.2 Quadratic Loss and the Mean

Just as the population mean is useful for description (Section 2.3), it is also useful for
prediction. Specifically, it is the optimal predictor when a particular loss function is used:
quadratic loss.

Define quadratic loss as
L2(y, g) = (y − g)2. (2.22)

This is zero when the guess is perfect (g = y) and larger when g is farther from y. Thus,
quadratic loss distinguishes between a slightly-wrong guess and a really-wrong guess.

Quadratic loss is most useful with continuous or discrete Y , rather than the binary
special case of Section 2.5.1. If there are very many or infinite possible Y values, then it
may be impractical or impossible to write down every possible L(y, g) value. A formula
like (y − g)2 is convenient and can be used if it’s a reasonable approximation of the true
loss in each case. (Sometimes we may not even know the true loss because we do not
know how our prediction will eventually affect decisions.)
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Example 2.18 (Kaplan video). Let the true y = 100. Consider quadratic loss for different
g. The guess g = y = 100 is best because L2(100, 100) = 0 is the smallest possible loss
(because (y − g)2 < 0 is impossible). The guess g = 99 is worse: loss is L2(100, 99) =
(100 − 99)2 = 1. The guess g = 90 is even worse: L2(100, 90) = (100 − 90)2 = 100.
Further, even though 90 is only 10 times farther from y than 99, the loss is 100 times
as big. Also, the guess g = 110 is just as bad as 90 because they are both wrong by 10
(higher or lower doesn’t matter): L2(100, 110) = (100− 110)2 = 100.

There are some cases when quadratic loss is inappropriate. For example, sometimes
it may be much worse to over-predict (g > y) than under-predict (g < y), or vice-
versa. However, quadratic loss does not distinguish between over-prediction and under-
prediction because (y − g)2 = (g − y)2. As another example, sometimes it may be twice
as bad to over-predict by 20 units (g− y = 20) than 10 units (g− y = 10), but quadratic
loss says it’s four times worse because 102 = 100 and 202 = 400. As another example,
quadratic loss is inappropriate when it only matters if you are correct or not, like in the
rain bet example (you can’t guess g = 0.5 and be half-wrong).

Discussion Question 2.3 (banana loss function). Imagine you run a small banana shop.
You buy bananas wholesale for 2 cents each ($0.02) and sell each for 40 cents ($0.40). The
wholesaler delivers every Monday. Any bananas not sold by the next Monday spoil; you
cannot sell them (they just go in the compost). Let y be the actual number of bananas
that customers want to buy in some week. Let g be your guess, i.e., how many you bought
wholesale on Monday.

a) Consider the loss function L(y, g) = 0 if y = g, otherwise L(y, g) = 1 if y ̸= g; that
is, zero loss for a correct guess, loss of 1 for incorrect guess. Why isn’t that loss
function appropriate?

b) Why isn’t quadratic loss appropriate?
c) What might the loss function look like, if you only care about maximizing profit?

Try to be as specific and mathematical as you can. In particular, consider the
different consequences of over-buying (g > y) versus under-buying (g < y).

Under quadratic loss, the mean is the optimal predictor that minimizes mean loss.
Although the details are beyond our scope,

g∗2 ≡ argmin
g

E[(Y − g)2] = E(Y ). (2.23)

That is, g∗2 is defined as the value of g that minimizes E[(Y − g)2], and it happens to
equal the population mean E(Y ).

This says the population mean E(Y ) has two interpretations. For description (Sec-
tion 2.3), the mean helps summarize the “center” of the distribution. For prediction, the
mean is the “best” guess of an unknown value of Y , given quadratic loss.

Discussion Question 2.4 (optimal banana prediction). Consider the same setup as in
DQ 2.3, and again assume you want to maximize (mean) profit. Imagine you know the
distribution of Y (banana quantity demanded in one week).

https://youtu.be/hx_bbvBUrMA
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a) Do you think the mean E(Y ) is a good “predicted” number of bananas to buy
wholesale? Explain why or why not; if not, also explain why you think E(Y ) is too
high or too low.

b) What if the retail price were $99 per banana, and the wholesale cost is still $0.02
per banana; would E(Y ) be good, or too high, or too low, and why?

In Sum: Quadratic Loss and the Mean

Quadratic loss: L(y, g) = (y − g)2

Population mean: E(Y ) is the best guess of Y given quadratic loss

Optional Resources

Optional resources for this chapter

• Basic probability: the Khan Academy AP Statistics unit includes instructional
material and practice questions

• Mean (expected value) (Lambert video)

• Probability distribution basics on Wikipedia (more than you need to know for this
class)

• Optimal prediction: Hastie, Tibshirani, and Friedman (2009, §2.4)

• Section 2.1 (“Random Variables and Probability Distributions”) in Hanck et al.
(2018)

https://www.khanacademy.org/math/ap-statistics
https://www.youtube.com/watch?v=6XqICKT1Kug
https://en.wikipedia.org/wiki/Probability_distribution


Chapter 3

One Variable: Sample

=⇒ Kaplan video: Chapter Introduction

Sections 2.3 and 2.5 considered only the population distribution, whereas Chapter 3
considers data sampled from that distribution. The words data, dataset, sample val-
ues, and sample all refer to the same thing: the set of values that the researcher actually
sees. But, as in Chapter 2, this could be seen either from the “before” perspective as ran-
dom variables, or from the “after” perspective as non-random realized values. Section 2.1
gave the general idea of seeing observations as random variables (the “before” view); here,
specific details are provided on estimation and uncertainty.

Although long, this chapter is mostly review of material you should have seen already
in an introductory statistics class.

Unit learning objectives for this chapter

3.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

3.2. Describe and distinguish Bayesian and frequentist perspectives [TLO 4]

3.3. Identify and interpret properties of a sampling procedure or estimator [TLO 4]

3.4. Judge which estimator is better based on its properties [TLO 6]

3.5. Interpret different measures of statistical uncertainty [TLOs 6 and 7]

3.6. Assess the economic significance of empirical results [TLO 6]

3.7. In R (or Stata): compute estimates of a population mean along with measures of
uncertainty [TLO 7]

3.1 Bayesian and Frequentist Perspectives

=⇒ Kaplan video: Bayesian and Frequentist Perspectives
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https://youtu.be/o_9R4L_5nXE
https://youtu.be/PJjahfVsS1c
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Two frameworks constitute econometrics and statistics: Bayesian and frequentist
(or classical). These are cynically deemed “sects” by some, but outside the vocal extremes
(and amusing webcomics: xkcd.com/1132), most econometricians appreciate and respect
both frameworks (and the people who use them), sometimes working with both in turn.

This textbook uses the frequentist framework. Why? Mostly, that’s just how I wrote
it; I’ll spare you post hoc rationalization.

There is little disagreement about the population and what we want to learn. Gener-
ally, both Bayesian and frequentist perspectives agree on everything in Chapter 2 about
the population and how data are generated.

The disagreements are about how to use the sampled data to learn about the popu-
lation, as briefly described in the remainder of Section 3.1. At minimum, I hope you get
a sense of these two different ways of quantifying uncertainty, and the different types of
questions they can (and cannot) answer.

3.1.1 Very Brief Overview: Bayesian Approach

The Bayesian approach models your beliefs about an unknown population value θ, like
the mean θ = E(Y ). Your prior (or prior belief) is what you believe about θ before seeing
the data. Your posterior (or posterior belief) is what you believe about θ after seeing
the data. The Bayesian approach describes how to update your prior using the observed
data, to get your posterior.

Mathematically, “belief” is a probability distribution. For example, let random vari-
able B represent your belief about the population mean. If you think there’s a 50% chance
the mean is negative, then P(B < 0) = 50%. If you think there’s a 1/4 probability that
B is below −1, then P(B < −1) = 1/4. (Elsewhere, you may see this written more
confusingly as P(θ < 0) and P(θ < −1).)

For example, imagine you see a bird flying in your backyard, and you grab your
binoculars to try to identify it. Let θ represent the true species, while B is your belief.
Imagine (for simplicity) you only ever see three types of bird in your backyard, all wood-
peckers: downy, hairy, and red-bellied, written θ = d, θ = h, and θ = r. Based on the
location and habitat, you know hairy is somewhat less likely in general, so your prior is
P(B = d) = P(B = r) = 0.4, P(B = h) = 0.2. Looking through your binoculars (looking
at the data), you’re pretty sure it’s not the red-bellied, but it’s too far to distinguish
downy from hairy, so your updated posterior belief has P(B = d) = 0.6, P(B = h) = 0.3,
P(B = r) = 0.1. The low probability of red-bellied comes from the data, whereas the
higher probability of downy than hairy comes from your prior.

The posterior distribution is the Bayesian way of quantifying uncertainty. It is rela-
tively intuitive, similar to how people talk about uncertainty in daily life. The posterior
distribution is often summarized by a credible interval, i.e., a range of values that
you’re pretty sure (like 90% sure) contains the true θ. Or in the above example with
categorical θ, the credible set {d, h} has 90% posterior belief: you’d say, “I’m 90% sure
it’s a downy or hair woodpecker, although I think there’s a 10% chance I’m wrong and
it’s a red-bellied woodpecker.”

https://xkcd.com/1132
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3.1.2 Very Brief Overview: Frequentist Approach

The core of the frequentist approach is the “before” perspective, which can also be de-
scribed in terms of repeated sampling. Instead of the belief probabilities of a Bayesian
posterior, frequentist probabilities are from the “before” view of what dataset (and thus
value of estimator and such) could be randomly sampled. Equivalently, as a thought
experiment, we can imagine many different random samples drawn from the same pop-
ulation; the “before” probabilities are then how often certain values occur in these many
random datasets.

For intuition, imagine you could randomly sample 100 datasets from the same pop-
ulation. Then, the frequentist probability of an event says approximately how many
times that event occurs among the 100 samples. For example, we could compute the
sample mean Ȳ in all 100 samples; because the datasets are all different, the sample
means Ȳ are also all different. If Ȳ ≤ 0 in 50 of the 100 hypothetical samples, then
P(Ȳn ≤ 0) ≈ 50/100 = 50%. Or, if Ȳ is in the interval [−0.4, 0.4] in 70 of 100 samples,
then P(−0.4 ≤ Ȳ ≤ 0.4) = P(Ȳ ∈ [−0.4, 0.4]) ≈ 70%. A similar example is in Table 3.1.

3.1.3 Bayesian and Frequentist Differences

The following makes explicit some of the differences between the Bayesian and frequentist
approaches described above.

First, the frameworks treat different variables as random or non-random. The frequen-
tist framework treats the population mean and other population features as non-random
values, whereas it treats the data as random. For example, the population mean µ = E(Y )
is a non-random value, whereas an observation Y is a random variable. In contrast, the
Bayesian framework treats population features as random (to reflect your beliefs), whereas
it treats the data as non-random values (the “after” view).

Second, due to this different treatment, the frameworks answer different types of
questions, especially when quantifying uncertainty. The Bayesian framework answers
questions about our beliefs after seeing the data. The frequentist framework answers
questions about probabilities of seeing different features in the data, given the true pop-
ulation values.

Example 3.1 (Kaplan video). Consider the question, “Given the observed data, what do
I believe is the probability that the population mean is above 1/2?” This is a Bayesian
question. Mathematically, if y is the “observed data,” this question is commonly written
as P(µ > 1/2 | y), noting the conventional but confusing notation where µ represents
beliefs. This question makes no sense from the frequentist perspective: either µ > 1/2 or
not; it cannot be “maybe,” with some probability.

Example 3.2 (Kaplan video). Consider the question, “Given the value of µ = E(Y ),
what’s the probability that the sample mean is above 1/2?” This is a frequentist question.
Mathematically, this is usually written P(Ȳ > 1/2), or Pµ(Ȳ > 1/2) to be explicit about
the dependence on µ. The sample mean Ȳ is a function of data, so it is treated as a

https://youtu.be/8UUDbkUI2wU
https://youtu.be/8UUDbkUI2wU


36 CHAPTER 3. ONE VARIABLE: SAMPLE

random variable. This question makes no sense from the Bayesian perspective: we can
see the data, so we can see either Ȳ > 1/2 or not; it cannot be “maybe,” with some
probability.

Interestingly, both frameworks can answer questions like P(Ȳ < µ), but with different
interpretations. The Bayesian answer interprets Ȳ as a number (that we see in the data)
and µ as a random variable representing our beliefs. The frequentist answer interprets
Ȳ as the random variable (from the “before” view) and µ as the non-random population
value.

Third, frequentist methods use only the data, whereas Bayesian methods can formally
incorporate additional knowledge. In practice, though, even frequentist results should be
interpreted in light of other knowledge. The difference is that this process is not formalized
within the frequentist methodology itself. Unfortunately, many people do not combine
frequentist results with other knowledge, instead interpreting frequentist results as if one
single dataset contains the full, absolute truth of the universe; please do not do this!

In Sum: Bayesian & Frequentist

Frequentist: “before” view of data (random variables); assess methods’ performance
across repeated random samples from same population
Bayesian: “after” view of data (non-random); model beliefs (about population fea-
tures) as random variables

3.2 Types of Sampling

=⇒ Kaplan video: Types of Sampling

In practice, judging which econometric method is most appropriate requires under-
standing different types of sampling procedures and sampling properties. Such judgment
is mostly left to another textbook, but this section hopes to help your understanding.

Notationally, we observe the values from n units, which could be individuals, firms,
countries, etc. Let i = 1 refer to the first unit, i = 2 to the second, etc., up to i = n,
where n is the sample size. The corresponding values are Y1, Y2, . . . , Yn, with Yi more
generally denoting the observation for unit i. A particular dataset may have specific
values like Y1 = 5, Y2 = 8, etc., but to analyze statistical properties, each Yi is seen as a
random variable as in Section 2.1.

In this section, two important sampling properties are considered: “independent” and
“identically distributed.” If both hold, then the Yi are called independent and iden-
tically distributed (iid) random variables (or “sampled iid”), and “sampling is iid.”
Sometimes the vague phrase random sample refers to iid sampling.

https://youtu.be/3u8dm9_MfkA
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This iid sampling is mathematically simplest but not always realistic. Although iid
sampling is the focus here (like other introductory textbooks), weights are briefly men-
tioned, and Part III considers dependent (i.e., not independent) data.

Notationally, iid sampling is indicated by iid∼ . For example, with population CDF
FY (·),

Yi
iid∼ FY , i = 1, . . . , n. (3.1)

The FY can be replaced by another distribution function or name.
There are other sampling properties not considered in this section, like sampling

bias. This is about whether we observe a “representative sample” of the population we
want to learn about (the population of interest). Sometimes sampling bias is our fault
(for using the wrong dataset for our economic question), but sometimes we try to get
the right data and people refuse to answer our survey, or we can’t get access to certain
confidential data, etc. This is discussed more in Chapter 12, in terms of “missing data”
and “sample selection.”

After introducing “independent” and “identically distributed” sampling, examples are
discussed in Section 3.2.3.

3.2.1 Independent

Qualitatively, in the context of sampling, independence (or independent sampling)
means that from the “before” view, any two observations are unrelated. For example,
the value of Y2 is unrelated to Y1: we are not any more likely to see a high Y2 if we see a
high Y1 in the sample.

Mathematically, independence means

Yi ⊥⊥ Yk for any i ̸= k, (3.2)

where ⊥⊥ denotes statistical independence. That is, Y1 ⊥⊥ Y2, Y1 ⊥⊥ Y8, Y6 ⊥⊥ Y4, etc. For
any i ̸= k, independent sampling implies (but is not implied by), among other properties,

Cov(Yi, Yk) = 0, Var(Yi + Yk) = Var(Yi) + Var(Yk), E(Yi | Yk) = E(Yi). (3.3)

Example 3.3 (Kaplan video). You plan to flip a coin and record Y1 = 1 if heads and
Y1 = 0 if tails. You plan flip the same coin again and record Y2 = 1 if heads and Y2 = 0 if
tails. These are independent: Y1 ⊥⊥ Y2. Although the probabilities are very closely related
(actually identical), the realization of the first flip (heads or tails) has no relationship with
the second flip. For example, even if we know the first flip is heads, this does not change
the probability of heads for the second flip: P(Y2 = 1 | Y1 = 1) = P(Y2 = 1).

Example 3.4 (Kaplan video). You plan to pick a random person in the world and record
how many years of formal education they’ve had as Y1. You plan to then pick another
random person and record their years of education in Y2. The way you sample Y2 has no
relation to the first sampled person or their Y1 value, so there is independence: Y1 ⊥⊥ Y2.
Among other implications, this means Y1 and Y2 have zero correlation (uncorrelated) and
zero covariance, Cov(Y1, Y2) = 0.

https://youtu.be/M9ET1mq1uRs
https://youtu.be/M9ET1mq1uRs
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3.2.2 Identically Distributed

The identically distributed property means that from the “before” view, the distribu-
tion of Yi is the same for any i. Qualitatively, all units are sampled from the same popu-
lation. Mathematically, given shared population CDF FY (·), Yi ∼ FY for all i = 1, . . . , n.
This means that for any i and k, Yi and Yk have the same distribution and thus the same
properties like mean and variance, E(Yi) = E(Yk) and Var(Yi) = Var(Yk).

Mathematically, identically distributed Yi means that for any i and k, Yi and Yk
have the same distribution. Thus, any feature of their distributions is also identical. For
example, E(Yi) = E(Yk) and Var(Yi) = Var(Yk).

Example 3.5 (Kaplan video). The Y1 and Y2 in Example 3.3 are identically distributed
because they are from the same coin, so the probability of heads is the same each time.
(Unless you cheat or flip it differently or something, but those are nuances for physics
class, not econometrics.)

Practice 3.1 (i/id sampling). You are planning to sample values Y1 and Y2, but you
have not yet sampled them. Each of the following four statements implies one of the four
sampling properties: 1) independent, 2) not independent (i.e., dependent), 3) identically
distributed, 4) not identically distributed. Which is which?

a) You are just as likely to get Y1 = 3 as Y2 = 3, and similarly for any other value
besides 3.

b) If you get a negative Y1, then you’ll probably get a negative Y2; but if you get a
positive Y1, then you’ll probably get a positive Y2.

c) Separately and simultaneously, you will randomly sample Y1 while your friend sam-
ples Y2.

d) For Y1 you are going to get the salary of somebody with an economics degree, and
Y2 will be the salary of somebody with an art history degree.

3.2.3 More Examples

Consider the following sampling procedures and their properties. Each example has 4
observations of Mizzou students. You can imagine 4 buckets (or pieces of paper), initially
empty, that will eventually contain information from 4 observations. The sampling pro-
cedure does not determine the specific numeric values that end up in the buckets, but it
determines how the buckets get filled. Again, the goal for this class is to understand why
sampling is iid or not.

Example 3.6 (Kaplan video). Imagine randomly picking a Mizzou student ID number,
then randomly picking a 2nd, then 3rd, then 4th. The corresponding Yi are both inde-
pendent and identically distributed (iid). They are independent because each ID number
is randomly drawn without any consideration of how the other numbers are drawn, and
without any consideration of the other observed Yi values. They are identically distributed
because each ID number is drawn from the same population (anyone who has a Mizzou
student ID).

https://youtu.be/M9ET1mq1uRs
https://youtu.be/45lkFUSLfjk
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Example 3.7 (Kaplan video). Each Mizzou student is classified as either a resident of
Missouri (“in-state”) or not (“non-resident”). Imagine buckets 1 and 2 say “in-state,” while
buckets 3 and 4 say “non-resident”: observations Y1 and Y2 are from in-state students,
while Y3 and Y4 are from non-resident students. (This is “stratified sampling”: assigning
buckets to different strata before sampling.) For most variables, the in-state distribution
differs from the non-resident distribution, so the distribution of Y1 and Y2 (in-state) differs
from the distribution of Y3 and Y4 (non-resident). That is, sampling is not identically
distributed. Thus, even if the samples are all independent, sampling is not iid.

Example 3.8 (Kaplan video). Imagine randomly picking a class (like my econometrics
class) at Mizzou, and filling the first two buckets (Y1 and Y2) with two random students
from that class; then randomly picking another class, and another two students for the
other buckets (Y3 and Y4). (This is an example of “clustered sampling,” where each class is
a “cluster”; this differs from “clustering” in cluster analysis.) Observations are identically
distributed (because each Yi has the same probability of getting any particular student)
but probably not independent. For example, dependence may come from students in the
same class being similarly affected by their shared experience. Here, buckets 1 and 2 are
correlated, and 3 and 4 are correlated, but not 1 and 3, nor 2 and 4, etc. Thus, sampling
is not iid.

Example 3.9 (Kaplan video). Imagine randomly picking 2 Mizzou students (like with
random ID numbers), then observing them this semester and next semester. For example,
imagine bucket 1 contains the first student’s GPA this semester, bucket 2 contains the
same student’s GPA next semester, and buckets 3 and 4 contain the other student’s GPAs
from this semester and next semester. Buckets 1 and 2 (Y1 and Y2) are probably both
high or both low, rather than one high and one low, and similarly for buckets 3 and 4 (Y3
and Y4). That is, buckets 1 and 2 are correlated, and 3 and 4 are correlated. Further,
observations may not even be identically distributed if fall GPA and spring GPA do not
have the same distribution. Thus, sampling is not iid.

Example 3.10 (Kaplan video). If you randomly pick one student and observe the same
student over four consecutive semesters, there is probably dependence, in which case
sampling is not iid. For example, because it’s the same student, we are more likely to
see four relatively high values, or four relatively low values, or four mediocre values, than
to see high-low-low-high or low-high-low-high; there is positive correlation among Y1, Y2,
Y3, and Y4. (Imagine Y is height, or hours of sleep, or GPA; these may change over time,
but not as much as they differ among different students.) This is time series data; see
Part III.

Practice 3.2 (rural household sampling). You want to learn about household consump-
tion in rural Indonesia. In an area with 100 villages, you either i) pick 5 villages at random,
then survey every household in each of the 5 villages; or ii) make a list of all households
in all 100 villages, then randomly pick 5% of them. Explain why each approach is or isn’t
iid.

https://youtu.be/45lkFUSLfjk
https://youtu.be/45lkFUSLfjk
https://en.wikipedia.org/wiki/Cluster_analysis
https://youtu.be/45lkFUSLfjk
https://youtu.be/45lkFUSLfjk
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3.3 The Empirical Distribution

=⇒ Kaplan video: The Empirical Distribution

The empirical distribution is a probability distribution that reflects the sample
data. It can be confusing at first, but it unifies many approaches in this class and beyond,
helping them seem less ad hoc and mysterious. Qualitatively, the empirical distribution
treats the sample as if it were the population.

Mathematically, first consider a binary variable. The population is represented by
binary random variable Y with P(Y = 1) = p. A sample of size n can be represented by
binary random variable S with

P(S = 1) = p̂ =
how many Yi = 1

n
=

1

n

n∑
i=1

1{Yi = 1}, (3.4)

the sample proportion of observations with Yi = 1. The distribution of S is the empirical
distribution.

The plug-in principle or analogy principle suggests that we use S to compute
whatever features we want to learn about Y . For example, if we want to learn E(Y ), then
compute E(S). With enough data, S is usually very similar to Y , so features of S should
usually be very similar to those of Y .

Mathematically, consider now a categorical or discrete variable. The population is
represented by random variable Y with possible values (v1, . . . , vJ). The sample is repre-
sented by random variable S with

P(S = vj) =
1

n

n∑
i=1

1{Yi = vj}, j = 1, . . . , J. (3.5)

That is, P(S = vj) is the sample proportion of observations with value vj .
Mathematically, consider finally a continuous variable. Because the sampled Yi values

are all unique, the sample is represented by random variable S with

P(S = Yi) = 1/n, i = 1, . . . , n. (3.6)

Even though Y is continuous, S is discrete, with 1/n probability on each observed Yi
value.

Notationally, a hat (circumflex) often denotes a sample analog, a feature of S
analogous to a population feature of Y . (More generally, a “hat” just denotes anything
computed from the sample data.)

Example 3.11 (Kaplan video). For the population P(Y = y), the sample analog is
P̂(Y = y) = P(S = y), which is also the proportion of observed Yi equal to y.

Example 3.12 (Kaplan video). For the population mean E(Y ), the sample analog is
Ê(Y ) = E(S), which is also the sample average of the Yi.

https://youtu.be/5REuspI5qfE
https://en.wikipedia.org/wiki/Circumflex#Mathematics
https://youtu.be/5O1ms8Mm9fE
https://youtu.be/5O1ms8Mm9fE
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3.4 Estimation of the Population Mean

Sections 2.3 and 2.5 helped us think about which features of the population are useful for
description and prediction. Such a population feature is called the estimand or object
of interest. In practice, it must be estimated using data.

This section specifically considers estimating the population mean from iid data. The
same concepts appear in later chapters.

3.4.1 “Description”: Sample Mean

The population mean can be estimated by its sample analog, the mean of the empirical
distribution (Section 3.3). This is called the sample mean. It is also called the sample
average because it averages the sample Yi values. Notationally, the sample average is
usually Ȳ (or Ȳn). Mathematically, using Section 3.3 notation,

Ȳ = Ê(Y ) = E(S) =
1

n

n∑
i=1

Yi. (3.7)

These expressions are equivalent, just emphasizing different interpretations. (The last
equality is not obvious for discrete Y , but it’s derivation is beyond our scope.)

3.4.2 “Prediction”: Least Squares

Section 2.5.2 showed that the population mean E(Y ) also solves an optimal prediction
problem: E(Y ) = g∗2 ≡ argming E[(Y − g)2].

The analogy principle (Section 3.3) suggests solving the same optimal prediction prob-
lem for the empirical distribution (S replacing Y ). Skipping the calculus,

ĝ∗2 ≡ argmin
g

E[(S − g)2] = argmin
g

1

n

n∑
i=1

(Yi − g)2 =⇒ ĝ∗2 = Ȳ . (3.8)

The prediction-motivated estimator equals the description-motivated estimator! As with
any random variable, the mean of S equals the best predictor of S (with quadratic loss).

Rewriting (3.8) allows the introduction of some terms and concepts used in later
chapters. In (3.8), the 1/n has no effect on the minimization problem because it is
unaffected by g. Consequently, it is equivalent to write

ĝ∗2 = argmin
g

n∑
i=1

(Yi − g)2. (3.9)

To dissect the right-hand side of (3.9), imagine any estimate ĝ. Because ĝ can be seen
as trying to predict Y , sometimes ĝ is called the predicted value of Yi. However, the
observed value of Yi is used to compute ĝ, so it seems misleading to say Yi was “predicted”:
usually we assume the true value is not known when we discuss prediction. Instead, calling
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ĝ the fitted value is more appropriate. Either way, Ûi = Yi− ĝ is called the residual for
observation i. The squared residuals are Û2

i = (Yi− ĝ)2. The sum of squared residuals
(SSR) is then

n∑
i=1

Û2
i =

n∑
i=1

(Yi − ĝ)2. (3.10)

Consequently, (3.8)–(3.10) together say that Ȳ minimizes the SSR. For this reason, Ȳ is
a least squares estimator: “least” referring to minimization, and “squares” referring to
the second S in SSR.

3.4.3 Non-iid Sampling: Weights

If your dataset has weights, then you should probably use them. Weights help adjust
the sample to be more representative of the population. Conversely, ignoring weights can
produce misleading results because the sample is not representative of the population.
Details are beyond our scope.

3.5 Sampling Distribution of an Estimator

=⇒ Kaplan video: Sampling Distribution of an Estimator

Our goal in this section is to understand what it means for an estimator to have a
probability distribution. (There are many interesting (to me) details of approximating
sampling distributions, but they are beyond our scope.)

An estimator’s sampling distribution is simply its probability distribution, treating
the estimator as a random variable from the “before” view. Equivalently, from the repeated
sampling perspective, the sampling distribution imagines computing the estimator in a
large number of randomly sampled datasets from the same population, and seeing which
values occur with what probability.

Consider the sample mean as an estimator of the population mean, with iid sampling.
Here, the n subscript is added to Ȳn because the sampling distribution depends on n. For
example, the sampling distribution of Ȳ1 = Y1 differs from that of Ȳ2 = (Y1 + Y2)/2.

From the “before” view, the sample mean Ȳn is a random variable. The Yi are all
random variables, so their average is also a random variable. That is, the Yi have multiple
possible values, so the sample mean also has multiple possible values.

Example 3.13. Let n = 1, so Ȳ1 = Y1. The sampling distribution of estimator Ȳ1 is the
same as the population distribution of Y1.

Example 3.14. Imagine binary Y with population mean E(Y ) = P(Y = 1) = p. Let
n = 2 with iid sampling. Despite the simplicity, it takes some work to derive the sampling
distribution of Ȳ2. There are four possible values of (Y1, Y2): (0, 0), (0, 1), (1, 0), (1, 1).

https://youtu.be/xC46VaPVpXQ
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This makes three possible values of Ȳn = (Y1 + Y2)/2: 0, 1/2, or 1. Thus,

P(Ȳn = 0) =

use Y1⊥⊥Y2︷ ︸︸ ︷
P(Y1 = 0 and Y2 = 0) =

=1−p︷ ︸︸ ︷
P(Y1 = 0)

=1−p︷ ︸︸ ︷
P(Y2 = 0) = (1− p)2,

P(Ȳn = 1) =

use Y1⊥⊥Y2︷ ︸︸ ︷
P(Y1 = 1 and Y2 = 1) =

=p︷ ︸︸ ︷
P(Y1 = 1)

=p︷ ︸︸ ︷
P(Y2 = 1) = p2,

P(Ȳn = 1/2) = 1− P(Ȳn = 0)− P(Ȳn = 1) = 1− (1− p)2 − p2 = 2p(1− p).

(3.11)

This can be interpreted from the “before” view, or in terms of repeated sampling; for
example, if we randomly sample 100 datasets, then around 100p2 datasets should have
Ȳn = 1.

Discussion Question 3.1 (probability of positive mean). After seeing the data, you
want to know the probability that the true mean is strictly positive, E(Y ) > 0. Does the
frequentist sampling distribution help? If yes, explain how; if no, explain why not. Hint:
recall Section 3.1.

3.5.1 Example: Values in Repeated Samples

Table 3.1 records values and events across 100 datasets randomly sampled from the same
population. The population is discrete, with P(Y = j) = 1/5 for j = −2,−1, 0, 1, 2, so
the population mean is E(Y ) = 0. Sampling is iid, so each Yi has the same distribution
as the population Y , and all Yi are mutually independent. Let n = 10.

Table 3.1: Example estimates and event probabilities.

Sample Ȳn 1
{
Ȳn ≤ 0

}
1
{
Ȳn − 0.4 ≤ 0 ≤ Ȳn + 0.4

}
#1 0.50 0 0
#2 0.20 0 1
#3 0.00 1 1
#4 −0.10 1 1
#5 −0.50 1 0

...
...

...
...

#100 0.30 0 1

Average 0.01 52/100 67/100

Note: P(Y = j) = 0.2 for j = −2,−1, 0, 1, 2, iid, n = 10.

Table 3.1 shows the value of Ȳn computed from each sample (dataset). It shows that
Ȳn = 0.5 in the first sample, Ȳn = 0.2 in the second sample, etc. This reflects the sampling
distribution.

Table 3.1 also shows for each sample whether or not the sample mean Ȳn is less than
or equal to the population mean E(Y ) = 0, in the column labeled with 1

{
Ȳn ≤ 0

}
. That
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is, 1 indicates that it does, 0 indicates that it doesn’t. For example, in Sample #1,
Ȳn = 0.5, which is not negative, so 1

{
Ȳn ≤ 0

}
= 0. In Sample #4, Ȳn = −0.1, which is

negative, so 1
{
Ȳn ≤ 0

}
= 1. From the frequentist view, the event Ȳn ≤ E(Y ) is “random”

in that it could occur or not occur, with some probability for each possibility. The E(Y )
is non-random, but Ȳn is random, hence the event is random. The event’s probability is
the probability of randomly sampling a dataset in which the event occurs. The bottom
row of the table says the event occurred 52 times out of 100 samples (52% of the time).
Because there are only 100 samples and not ∞, this is not the exact probability, but it
reflects that the event occurs slightly more than half the time.

Table 3.1 also shows for each sample whether or not the random interval [Ȳn−0.4, Ȳn+
0.4] contains the population mean E(Y ) = 0, i.e., whether or not Ȳn − 0.4 ≤ E(Y ) ≤
Ȳn + 0.4. The interval is “random” in the frequentist sense that it has different possible
values in different datasets (because it depends on Ȳn). In Sample #1, the interval does
not contain E(Y ): Ȳn = 0.5, so the interval is [0.5− 0.4, 0.5+0.4] = [0.1, 0.9], which does
not contain E(Y ) = 0. In Sample #2, the interval does contain E(Y ): Ȳn = 0.2, so the
interval is [−0.2, 0.6], which contains E(Y ) = 0. The bottom row of the table says this
event occurred 67 times out of 100 samples (67% of the time). This is essentially the
“coverage probability” of a “confidence interval,” described in Section 3.7.1.

3.6 Quantifying Accuracy of an Estimator

From the frequentist perspective, an estimator’s accuracy can be quantified by comparing
features of its sampling distribution to the true population value. Bias is an important,
commonly mentioned property, but it is not sufficient to quantify accuracy. Mean squared
error better quantifies accuracy.

Throughout, let θ be the population parameter estimated by θ̂n; for example, θ =
E(Y ) and θ̂n = Ȳn.

3.6.1 Bias

Definitions

The bias of θ̂n compares the mean of its sampling distribution to the true population θ.
Mathematically,

Bias(θ̂n) ≡ E(θ̂n)− θ. (3.12)

The bias captures if the estimator systematically differs from θ in a particular direction,
i.e., how wrong the average θ̂n is.
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There are four types of bias:

upward bias (positive bias): E(θ̂n) > θ,

downward bias (negative bias): E(θ̂n) < θ,

attenuation bias (bias toward zero): 0 <
E(θ̂n)

θ
< 1, so |E(θ̂n)| < |θ|,

bias away from zero:
E(θ̂n)

θ
> 1, so |E(θ̂n)| > |θ|.

An estimator is unbiased if its bias is zero. Using (3.12),

Bias(θ̂) = 0 ⇐⇒ E(θ̂) = θ, (3.13)

where symbol ⇐⇒ can be read as “is equivalent to” (see Section 6.1).

Example 3.15 (Kaplan video). With iid sampling, the sample mean is an unbiased esti-
mator of the population mean. The estimator is θ̂n = Ȳn, and the population parameter
is θ = E(Y ). With n = 1, Ȳ1 = Y1, so E(Ȳ1) = E(Y1) = E(Y ). With n = 2,

E[Ȳ2] = E[(1/2)Y1 + (1/2)Y2] =

E(Y )/2︷ ︸︸ ︷
(1/2)E(Y1)+

E(Y )/2︷ ︸︸ ︷
(1/2)E(Y2) = E(Y ), (3.14)

using the linearity property of E(·) from (2.9). Similar derivations hold for any n, so
E(Ȳn) = E(Y ), thus the bias is zero given (3.13).

Example 3.16 (Kaplan video). The estimator θ̂n = Ȳn+1 has positive bias for the mean
E(Y ): E(θ̂n) = E(Ȳn + 1) = E(Ȳn) + 1 = E(Y ) + 1 > E(Y ).

Example 3.17 (Kaplan video). The estimator θ̂n = Ȳn − 2 has negative bias for the
mean E(Y ): E(θ̂n) = E(Ȳn − 2) = E(Ȳn)− 2 = E(Y )− 2 < E(Y ).

Example 3.18 (Kaplan video). The estimator θ̂n = 0.5Ȳn has attenuation bias for the
mean E(Y ): E(θ̂n) = E(0.5Ȳn) = 0.5E(Ȳn) = 0.5E(Y ), so 0 < [E(θ̂n)/E(Y )] = 0.5 < 1.

Insufficiency of Bias to Quantify Accuracy

Bias alone does not fully quantify accuracy. That is, if you only consider bias when
choosing between two possible estimators, then you may be fooled into choosing the
worse estimator.

Let θ̂1 and θ̂2 be two different estimators of the same unknown parameter θ. Here,
the subscripts 1 and 2 do not indicate n but just that the estimators are different. For
simplicity, let θ = 0. The first estimator’s distribution is

P(θ̂1 = −100) = P(θ̂1 = 100) = 1/2. (3.15)

https://youtu.be/qc-yoERJOr0
https://youtu.be/qc-yoERJOr0
https://youtu.be/qc-yoERJOr0
https://youtu.be/qc-yoERJOr0
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The second estimator’s distribution is

P(θ̂2 = 1) = 1. (3.16)

The first estimator has smaller bias. The estimators’ means are

E(θ̂1) = (1/2)(−100) + (1/2)(100) = 0, E(θ̂2) = (1)(1) = 1. (3.17)

Thus, recalling θ = 0, the bias of each estimator is

Bias(θ̂1) = E(θ̂1)− θ = 0− 0 = 0, Bias(θ̂2) = E(θ̂2)− θ = 1− 0 = 1. (3.18)

Estimator θ̂1 is unbiased, whereas θ̂2 has upward bias.
But intuitively, θ̂2 is much better. It always differs from the true θ by only 1, whereas

θ̂1 always differs by 100, which is much worse. That is, regardless of the dataset, θ̂2 is
always 100 times closer than θ1 to the true θ = 0. This illustrates how bias alone does
not properly quantify our preferences: it tells us to prefer θ̂1 (lower bias) when in fact we
strongly prefer θ̂2 (always much closer to θ).

3.6.2 Mean Squared Error

=⇒ Kaplan video: MSE Examples

The mean squared error (MSE) is a more complete measure of “how bad” an esti-
mator is. The idea is analogous to using quadratic loss for prediction (e.g., Section 2.5.2).
Among other possible loss functions, this is most common and generally reasonable. MSE
is mean quadratic loss:

MSE(θ̂) ≡ E[L2(θ̂, θ)] = E[(θ̂ − θ)2]. (3.19)

Continuing the example, our intuitive preference for θ̂2 over θ̂1 is supported by MSE.
Because MSE measures “how bad” an estimator is, θ̂2 being “better” means it has lower
MSE. Specifically,

MSE(θ̂1) = E[(θ̂1 − θ)2] = (1/2)(−100− 0)2 + (1/2)(100− 0)2 = 10,000,

MSE(θ̂2) = E[(θ̂2 − θ)2] = (1)(1− 0)2 = 1.

This matches our intuition: θ̂2 is much better than θ̂1 because it has much lower MSE.
MSE can also be decomposed into variance plus squared bias. The variance is

Var(θ̂) ≡ E[(θ̂ − E(θ̂))2]. (3.20)

(The square root of this is the standard deviation, also called the “standard error” of
the estimator θ̂.) Skipping the math, using the bias and variance definitions in (3.12)
and (3.20),

E[(θ̂ − θ)2] = Var(θ̂) + [Bias(θ̂)]2. (3.21)

All else equal, larger bias is bad, but it’s also bad to have very high and very low estimates
across datasets (large variance and “standard error”) even if they happen to average to θ.

https://youtu.be/9QflZpHWC-Q
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Example 3.19 (Kaplan video). Continue the previous example, but instead of assuming
θ = 0, let

P(θ̂1 = θ − 100) = P(θ̂1 = θ + 100) = 1/2, P(θ̂2 = θ + 1) = 1. (3.22)

The MSEs are the same as before because the θ cancels out:

MSE(θ̂1) = E[(θ̂1 − θ)2] = (1/2)(θ − 100− θ)2 + (1/2)(θ + 100− θ)2 = 10,000,

MSE(θ̂2) = E[(θ̂2 − θ)2] = (1)(θ + 1− θ)2 = 1.
(3.23)

Example 3.20 (Kaplan video). Imagine we know the bias and variance of two estimators,
but not the full sampling distributions. This is still sufficient to compute MSE using
(3.21). For example, let

Bias(β̂1) = 1,Var(β̂1) = 16, Bias(β̂2) = 10,Var(β̂2) = 9. (3.24)

Plugging these into (3.21),

MSE(β̂1) = 12 + 16 = 17, MSE(β̂2) = 102 + 9 = 109. (3.25)

According to MSE, β̂1 is better because it has lower MSE (“less bad”) than β̂2. In this
case, although β̂1 has larger variance, its bias is enough smaller than its overall MSE is
also smaller.

Practice 3.3 (estimator MSE). Consider three estimators of the population mean µ =
E(Y ), and their three sampling distributions: µ̂1 ∼ N(µ, 25), µ̂2 ∼ N(µ + 3, 16), and
µ̂3 ∼ N(µ + 2, 9), i.e., the sampling distributions of the three estimators are all normal
distributions with respective means µ, µ+ 3, and µ+ 2, and respective variances 25, 16,
and 9. (Hint: for MSE, does it matter that the distributions are normal?)

a) Compute the MSE of each estimator.
b) Rank the three estimators from best to worst, in terms of MSE.

3.6.3 Consistency and Asymptotic MSE

Without getting into technical details, an estimator is consistent if in “large” samples
(large n), there is a “high” probability of the estimator being “close” to the true value. This
is similar to the idea of “probably approximately correct” in computer science: estimator
θ̂n is “consistent” if with large n it is “probably approximately correct.” Unfortunately,
there are usually no precise quantitative definitions of “large,” “high,” and “close.”

If θ̂n is not consistent, then it has asymptotic bias: even with infinite data, the
estimator would still be biased. One way to formally define asymptotic bias is

AsyBias(θ̂n) ≡ plim
n→∞

θ̂n − θ, (3.26)

where plim is a probabilistic limit (details omitted), meaning the value that estimates tend
to be very close to when n is large. Analogous to “unbiasedness” being “zero bias,” here

https://youtu.be/U3g4D1TLVbs
https://youtu.be/U3g4D1TLVbs
https://en.wikipedia.org/wiki/Probably_approximately_correct_learning
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“consistency” is “zero asymptotic bias”: roughly speaking, with a large dataset, there is
very little bias. There are the same four types of asymptotic bias as bias (upward/positive,
downward/negative, attenuation, and away from zero).

It is also possible to compare approximate (asymptotic) mean squared error; although
the details are beyond our scope the intuition is the same (lower is better; depends on
both bias and variance components).

As an alternative to (3.26), asymptotic bias can be defined as the approximate bias
when the sample size n is large. Formally, AsyBias(θ̂n) ≡ limn→∞Bias(θ̂n) − θ. This
definition is not equivalent to (3.26), nor is it as commonly used, but requires less math
to understand, so it is used in the following examples.

Example 3.21 (Kaplan video). Imagine the sampling distribution of θ̂n has E(θ̂n) =
θ + (1/n). The estimator has positive bias because E(θ̂n)− θ = 1/n > 0. But with large
n, 1/n is very close to zero (and would disappear completely with infinite data), so the
estimator is asymptotically unbiased (by the alternative definition above).

Example 3.22 (Kaplan video). Imagine the sampling distribution of θ̂n has E(θ̂n) =
[0.5 + (1/n)]θ. Assuming n > 2, the estimator has attentuation bias because E(θ̂n)/θ =
0.5 + (1/n) is between 0 and 1. Even with very large n, the estimator’s value is on
average half of the true value. So, the estimator also has asymptotic attenuation bias,
which means it’s a problem even if the dataset is very large. Alternatively, we can see
this by writing E(θ̂n) = 0.5θ+(1/n)θ, and noting (1/n)θ is very close to zero for large n,
so E(θ̂n)− θ is approximately −0.5θ. This asymptotic bias is negative when θ is positive,
but it is positive when θ is negative, so the asymptotic bias is toward zero (attenuation
bias).

3.7 Quantifying Uncertainty

The point estimates in Section 3.4 provide our best guesses about unknown population
values, but they offer no sense of our uncertainty. Here, we consider only statistical
uncertainty (or sampling uncertainty), meaning the uncertainty due to observing only
a random sample of data instead of knowing the true population distribution. (This is
only for convenience; other sources of uncertainty may be more important to consider
in practice, even if R cannot automatically incorporate them.) Although the term is
ambiguous, inference often refers to methods that quantify uncertainty.

This section focuses on confidence intervals because econometricians and statisticians
generally agree that confidence intervals are more informative and easier to interpret than
p-values and hypothesis tests. That is, you should use confidence intervals (not p-values
and hypothesis tests) whenever possible.

Complementing this section, Section 3.8 provides warnings about misinterpretation
and misuse of conventional frequentist inference methods.

https://youtu.be/WEGIcUvUucg
https://youtu.be/WEGIcUvUucg
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3.7.1 Confidence Intervals

Instead of presenting formulas and critical values for you to memorize (which R computes
for you anyway), this section’s goal is for you to actually understand the interpretation
of a confidence interval.

A confidence interval (CI) is computed from data to help quantify statistical un-
certainty. The CI [L̂, Û ] ranges from lower endpoint L̂ to upper endpoint Û , where both
L̂ and Û are computed from data. These endpoints are random variables from the fre-
quentist perspective (before sampling).

A CI should contain the true population value with high probability. If the true value
is θ, then the CI “contains” θ when L̂ ≤ θ ≤ Û , or in other notation θ ∈ [L̂, Û ]. This
happens in some datasets but not others. The probability of randomly sampling a dataset
in which the CI contains the true value is

P(L̂ ≤ θ ≤ Û). (3.27)

Given the same probability, a longer CI indicates more statistical uncertainty. That
is, with more uncertainty, the L̂ and Û vary more across random samples, so they need
to be farther apart (longer CI) in order to contain θ with the same probability; with less
uncertainty, the L̂ and Û are more stable across samples, so they can be closer together
(shorter CI) and still contain θ with the same probability.

However, a CI only captures the statistical uncertainty from random sampling, not
from any other source. Thus, short intervals can be misleading if there is still uncertainty
about certain assumptions or methodological choices.

Example 3.23 (Kaplan video). Recall the last column in Table 3.1. In each of 100
random samples, it showed whether or not the interval [Ȳn − 0.4, Ȳn + 0.4] contained
the true mean E(Y ) = 0, i.e., whether or not Ȳn − 0.4 ≤ E(Y ) ≤ Ȳn + 0.4. This CI
contained the true population mean in 67 of the 100 datasets. From the “before” view,
the probability of randomly sampling a dataset in which the CI contains the true value
is around 67%.

A 90% CI does not mean, “I believe there’s a 90% chance that the true value is in this
range.” That is the interpretation of a Bayesian credible interval; see Section 3.1. The
difference is subtle and can be confusing; the frequentist “90%” is not about beliefs, but
rather that before you sample your dataset, there’s a 90% chance of sampling a dataset
for which the 90% CI contains the true value. Happily, in many models, with enough
data (or weak enough prior belief), frequentist and Bayesian intervals are very similar,
though the interpretation still differs.

Example 3.24 (Kaplan video). You have a large dataset from which you want to learn
about the population mean age (in years). R tells you that the frequentist 90% confidence
interval is [38.7, 39.4], which is also a Bayesian 90% credible interval (rounded to the same
precision) given your prior belief. The Bayesian interpretation is: given your prior belief
and the data, you have a new belief about the true population mean (which you still

https://youtu.be/L2WLuqDOYiQ
https://youtu.be/AY4T_gDX4Eo
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don’t know exactly), in which you think there’s a 90% chance the true mean is between
38.7 and 39.4 years old. The frequentist interpretation is: the CI was computed by a
procedure such that before the dataset was sampled (“before sampling”), there was a 90%
probability of sampling a dataset whose CI would contain the true mean age; or, if we go
randomly sample another 99 datasets, then we’ll get a different CI in each dataset, and
around 90 of the 100 CIs should contain the true mean age.

Unfortunately, the actual probability that a CI contains the true value often differs
from the desired probability. In practice, when you ask R to compute a CI, you specify
your desired probability (like 90% or 95%), called the confidence level or nominal
coverage probability (or “nominal level” or other variations). The actual probability is
the coverage probability, as in (3.27). There are three possibilities.

1. Ideally, a CI’s coverage probability is close to the nominal level.
2. Sometimes, a CI is too long and has coverage probability above what you requested.

This is bad because it does not help you narrow down the possible values of the
population parameter well (because the CI is longer than necessary).

3. Sometimes, a CI is too short and has coverage probability below what you requested,
as low as 80%, 50%, or even close to 0%. This is bad because you think the true
value is inside the CI, but actually in many datasets (more than you realized) the
CI does not contain the true value.

Example 3.25 (Kaplan video). Consider the CI (−∞,∞), which ignores the data and
is infinitely long. Regardless of the true value of parameter θ, −∞ < θ < ∞, meaning
the CI always contains the true value. The true coverage probability is thus 100%. But
we do not learn anything from this CI: it does not incoporate any information from the
data, and it includes every possible value.

Example 3.26 (Kaplan video). Consider a CI for mean wage (dollars per hour) that is
[10.11, 10.13] regardless of the data. If by chance the true mean is between $10.11/hr and
$10.13/hr, then the CI actually has 100% coverage probability and is very short/precise.
Otherwise, however, the CI has 0% coverage probability. Further, clearly this is bad
because it does not incorporate any information from the data.

Example 3.27 (Kaplan video). Consider a CI for the employment probability p of a
particular subpopulation. Using the estimator p̂ (the proportion of employed individuals
in the sample) and sample size n, a (usually) reasonable CI is [p̂ − 2

√
p̂(1− p̂)/n, p̂ +

2
√
p̂(1− p̂)/n]. Without worrying about the details, we can at least see that the CI will

differ across random samples because it uses p̂. We can also see that given the same p̂, its
length will be smaller with larger n. That is, with more data, we have less uncertainty,
which is reflected by a shorter CI. With more data, the true coverage probability will be
close to 95%, too. However, we can also see that with a small enough sample, this CI
will have very low coverage probability. In the extreme with n = 1, then either p̂ = 0 or
p̂ = 1, so the CI is either [0, 0] or [1, 1], both of which fail to include the true p (assuming

https://youtu.be/kH5YS2rfkTQ
https://youtu.be/kH5YS2rfkTQ
https://youtu.be/kH5YS2rfkTQ
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0 < p < 1), so the true coverage probability is zero! (And this is still true even if we
increase the 2 in the formula to a 4, or even 99, because that term is zero regardless.)

The levels 90% and 95% are most common, but sometimes you may desire 99% or
even higher, if it is particularly important that the true value be in the interval (or if you
have a very large sample with very short CIs). The convention of 95% is related to the
convention of 5% “significance level,” which has come under attack for being arbitrary
and inappropriate in many situations. The 5% convention seems to have originated
from Ronald Fisher, who wrote in 1926(!), “We shall not often be astray if we draw a
conventional line at 0.05.”

Practice 3.4 (CI interpretation). Imagine you have a CI with 95% nominal coverage
probability for the true θ, [1.4, 2.9].

a) Explain why this does not mean, “I think there’s a 95% chance that 1.4 ≤ θ ≤ 2.9.”
b) Explain why it’s still possible that the true value is θ = 0.
c) Explain why if the true coverage probability is also 95% and you had 99 other

randomly sampled datasets, then around 95 of the 100 total datasets would have a
CI containing the true θ.

R Code

The following R example constructs two-sided 95% confidence intervals for the mean,
from simulated iid standard normal data (so the true population mean is zero). One CI
uses t.test(), a standard t-test; the other CIs use nonparametric bootstrap methodology
from the boot package, though details are beyond our scope.

library(boot)
set.seed(112358) #for replicability
Y <- rnorm(n=50, mean=0, sd=1) # iid N(0,1)
CIttest <- t.test(x=Y, conf.level=0.95,

alternative='two.sided')$conf.int
ret <- boot(data=Y, statistic=function(x,i) mean(x[i]), R=100)
tmp <- boot.ci(boot.out=ret, conf=0.95, type=c('basic','bca'))
out.table <- rbind(CIttest,tmp$basic[4:5],tmp$bca[4:5])
rownames(out.table) <- c('Normality','Boot.basic','Boot.BCa')
colnames(out.table) <- c('Lower','Upper')
print(round(out.table,digits=3))

## Lower Upper
## Normality -0.213 0.370
## Boot.basic -0.248 0.322
## Boot.BCa -0.168 0.382
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3.7.2 Statistical Significance

If a CI does not contain zero, then a result is called statistically significant, or having
statistical significance. These terms are usually used when trying to estimate an effect
(or difference) that could possibly be zero. A statistically significant result means that
if the true effect/value were zero, then there would be a low probability of observing a
dataset with such a large estimated effect.

Conceptually, statistical significance is not a yes/no property, but a continuum; i.e.,
not “if” but “how much?” Results can be somewhat statistically significant, or extremely
statistically significant, or lacking statistical significance, etc.

In practice, often people say a result is statistically significant at a particular level.
For example, if a 95% CI does not contain zero (i.e., the CI contains only positive values,
or only negative values), then the result is “statistically significant at a 95% confidence
level,” or sometimes people say “5% level” (where 5 = 100−95) because this is equivalent
to a p-value being below 5%. Generally, there is statistical significance at a C% confidence
level (or the (100− C)% level) if the C% CI does not contain zero

Why is 95% most common? Indeed, 95% is arbitrary. Its origin seems to be from
Ronald Fisher, who wrote in 1926, “We shall not often be astray if we draw a conventional
line at 0.05,” referring to the p-value threshold that’s analogous to 95% confidence level.
Recently, 72 prominent researchers from many fields (including statistics, econometrics,
and economics) wrote a piece simply titled, “Redefine statistical significance” (Benjamin,
Berger, Johannesson, Nosek, Wagenmakers, Berk, Bollen, Brembs, Brown, Camerer, Ce-
sarini, Chambers, Clyde, Cook, De Boeck, Dienes, Dreber, Easwaran, Efferson, Fehr,
Fidler, Field, Forster, George, Gonzalez, Goodman, Green, Green, Greenwald, Hadfield,
Hedges, Held, Ho, Hoijtink, Hruschka, Imai, Imbens, Ioannidis, Jeon, Jones, Kirchler,
Laibson, List, Little, Lupia, Machery, Maxwell, McCarthy, Moore, Morgan, Munafó,
Nakagawa, Nyhan, Parker, Pericchi, Perugini, Rouder, Rousseau, Savalei, Schönbrodt,
Sellke, Sinclair, Tingley, Van Zandt, Vazire, Watts, Winship, Wolpert, Xie, Young, Zin-
man, and Johnson, 2018). One high-level message was to not treat statistical significance
(at any level) as completely definitive in either direction. They also note that (as in this
textbook) it is better to focus on confidence intervals than statistical significance.

3.8 Quantifying Uncertainty: Misinterpretation and Misuse

This section addresses misinterpretations and misuse of frequentist inference. Some of the
most common problems are discussed below, as well as on the (pretty good) Wikipedia
page devoted to the topic.1

3.8.1 Multiple Testing (Multiple Comparisons)

=⇒ Kaplan video: Multiple Testing

1https://en.wikipedia.org/wiki/Misunderstandings_of_p-values

https://youtu.be/w5TDw4FLvSo
https://en.wikipedia.org/wiki/Misunderstandings_of_p-values
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An insightful comic (xkcd.com/882) illustrates the multiple testing problem (or
multiple comparisons problem). Essentially, the scientists keep testing whether a
different color jelly bean (a candy) causes acne (a skin condition), until they finally find
p < 0.05 and reject the null hypothesis of “no effect” at a 5% level. This is essentially the
same as if they keep computing a 95% CI for the effect of each color jelly bean, until they
find a CI that does not contain zero. For a 95% CI, this happens roughly 5% of the time,
or 1 in 20 datasets; knowing this, the comic shows them testing 20 different colors. The
multiple testing problem is essentially that if you keep trying enough times, eventually
you’ll get a “false positive”: the data show a non-zero effect, even though the true effect is
zero. As an analogy: even though there’s a full moon less than 5% of all nights, as long
as you keep looking up at the sky every night, eventually you’ll see a full moon.

Practice 3.5 (research assistants). Imagine you’re a powerful professor with a cadre of
100 research assistants (post-docs, grad students, undergrads, your neighbor’s precocious
high-schooler, etc.). You assign each research assistant (RA) one of 100 variables char-
acterizing different counties in the U.S.: number of tennis courts, average temperature,
per capita income, etc. Each RA collects a dataset with their particular variable and
computes the correlation with county-level May 2020 COVID-19 rates. Each RA then
computes a 95% CI for the correlation. Of the 100 RAs, 5 report a CI that does not
include zero, including a CI with only positive correlation values for the tennis courts
variable, and a CI with only negative values for temperature. In light of the multiple
comparisons problem, how do you interpret these results?

Discussion Question 3.2 (jellybean solution?). Consider the jelly bean comic from
xkcd.com/882, discussed above.

a) Would it help to use a 99% CI instead of 95%? Explain why, why not, or how much
it might help.

b) Would it be even better to use a 100% CI? Explain why or why not.

3.8.2 Publication Bias and Science

The jelly bean comic’s final panel illustrates publication bias: the newspaper only
reports the exciting positive result, omitting the 19 negative results for the other 19
colors. The underlying problem is the same as with multiple testing, but the reader
of the publication has no way to know about the other 19 results. Not only popular
media but even academic journals are more likely to publish “positive” results (especially
if surprising), so reading only published results gives a biased perspective.

The jelly bean experiments also illustrate the importance of remembering what “sci-
ence” means. The result of a single study (even a good one) by itself is not science. The
scientific method is a process of replication and repeated testing of hypotheses. If you
ever hear, “There was this one new study that found [crazy result]!” you can ignore it and
wait till it gets replicated at least a few times.2

2This is related to the “replication crisis”: https://en.wikipedia.org/wiki/Replication_crisis.

https://xkcd.com/882
https://xkcd.com/882
https://xkcd.com/882
https://en.wikipedia.org/wiki/Replication_crisis
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3.8.3 Ignoring Point Estimates (Economic Significance)

Sometimes people focus too much on whether or not the CI contains zero (“statistical
significance”), without looking at the magnitude of the point estimate or values in the CI,
i.e., the economic significance.

Specifically, economic significance assesses if the effect is “economically” distin-
guishable from zero. “Economically” just means “for real-world purposes,” like whether it
is important to consider for policy purposes. One way to think about this is: would you
personally care about the difference? For example, imagine θ̂ estimates the effect on your
final exam score of studying an additional hour per week. Would you care about having
a final exam score that’s θ̂ percentage points higher? If θ̂ = 0.01, then no; if θ̂ = 50,
then yes. Of course, it’s a continuum, so somewhere between “yes” and “no” are varying
degrees of “maybe,” corresponding to varying degrees of “moderate” economic significance
(between “high” and “low”).

Example 3.28. Would you care if you had θ̂ = 2 additional years of education? This is
a lot, like an entire master’s degree, so presumably you would indeed care.

Practice 3.6 (salary increase significance). Imagine you compute a 95% CI of [4.1, 5.9]
around your estimated annual salary effect of θ̂ = 5 dollars per year. Are these results
statistically significant (at 95% confidence level)? Are they economically significant?
Hint: would you care if your annual salary increased by θ̂ = 5 dollars per year?

It is important to consider units of measure. For example, imagine the estimated
effect on income is θ̂ = 10; is that economically significant? If the units are dollars per
hour, then yes; if it’s dollars per year, then no; if it’s thousands of dollars per month,
then yes; etc.

It is also important to consider realistic policy changes. For example, imagine your
estimated θ̂ is the effect of a one-unit increase in the proportion of the state budget
allocated to higher education. If the current proportion is 0.08 (meaning 8%), then a
realistic policy change would be something like 0.02 units. A one-unit increase would
mean changing from 0% to 100% of the budget spent on higher education. Even if θ̂
looks economically significant, maybe 0.02θ̂ does not.

Practice 3.7 (significance: distance and education). You observe a sample of married
couples; for each, you observe the difference in their years of education, divided by the
difference in the distance between their childhood homes and the nearest college or univer-
sity. That is, if E1 and E2 are the years of education, and D1 and D2 are the distances, you
observe Y = (E2 − E1)/(D2 −D1). Distance is measured in kilometers (1 km = 0.6mi).
You estimate Ȳ = −0.03. You compute a 95% CI of [−0.05,−0.01].

a) How economically significant is the point estimate of −0.03? Hint: consider the
units.

b) Is this statistically significant at a 95% confidence level?
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3.8.4 Other Issues

Unfortunately, there are yet more way to misinterpret or misuse methods that quantify
uncertainty. Here are a few more examples.

• Non-iid sampling: if you use a method that only works with iid sampling, but your
data’s sampling was not iid, then you may get misleading results. More generally,
methods often require other “assumptions” beyond iid sampling; if any is false, then
the results can be misleading.

• Bayesian: frequentist results are often misinterpreted as Bayesian results; for exam-
ple, p-values are often misinterpreted as the probability of the null hypothesis being
true.

• Unlikely events happen: remember that even a 99.9% CI fails to contain the true
value in around one of every 1000 datasets; you may be that unlucky one. (Like
how winning the lottery is very unlikely, yet somebody somewhere wins the lottery
every day; this is the “lottery” of drawing a really unrepresentative dataset.)

Example 3.29 (Kaplan video). Your friend claims to have magical powers. You have
a deck of playing cards; you repeatedly draw a card (without showing it) and ask your
friend to guess whether the card is black or red. You record the data and compute a 90%
CI for your friend’s probability p of guessing correctly. Random guessing would yield
p = 0.5, but your CI is [0.52, 0.61], all values above 0.5. Your friend’s interpretation is
that statistics have now proved true the claim of magical powers. However, you think it
was just luck and ask to gather more data. Indeed, the new dataset’s 90% CI is [0.44, 0.51].
You try another few datasets, and those CIs also contain 0.5. It seems the first result was
simply luck, not magic.

Practice 3.8 (frequentist or Bayesian?). For each of the following, say whether it is a
frequentist question, Bayesian question, neither, or both; if both, explain the two possible
interpretations. Hint: use Section 3.1 as well as Section 3.7.

a) What’s the probability that the current natural unemployment rate in the U.S. is
between 4.5% and 7.5%?

b) Can we create a diagnostic tool for our company’s daily website traffic data to
identify whether it’s normal or has been hacked, limiting the rate of falsely reporting
“hacked” on normal days to only 1% of normal days?

c) What is the probability that the true unemployment rate is within 1 percentage
point of the estimated unemployment rate?

d) Is the positive estimate θ̂ > 0 primarily due to the income effect or substitution
effect?

Optional Resources

Optional resources for this chapter

https://youtu.be/skSw7roQu1Q
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• Basic statistics: the Khan Academy AP Statistics unit includes instructional mate-
rial and practice questions

• Quantifying uncertainty and statistical significance (Masten video)

• Estimator properties (Lambert video)

• Unbiasedness and consistency (Lambert video 1 of 2)

• Unbiasedness and consistency (Lambert video 2 of 2)

• iid sampling (Lambert video)

• Bayesian vs. frequentist cookie inference example (StackExchange)

• Section 2.8 (“Exploratory Data Analysis with R”) in Kleiber and Zeileis (2008)
[Chapter 2 is available free on their website]

• Section 2.2 (“Random Sampling and the Distribution of Sample Averages”) and
Chapter 3 (“A Review of Statistics Using R”) in Hanck et al. (2018)

• Sections 1.5.4 (“Fundamental Statistics”) and 1.9.3 (“Simulation of Confidence In-
tervals and t Tests”) in Heiss (2016)

• R package boot (Canty and Ripley, 2019; Davison and Hinkley, 1997)

https://www.khanacademy.org/math/ap-statistics
https://www.youtube.com/watch?v=3IOzq0hOttY
https://www.youtube.com/watch?v=UxbY85Cm9SQ
https://www.youtube.com/watch?v=21lXGc02XwM
https://www.youtube.com/watch?v=6i7mqDJICzQ
https://www.youtube.com/watch?v=OOoJHh1jmS0
https://stats.stackexchange.com/a/2287
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Empirical Exercises

Empirical Exercise EE3.1. The data are originally from Card (1995), with individual-
level observations of wages, years of education, and other variables.

a. R only: run install.packages(c('wooldridge','survey')) to download and
install those packages (if you have not already)

b. Load the card dataset.

R: load package wooldridge with command library(wooldridge) and a data.
frame variable named card becomes available; the command ?card then shows you
details about the dataset.

Stata: run ssc install bcuse to ensure command bcuse is installed, and then
load the dataset with bcuse card , clear

c. Compute the sample average of variable wage.

R: mean(card$wage)

Stata: mean wage (which also computes a 95% confidence interval)

d. Estimate the population mean accounting for the sampling weights.

R: weighted.mean(x=card$wage, w=card$weight)

Stata: mean wage [pweight=weight] (also computes a 95% CI)

e. R only (because Stata reported this already): compute a two-sided 95% CI for the
mean ignoring weights with t.test(x=card$wage, conf.level=0.95)

f. R only (because Stata reported this already): compute a two-sided 95% confidence
interval for the mean accounting for weights, first loading the survey package with
library(survey) and then with commands
carddes <- svydesign(data=card, weights = ~weight, id = ~1)
svyret <- svymean(x = ~wage, design=carddes)
c(w.mean=coef(svyret), SE=SE(svyret),
CI=confint(svyret, level=0.95))

g. Compute a weighted, 90% confidence interval for wage.

R: replace level=0.95 with level=0.90

Stata: add “option” level(90) to get mean wage [pweight=weight] , level
(90)

h. Optional: repeat computation of a point estimate and 95% confidence interval (with-
out and with weights) for the mean of a different variable in the dataset.

R: part (c) computes the unweighted point estimate, part (d) computes the weighted
point estimate, part (e) computes the unweighted CI, and part (f) computes the
weighted CI.
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Stata: part (c) computes both the unweighted point estimate and unweighted CI,
and part (d) computes both the weighted point estimate and weighted CI.



Chapter 4

One Variable, Two Populations

=⇒ Kaplan video: Chapter Introduction

With two populations, we can discuss not only description and prediction, but also
causality. Foundational ideas introduced here are extended to regression in Part II.

Unit learning objectives for this chapter

4.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

4.2. Describe and distinguish among descriptive, predictive, and causal questions, and
among different approaches to learning about causality from data in economics
[TLOs 3, 5, and 6]

4.3. Describe and interpret the elements of a common statistical framework for under-
standing causality [TLO 3]

4.4. Assess whether a mean difference can be interpreted with causal meaning in a real-
world example [TLO 6]

4.5. In R (or Stata): compute estimates of mean differences, along with measures of
uncertainty, and judge economic and statistical significance [TLO 7]

4.1 Description

4.1.1 Interpretation of Population Mean Difference

Let Y A and Y B be random variables representing Y for two populations (labeled A and
B). For example, if Y is income, A is the population of individuals without a high-school
degree, and B is the population of individuals with a high-school degree, then Y A is
income for individuals who do not have a high-school degree, and Y B is income for those
who do.

59

https://youtu.be/wtPlriu_Q0U
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The difference of means is E(Y B) − E(Y A). It describes how much higher (or lower,
if negative) is the mean in population B than in population A.

Example 4.1. Let Y ∈ {0, 1, 2} be the number of kids per family. Let the distributions
in populations A and B be, respectively,

P(Y A = 0) = 0.8, P(Y A = 1) = 0.2, P(Y A = 2) = 0,

P(Y B = 0) = P(Y B = 1) = P(Y B = 2) = 1/3,
(4.1)

where Y A represents the number of kids per family in population A, and Y B represents
the number of kids per family in population B. Then,

E(Y B)− E(Y A) =

 2∑
y=0

yP(Y B = y)

−

 2∑
y=0

yP(Y A = y)


= [(0)(1/3) + (1)(1/3) + (2)(1/3)]− [(0)(0.8) + (1)(0.2) + (2)(0)]

= [(1/3) + (2/3)]− 0.2 = 0.8.

That is, the mean kids per family is 0.8 higher in population B than in population A.

Always clarify whether you are subtracting the mean of populaton A from that of B,
or B from A. Saying, “The difference in mean number of children between the populations
is 0.8,” it is unclear which population’s mean is larger. Instead say, “The mean number
of children in population B is 0.8 higher than the mean in A.”

The difference of means is also the mean of the differences. “Mean difference” could
mean either; they’re equal anyway. Because of the linearity of the expectation operator
as in (2.9),

E(Y B − Y A) = E(Y B)− E(Y A). (4.2)

Despite mathematical equality, the interpretation differs. For example, the expression
Y B − Y A is the number of children difference between a family from population B and
a family from population A. Seeing Y B and Y A as random variables, the difference
Y B − Y A is itself a random variable. Thus, E(Y B − Y A) is the population mean of the
child number difference Y B − Y A, whereas E(Y B)−E(Y A) is the difference between the
mean number of children in B and the mean number of children in A. Generally, due to
(4.2), either interpretation of the mean difference is correct; the same population value
has two interpretations. It’s like if one person says, “The glass is half full of water,” and
a second person says, “The glass is half empty”; both are correct interpretations of the
same thing.

Example 4.2. Imagine Y A is a student’s GPA in fall semester last year, and Y B is
their GPA in spring semester. Then, E(Y A) is the mean GPA (over all students in the
population) in fall, E(Y B) is the mean GPA in spring, and E(Y B)−E(Y A) is the change in
the mean GPA from fall to spring. Also, Y B −Y A is an individual student’s GPA change
from fall to spring, so E(Y B − Y A) is the mean fall-to-spring GPA change. From (4.2),
the change in mean GPA E(Y B)− E(Y A) equals the mean GPA change E(Y B − Y A).
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4.1.2 Estimation and Inference

Separately estimate each mean (Section 3.4) and take the difference, like Ȳ B − Ȳ A with
iid data. If each individual estimator is consistent, then this is a consistent estimator of
E(Y B)− E(Y A), and thus a consistent estimator of E(Y B − Y A) due to (4.2).

The following R code shows an estimate and 95% confidence interval for the mean
hourly wage difference between individuals who at age 14 lived with their mom and dad
and individuals who did not. It uses an old but well-known dataset. Notes: treating as
iid for simplicity, not because it is; dividing by 100 to turn cents into dollars (per hour).

library('wooldridge')
YA <- card$wage[card$momdad14==0]/100
YB <- card$wage[card$momdad14==1]/100
# estimate mean wage difference
round(mean(YB) - mean(YA), digits=2)

## [1] 0.84

# 95% CI for mean diff
round(t.test(x=YB, y=YA, alternative='two.sided',

mu=0, conf.level=0.95)$conf.int[1:2], digits=2)

## [1] 0.63 1.05

4.2 Prediction

Prediction is essentially the same as with one population. Given a loss function, an
optimal predictor can be defined to minimize mean loss in the population, and this optimal
predictor can be estimated from data. For example, mean quadratic loss is minimized by
the population mean, and the means E(Y A) and E(Y B) can be estimated by (weighted)
sample means.

Prediction accuracy improves by distinguishing between individuals (or firms, etc.)
from population A and those from population B. For example, at your carnival job,
imagine you now guess people’s height instead of age. In Chapter 2, you make the same
guess for everybody. Now, we consider two populations, like child and adult, and we can
make a different prediction for each population, like 165 cm for adults and 105 cm for
children. Naturally, this performs better than guessing 135 cm for every individual.

Part II extends this idea, exploring how regression models can incorporate additional
information to improve prediction accuracy.

Discussion Question 4.1 (DPC with two populations). Let Y denote the hourly wage
of an individual in the U.S. Let Y A be the wage of an individual without a college degree
in the U.S., and Y B the wage of an individual with a college degree.
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a) How are means E(Y A) and E(Y B) more helpful for description than only E(Y )?
b) How could E(Y A) and E(Y B) be used to make better predictions than only E(Y )?
c) Why can’t we interpret E(Y B) − E(Y A) as the causal effect of a college degree on

wage? Hint: what other factors might make E(Y B)−E(Y A) large, even if the effect
of a college degree itself is small?

4.3 Causality: Overview

The concepts in the remainder of this chapter appear often in later chapters.
First: in practice, when is causality important, rather than description or prediction?

We have an innate sense of cause and effect, although trying to articulate it sometimes
creates more confusion than understanding.1 For example, start reading the Wikipedia
page on causality and see how you feel in 10 minutes. Unlike description and prediction,
causality is about “why.” A “cause” is the “because” of the effect. Description helps us see
which variables tend to have high or low values together. Prediction helps us guess one
variable’s value based on other information. But only causality concerns why. Why do
these two variables tend to have similar values? Causality (not description or prediction)
helps us evaluate policy decisions: we want to know how a policy change itself influences
other variables, causing them to change.

Example 4.3 (Kaplan video). Consider the relationship between an individual’s employ-
ment status and mental health, specifically anxiety. A descriptive question is: what’s the
proportion of employed individuals who have generalized anxiety disorder (GAD), and
how much higher or lower is that proportion among unemployed individuals? A predictive
question is: given somebody’s employment status, what’s the “best” guess of their score
on the GAD-7 anxiety measure? A causal question is: how does being employed (instead
of unemployed) affect an individual’s level of anxiety as quantified by the GAD-7?

Discussion Question 4.2 (description, prediction, causality). Which type of question
(description, prediction, causality) is each of the following? Explain why. Hint: there’s
one of each.

a) If you only know whether an individual is from Canada or the U.S., what is your
best guess of their income?

b) You are currently working in the U.S. but considering moving to Canada. How will
your income change if you do?

c) Which country’s population has higher income: Canada or the U.S.?

4.3.1 Correlation Does Not Imply Causation

=⇒ Kaplan video: Correlation Does Not Imply Causation

1Some of my failed attempts include: “causality is about what will happen if a policy changes” (but
isn’t “what will happen” prediction?) whereas “description is seeing how things are” (but aren’t causal
relationships also “how things are”?).

https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Causality
https://youtu.be/JwcqZ3hzd7w
https://youtu.be/tIfZmG8sdas
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Generally, imagine E(Y B) > E(Y A). This shows a clear descriptive relationship: pop-
ulation B has a higher mean. The implication for prediction is clear: under quadratic loss,
the optimal prediction is higher for population B than A. In contrast, the implication for
causality is not clear. It’s possible that being in population B has a positive causal effect
on the outcome variable. But it’s also possible that people with large Y choose to join
population B. Or maybe there is something else altogether that separately causes people
to join population B and have high Y . Or maybe all of these. The causal interpretation
of E(Y B) > E(Y A) is ambiguous.

Example 4.4 (Kaplan video). Consider rainfall and umbrellas. Let Y A denote rainfall
when nobody is carrying an umbrella, and Y B rainfall when everybody is carrying an
umbrella. For description, it rains more on days when everyone carries an umbrella than
on days when nobody does; e.g., E(Y B) > E(Y A). For prediction, it’s better to predict a
higher rainfall value if you see everyone carrying an umbrella than if you see no umbrellas;
e.g., under quadratic loss, the optimal predictions are E(Y B) and E(Y A). For causality,
if there’s a drought and we want rain, should we all walk around with umbrellas to cause
it to rain? No: rain causes umbrella-carrying, not vice-versa.

Example 4.5 (Kaplan video). Let Y A be my commute time when nobody is carrying
umbrellas, and let Y B be my commute time when everyone is carrying umbrellas. De-
scriptively, E(Y B) > E(Y A), and you should predict a longer commute time if you see
everybody has an umbrella. But causally, this doesn’t mean that you can make me late
for class by opening lots of umbrellas.

In Example 4.5, rain is a confounder that has a causal effect on both umbrella-
carrying and commute time, as depicted in Figure 4.1.

Rain

Umbrellas Commute 
Time

++

Figure 4.1: Causal relationships among rain, umbrella-carrying, and commute time.

Examples 4.4 and 4.5 illustrate the famous saying, “correlation does not imply causa-
tion.”2 The saying is a bit imprecise: correlation does indeed imply some sort of causal
relationship, just not any one particular type of causal relationship. In Example 4.4,
“correlation does not imply causation” means that “higher rainfall when people carry um-
brellas” (rain is correlated with umbrellas) does not imply “carrying umbrellas causes

2https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation

https://youtu.be/2EwPUhEowIY
https://youtu.be/2EwPUhEowIY
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
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rain.” But, the correlation is ultimately driven by a causal relationship: rain causes
umbrella-carrying. In Example 4.5, “correlation does not imply causation” means that
“longer commute when people carry umbrellas” (commute time is correlated with umbrel-
las) does not imply “carrying umbrellas causes longer commutes.” But, the correlation is
ultimately driven by causal relationships: rain causes both umbrella-carrying and longer
commutes.

Example 4.6. In the August 2018 election in Missouri, a “right-to-work” proposition
appeared on the ballot. To clarify upfront: whether such laws are “good” or “bad” is
irrelevant here; we are only interested in an econometric question of causality. One ad
opposing right-to-work said something like, “Do you want $8000 less in your pocket each
year?” The ad’s footnote said this $8000/yr was computed as the difference in workers’
mean annual income between states that had a right-to-work law and those that did not,
like E(Y B) − E(Y A). Recall there was a non-zero mean difference in the example with
umbrellas and commute time, too, but we did not conclude that umbrellas have a causal
effect on commute time. For example, maybe having lower income causes states to pass
such laws, i.e., causality is in the opposite direction (reverse causality). Or maybe there
is a third, unobserved characteristic that causes states to pass such laws and causes lower
income, i.e., a confounder, like rain in the commute example. Of course, it’s also possible
that $8000/yr really is the causal effect. The point is not that the number is right or
wrong (or that the law is good or bad), but that the econometric argument is incomplete.
Additional assumptions are required to interpret a mean difference as a causal effect, as
discussed more in Section 4.6.

4.3.2 Structural and Reduced Form Approaches

There are two general econometric approaches to learning about causality: the reduced
form approach, and the structural approach. Confusingly, the reduced form approach
is sometimes called causal inference even though the structural approach also aims to
learn about causality.

Both approaches consider counterfactual analysis, but in different ways. Broadly,
a counterfactual is a universe that’s different than our actual universe. Usually, the
counterfactual universe is nearly identical to our actual universe except for one particular
policy whose effect we want to learn.

The reduced form approach tries to isolate causal effects by using comparisons that
are either randomized or “as good as randomized.” In our current context of populations
A and B, randomized would mean that units (e.g., individuals, firms, hospitals) are
randomly assigned to a population, without regard to the units’ characteristics. The
“treated” population would receive some special treatment that the “untreated” (“control”)
population does not. Hopefully, it is then appropriate to interpret the mean difference
as the effect of the treatment. “As good as randomized” means that although we did not
explicitly randomly assign units to each population, the actual assignment mechanism
did not depend on units’ characteristics anyway.
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In contrast, the structural approach tries to explicitly model the inner workings
of causal systems. Structural models often come from economic theory, like decision-
making or market equilibria models. The goal is to estimate such models’ parameters,
like elasticities, discount factors, risk aversion, and demand curves.

The structural and reduced form approaches have complementary advantages, and
often both are helpful; e.g., see the survey by Lewbel (2019). Structural models often
require stronger (less realistic) assumptions, but in return they can analyze a wider variety
of possible policies.

Example 4.7 (Kaplan video). Imagine trying to learn how a retirement pension formula
(i.e., how much money somebody gets paid after retiring, based on their years of expe-
rience, age, and salary history) affects the age at which a teacher decides to retire. A
reduced-form analysis might compare the mean retirement age of teachers who joined a
school in the year 1998 with the mean retirement age of teachers who joined in 1999,
just after the formula was changed, hoping that the two groups of teachers are otherwise
“as good as randomized.” A structural analysis might explicitly model a teacher’s retire-
ment decision within an expected utility framework that “discounts” the value of future
periods (like net present value). The structural analysis requires strong (maybe unrealis-
tic) assumptions about things like the utility function and the distribution of unobserved
variables. However, it can then evaluate the effect of hypothetical pension changes that
may have never been implemented before, rather than only estimating the effect of the
historical 1999 pension change.

Example 4.8. Imagine trying to learn about the effect of free public childcare on how
much mothers work in the formal sector. A reduced-form analysis might estimate how
much mothers work in cities that just opened such childcare centers last year compared
to mothers in cities that plan to open them next year. The hope is that whether a city
opens the childcare centers last year or next year is “as good as randomized,” so that
the mean difference in hours worked can be interpreted as the effect of the childcare
(rather than the effect of something else that’s different). A structural analysis might
try to estimate an economic model of a mother’s decision to work in the formal sector,
including variables like the price of childcare, wages, and utility from different activities.
Such a model requires strong assumptions (although “as good as randomized” may also be
unrealistic!), but can then be used to evaluate the effects of a wide variety of hypothetical
policies, not only the effect of the childcare centers that opened last year.

In Sum: Structural & Reduced Form Approaches

Reduced form: randomized or “as good as randomized” comparisons to isolate
causality
Structural: more explicit economic models of causal relationships

https://youtu.be/JFtHBTACeUE
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4.3.3 General Equilibrium and Partial Equilibrium

Besides structural vs. reduced form, another dichotomy is between general equilibrium
(GE) and partial equilibrium (PE) analysis. GE more ambitiously tries to model
entire markets, sometimes multiple markets, whereas PE takes current market equilibria
as given. Similar to the tradeoff between the structural and reduced form approaches,
the tradeoff is that the GE framework can analyze policies that change equilibria (i.e.,
that have general equilibrium effects), but it requires stronger assumptions to do so.

Example 4.9 (Kaplan video). Imagine you were analyzing the impact of free public
childcare on mothers’ employment. A PE analysis would consider how mothers might
respond to different childcare policies given the current prices of private childcare, current
wages, etc. A GE analysis might further model the childcare and labor markets, to allow
for the possible general equilibrium effects of public childcare policy on the prices in those
markets. If there is a big expansion of free public childcare, then private childcares may
indeed change their prices. If the expansion allows many mothers to enter the workforce,
then the labor supply curve shifts out, which could lower wages. However, if the proposed
changes to childcare policy are relatively small, then such GE effects may be negligible,
and PE analysis may suffice.

In Sum: General & Partial Equilibrium Models

Partial equilibrium models treat prices and other market equilibria as fixed,
whereas general equilibrium models allow markets to change.

4.4 Causality: Potential Outcomes Framework

=⇒ Kaplan video: Potential Outcomes and the ATE

The reduced form approach uses the potential outcomes framework, also called
the Neyman–Rubin causal model after its two earliest contributors (although some-
times Neyman’s name is dropped). It is popular not only in economics, but statistics,
medicine, political science, and other fields.

The terms treatment and treatment effect just refer to any variable and its causal
effect on another variable. In English, usually “treatment” makes us think narrowly about
medicine (or lumber. . . and facials?), but it can be anything. For example, the “treatment”
could be a job training program, and the “treatment effect” is the causal effect of the
program on a person’s wage. Or, a treatment could be going to a charter school (instead
of public school). Another treatment could be a policy or law, like a higher sales tax, or
a certain labor law.

This section says “individual” to be concrete, but you can also imagine a firm, county,
school, etc.

https://youtu.be/4T3zZ1JgAm0
https://youtu.be/Yb4rK1sUCl4
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4.4.1 Potential Outcomes

Imagine two parallel universes. The universes are identical except for one difference:
whether or not an individual is treated. The individual’s outcome in the universe without
treatment is their untreated potential outcome, and the individual’s outcome in the
universe with treatment is their treated potential outcome.

Notationally, in this chapter, Y T represents the treated potential outcome and Y U

the untreated potential outcome. Elsewhere, often Y1 and Y0 represent the treated and
untreated potential outcomes, or Y (1) and Y (0).

Unlike in Section 4.1, potential outcomes Y U and Y T are not always observable.
Often, if an individual is untreated in our universe, then we can observe her untreated
potential outcome Y U , but not her Y T ; conversely, if she is treated, then we observe
Y T but not Y U . This partial observability makes causal inference more difficult than
description or prediction.

Example 4.10. Consider parallel universes identical except for whether a particular stu-
dent takes Introductory Econometrics or Applied Statistical Models I (STAT 4510/7510).
Literally everything else in each universe is identical: the student’s parents, her other
classes, her height, her DNA, the weather on October 14, etc. (For now, some difficulties
with “everything” are glossed over; e.g., what if econometrics is required for her degree?)
The “treatment” is taking econometrics (instead of statistics). The outcome variable is
the student’s annual income five years after graduation, in thousands of U.S. dollars per
year (e.g., Y = 70 is $70,000/yr). Let Y U denote her outcome in the universe without
treatment (statistics class), and Y T her outcome in the universe with treatment (econo-
metrics class). That is, Y T is her treated potential outcome, and Y U is her untreated
potential outcome.

Example 4.11. In the right-to-work example (Example 4.6), Y T is an individual’s income
in the universe where the individual’s state has a right-to-work law, and Y U is their income
in the universe that’s identical except there is no such law. In our universe, either the
individual’s state does or does not currently have such a law; it cannot be both, so we
cannot observe both potential outcomes. (Perhaps the state did not have the law last
year and does this year, but the universe “last year” was different in many ways than the
universe “this year”; much more than one single law has changed.)

Example 4.12 (Kaplan video). Imagine one universe where a student wins the lottery
to enter a popular charter school, and another universe where the student remains in the
conventional public school. Potential outcomes Y T and Y U are dummy (binary) vari-
ables for whether or not the student eventually graduated from college in each respective
universe. Again, in our universe, we can observe Y T if the student wins the lottery and
Y U if not, but we cannot observe both.

https://youtu.be/hrzlrTMkpek
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4.4.2 Treatment Effects

The difference Y T−Y U between an individual’s two potential outcomes is that individual’s
treatment effect. Just as different individuals can have different (Y U , Y T ), individuals
can have different treatment effects Y T − Y U ; i.e., individuals can be affected differently
by the same treatment. The fancy term for people being different is heterogeneity,
more specifically here “treatment effect heterogeneity.”

Example 4.13. In the intro econometrics example (Example 4.10), the student’s treat-
ment effect Y T − Y U has the following interpretation. Recall Y T is their income after
taking econometrics and Y U after instead taking STAT 3500. Thus, that particular stu-
dent’s treatment effect is how much higher (or lower, if negative) their income is in the
parallel universe that is identical other than taking econometrics instead of STAT 3500.

Example 4.14. In the right-to-work example (Examples 4.6 and 4.11), Y T − Y U is the
treatment effect of the law on an individual’s income. The interpretation now is the
difference between their income in the universe with the law and the universe without
the law, with everything else held constant. The treatment effect can be big or small,
positive or negative (or zero). A numerical example is shown later in Table 4.2.

Example 4.15 (Kaplan video). In the charter school example (Example 4.12), Y T −Y U

is the treatment effect of the charter school on college graduation. That is, it is the
difference between the college graduation outcomes in the charter school universe and the
public school universe. Because the outcome is binary (1 if graduate college, 0 if don’t),
there are only four possible values of (Y U , Y T ) (student types) and only three possible
treatment effect values: Y T − Y U = 1 if the student graduates in the charter school
universe (Y T = 1) but not the public school universe (Y U = 0); Y T − Y U = −1 if they
only graduate in the public school universe (Y U = 1) but not the charter school universe
(Y T = 0); and Y T − Y U = 0 if they graduate either in both universes (Y T = Y U = 1) or
neither (Y T = Y U = 0). This is seen in the later example of Table 4.1.

In economics, where many systems are interrelated, sometimes it’s difficult just to
specify which “effect” we care about. For example, consider racial differences in salary.
In the parallel universe that’s “identical” except for the individual’s race, does “identi-
cal” include having the same job at the same firm? Or does it allow for an effect of
race on hiring? Does it allow for an effect on educational opportunities, or an effect
on family background (parents’ education, wealth, etc.)? There is no “right” or “wrong”
specification, but each answers a different question.

In Sum: Causality in Potential Outcomes Framework

Treatment effect: the difference in outcomes between parallel universes identical ex-
cept for treatment

https://youtu.be/hrzlrTMkpek
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4.4.3 SUTVA

SUTVA Definition

The potential outcomes definition of causality relies critically on the stable unit treat-
ment value assumption (SUTVA), which has two parts.

The first part of SUTVA is that every treated individual receives the same treatment.
This seems obvious, and is easily satisfied in other fields like medicine, but it often requires
thought in economics.

Example 4.16. In the right-to-work example, the same law applies (or doesn’t) to ev-
erybody equally. However, different states may have different implementations of such a
law.

Example 4.17. In the charter school example, it seems every student has the same
treatment: going to the same school. Still, it’s worth remembering that this “same
treatment” may actually consist of different teachers, different classmates, and differ-
ent extra-curricular activities. We would expect a lot of treatment effect heterogeneity,
and expect that the effect may change over time as the school gets new teachers, students,
and activities.

Example 4.18. As another ambiguous example, imagine a one-on-one mentoring pro-
gram to help teen parents. Of course, there are many different mentors. Is every teen
parent receiving the “same treatment”?

The second part of SUTVA is the no interference assumption. This assumes that
one person’s treatment (or non-treatment) does not affect the potential outcomes of any
other person. This often makes sense for medical treatments (e.g., my knee surgery doesn’t
affect your health), but it requires careful thought in economics, where often individuals
interact personally or through markets.

Example 4.19. In the charter school example, if a student’s success depends on being
surrounded by other highly motivated students, then SUTVA (specifically no interference)
is violated. That is, one student’s outcome depends on whether the other motivated
students are in the same school (whether charter or not), i.e., depends on the other
students’ “treatment.”

SUTVA Violations

As alluded to above, SUTVA can be violated in many ways, especially in economics.
This is not about sampling, or randomization, or data; it is about the potential outcomes
framework itself. Without SUTVA, it’s unclear what “treatment effect” even means.

One common violation of SUTVA is from spillover effects that benefit even untreated
individuals. That is, the treatment’s benefit “spills over” into untreated individuals. Per-
haps the treated individuals can share the treatment itself with others, or perhaps others
benefit from the improved outcomes of treated individuals.
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Example 4.20. Consider a treatment that provides treated individuals with helpful
information about financial planning. Treated individuals might share such information
with their untreated friends and family. Thus, an untreated individual’s outcome may
depend on whether or not their friend is treated. This spillover effect violates the “no
interference” part of SUTVA.

Example 4.21. Consider a “treatment” that leads to less binge drinking among treated
individuals. Even if the treatment itself is not shared, the reduction in binge drinking
may reduce social pressure and result in less binge drinking among untreated individuals.
Here, untreated individuals are affected by the treatment through the changed behavior
of treated individuals. This spillover effect violates SUTVA.

Another common violation of SUTVA is from general equilibrium effects (Sec-
tion 4.3.3), such as changing market prices.

Example 4.22 (Kaplan video). Consider a new agricultural technology hoping to in-
crease cacao farmers’ earnings (through increased productivity). If only one farmer gets
this treatment (technology), then she benefits from increased production, selling more
cacao at the current global price. But if all farmers in the world get the technology, then
the global cacao supply curve shifts and the price drops. Thus, each farmer’s untreated
and treated potential outcomes (earnings) are affected by all other farmers’ treatment
status, which affects the market equilibrium price. This violates SUTVA.

Example 4.23. Consider the “treatment” that provides a subsidy for buying a house.
This increases demand, which increases prices. This general equilibrium effect violates
SUTVA.

Discussion Question 4.3 (cash transfer spillovers). Consider the effect of income on
food consumption (Y ) in a rural village. Consider an “unconditional cash transfer” pro-
gram (like GiveDirectly) that (potentially) gives the equivalent of $1000 to a treated
individual. Describe different possible spillover effects that would violate SUTVA.

4.5 Average Treatment Effect

=⇒ Kaplan video: Potential Outcomes and the ATE (again)

Although the full distribution of potential outcomes (Y U , Y T ) contains the most infor-
mation, usually only certain summary features are studied. Although summary features
like standard deviations and percentiles are interesting, we’ll focus on means.

4.5.1 Definition and Interpretation

The average treatment effect (ATE) is E(Y T−Y U ). “Average” refers to the population
mean, while “treatment effect” refers to Y T − Y U . Thus, the ATE may be interpreted

https://www.cdc.gov/alcohol/fact-sheets/binge-drinking.htm
https://youtu.be/5dqTda8KPAc
https://www.givedirectly.org
https://youtu.be/Yb4rK1sUCl4
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as the probability-weighted average (mean) of all possible individual treatment effects in
the population. Another name for the ATE is the average causal effect (ACE), but I
use ATE to emphasize that this concept is from the potential outcomes framework.

The ATE has another interpretation, analogous to the two “mean difference” interpre-
tations in (4.2). Using linearity as in (2.9),

ATE ≡ E(Y T − Y U ) = E(Y T )− E(Y U ). (4.3)

Here, E(Y T ) is the mean treated potential outcome, and E(Y U ) is the mean untreated po-
tential outcome. This could be interpreted as “the treatment effect on the mean outcome”:
treatment causes the mean outcome to change from E(Y U ) to E(Y T ).

Example 4.24 (Kaplan video). Table 4.1 shows a numerical version of the charter school
example. The four student “types” refer to the four possible values of (Y U , Y T ), and each
type has its own probability. Given the probabilities, the mean untreated outcome E(Y U ),
mean treated outcome E(Y T ), and ATE E(Y T − Y U ) are computed using (2.4):

E(Y U ) = (0.3)(0) + (0.3)(0) + (0.1)(1) + (0.3)(1) = 0.4, (4.4)

E(Y T ) = (0.3)(0) + (0.3)(1) + (0.1)(0) + (0.3)(1) = 0.6, (4.5)

E(Y T − Y U ) = (0.3)(0) + (0.3)(1) + (0.1)(−1) + (0.3)(0) = 0.2. (4.6)

To verify (4.3),

E(Y T − Y U ) = 0.2 = 0.6− 0.4 = E(Y T )− E(Y U ). (4.7)

Table 4.1: Charter school example population of potential outcomes and ATE.

Student type Probability Y U Y T Y T − Y U

1 0.3 0 0 0
2 0.3 0 1 1
3 0.1 1 0 −1
4 0.3 1 1 0

Mean 0.4 0.6 0.2

Example 4.25. Table 4.2 shows a numerical version of the right-to-work example. Each
worker “type” corresponds to a different value of (Y U , Y T ), each type with its own proba-
bility. Given the probabilities, the mean untreated outcome E(Y U ), mean treated outcome
E(Y T ), and ATE E(Y T − Y U ) are, in dollars per year,

E(Y U ) = (0.5)(40,000) + (0.2)(40,000) + (0.2)(50,000) + (0.1)(50,000) = 43,000, (4.8)

E(Y T ) = (0.5)(41,000) + (0.2)(38,000) + (0.2)(51,000) + (0.1)(47,000) = 43,000, (4.9)

E(Y T − Y U ) = (0.5)(1000) + (0.2)(−2000) + (0.2)(1000) + (0.1)(−3000) = 0. (4.10)

https://youtu.be/hrzlrTMkpek
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Table 4.2: Right-to-work example population of potential outcomes and ATE.

Worker type Probability Y U Y T Y T − Y U

($/yr) ($/yr) ($/yr)

1 0.5 40,000 41,000 1000
2 0.2 40,000 38,000 −2000
3 0.2 50,000 51,000 1000
4 0.1 50,000 47,000 −3000

Mean 43,000 43,000 0

Again, to verify (4.3),

E(Y T − Y U ) = $0/yr = $43,000/yr− $43,000/yr = E(Y T )− E(Y U ). (4.11)

4.5.2 Limitations of ATE

Zero ATE does not mean zero effect. The logical implication is one way: YT − YU =
0 =⇒ E(YT − YU ) = 0, but not ⇐= . Thus, if we focus only on the mean, then we
may miss other important effects of the treatment, like increased standard deviation or
skewness. This idea is retold in joke form by Hansen (2020, p. 29):

An economist was standing with one foot in a bucket of boiling water and the
other foot in a bucket of ice. When asked how he felt, he replied, “On average
I feel just fine.”

Example 4.26 (Kaplan video). Imagine a professional skills workshop that increases
wages by $3/hr for half the population but actually decreases wages by $3/hr for the
other half of the population. The workshop “treatment” clearly has an effect, but it
averages to zero ATE. Mathematically, let P(YT − YU = 3) = P(YT − YU = −3) = 1/2.
The ATE is E(YT − YU ) = (1/2)(3) + (1/2)(−3) = 0, even though everybody is affected
by the treatment.

Example 4.27 (Kaplan video). Let YU = 3 for everybody, so E(YU ) = E(3) = 3. Let
P(YT = 1) = 0.9 and P(YT = 21) = 0.1, so E(YT ) = (0.9)(1) + (0.1)(21) = 3. The ATE
is zero: E(YT )− E(YU ) = 3− 3 = 0. However, the treatment hurts 90% of individuals.

Example 4.28 (Kaplan video). Let P(YU = −9) = P(YU = 9) = 1/2, so E(YU ) =
(1/2)(−9) + (1/2)(9) = 0, and P(YT = −2) = P(YT = 2) = 1/2, so E(YT ) = (1/2)(−2) +
(1/2)(2) = 0, too. The ATE is zero: E(YT )−E(YU ) = 0− 0 = 0. However, the treatment
greatly reduces dispersion/spread.

Complementing ATE, another approach examines effects on percentiles (“quantile
treatment effects”), but these are beyond our scope.

https://youtu.be/h4Fu76chCM8
https://youtu.be/h4Fu76chCM8
https://youtu.be/h4Fu76chCM8
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Practice 4.1 (unrepresentative ATE). Describe a population in which the ATE is zero
but every individual is affected by the treatment (i.e., all treatment effects are non-zero).
For simplicity, assume there are only two types of individual. For each type, state the
probability, potential outcomes Y U and Y T , and causal effect Y T − Y U , which must be
non-zero. Then compute the ATE to verify it’s zero.

Another limitation is that ATE compares a universe where everybody is treated to a
universe where nobody is treated, which may be unrealistic. We may instead be interested
in a smaller policy change that encourages treatment of some additional individuals “on
the margin.” ATE does not help us learn about the effect on those marginal individuals,
nor does it help us learn about how individuals decide to get treated (if it is a choice).

Example 4.29 (Kaplan video). Imagine Missouri is considering increasing the income
threshold to qualify for Medicaid (health insurance for “low-income” individuals), so more
people would be eligible. The marginal individuals are those who are currently not eligible
(because income is too high) but would become eligible if the threshold decreases. The
effect of the policy change is only the effect on these individuals on the margin. In contrast,
the ATE would be the average effect of changing from nobody having Medicaid to everyone
being eligible for Medicaid, which is not relevant here. Further, not everyone eligible
actually gets Medicaid. The ATE does not help us learn about an eligible individual’s
decision to use Medicaid or not, which is also relevant to the effect of a policy that changes
eligibility.

4.6 ATE: Identification

=⇒ Kaplan video: ATE Identification

Generally, identification is a concept central to econometrics that appears through-
out this textbook. A parameter is identified if it equals a summary feature of the
population distribution of observable variables.

Here, the ATE is “identified” when it equals the mean difference. That is, we can
interpret the mean difference as the ATE. This is helpful because we already know how
to learn about the mean difference (Section 4.1.2).

Generally, identification results have the logical form of: if certain identifying as-
sumptions are true, then some parameter is identified. Both logic and identifying as-
sumptions for the ATE are covered formally in Section 6.1 and Section 6.4, respectively.

4.6.1 Setup and Identification Question

For each individual, a single value is observed. If the individual was actually treated (in
our universe), then treated potential outcome Y T is observed; otherwise, Y U is observed.

Consider actually treated individuals to be population B, and consider actually un-
treated individuals to be population A. The two populations are represented by random

https://youtu.be/cHOZnmdQMDU
https://youtu.be/IiYXODjUFzk
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variables Y B and Y A, respectively. For a population B individual, Y B is always observ-
able, with Y B = Y T . Similarly, for a population A individual, Y A is always observable,
with Y A = Y U . A random sample of Y B can be taken from actually treated individuals,
and a random sample of Y A can be taken from actually untreated individuals.

Example 4.30 (Kaplan video). Consider the outcome of college graduation in the charter
school example. Then, Y B represents the graduation outcome for a student who actually
attended the charter school (in our universe), while Y A is the outcome for a student who
did not. We observe Y T (but not Y U ) for all students who attended the charter school,
whereas we observe Y U (but not Y T ) for all students who did not. The mean difference
E(Y B)− E(Y A) is the graduation rate of charter school attendees minus the graduation
rate of non-attendees.

The identification question is whether the ATE equals the mean difference. Math-
ematically, using the E(Y T ) − E(Y U ) form of the ATE from (4.3), the identification
question is whether or not

E(Y T )− E(Y U ) = E(Y B)− E(Y A). (4.12)

Example 4.31 (Kaplan video). Continuing the charter school example (Example 4.30),
recall the mean difference E(Y B)−E(Y A) is the graduation rate of charter school atten-
dees minus the graduation rate of non-attendees. The ATE is identified when this mean
difference equals the ATE E(Y T ) − E(Y U ), which is the graduation rate in the universe
where everyone is treated (everyone in charter school) minus the graduation rate in the
universe where nobody is treated (no charter school). That is, if the ATE is identified,
then we can interpret the difference in graduation rate between charter and non-charter
schools as the causal effect of the charter school itself.

Example 4.32. For the right-to-work example, if the ATE is identified, then it equals
mean income in right-to-work states minus mean income in other states, E(Y B)−E(Y A).
That is, we can interpret the mean income difference between treated and untreated states
as the causal effect of the treatment (right-to-work law).

4.6.2 Randomization

If an individual’s treatment status is independent of that individual’s potential outcomes
(Y U , Y T ), then the ATE is identified and equal to the mean difference (between actually
treated individuals’ outcomes and actually untreated individuals’ outcomes). One way to
make treatment independent is to randomize treatment, assuming we have full control of
every individual’s treatment status. Section 6.4 contains more formal arguments for why
randomization can help identify the ATE.

For this reason, randomized experiments are often used to estimate the ATE. In a
randomized experiment, also called a randomized controlled trial (RCT), ideally
the experimenter can fully control who is treated and who is not (but see Section 4.6.3 for

https://youtu.be/MOp8e7TAbEE
https://youtu.be/MOp8e7TAbEE
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examples of how this can fail). Mathematically, the experimenter gets to decide whether
to observe Y U or Y T for each individual. “Randomized” means this decision is made
without regard to the individual’s characteristics (like by flipping a coin).

For intuition, consider the following experimental strategy. First, imagine we only
want to estimate E(Y T ). We could take a random sample of individuals from the popu-
lation and treat each one, allowing us to observe their Y T . That is, we have a random
sample from the population distribution of Y T . As in Chapter 3, we can estimate E(Y T )
by the sample mean. Second, we can repeat the process for a second random sample
but force everyone to be untreated. The key is the ability to force anyone to be either
treated or untreated, and assigning treatment independently of the individual’s charac-
teristics; this allows us to take random samples of Y T and Y U . (Mathematically, it’s
equivalent to randomly order individuals and treat the first half or to randomly assign
half to treatment.)

Example 4.33. You have a random sample of people newly diagnosed with COVID
(in 2021), and randomly give molnupiravir to half of them and a placebo to the other
half. For the treated half, you observe potential treated outcome Y T = 1 if they’re
hospitalized (and Y T = 0 if not). Similarly, for the untreated half, you observe untreated
potential outcome Y U . Because of randomization (and SUTVA seems satisfied), the ATE
is identified and equal to the mean difference: the mean difference between treatment and
control group hospitalization rates is equal to the ATE E(Y T )−E(Y U ), recalling E(Y T ) =
P(Y T = 1) and E(Y U ) = P(Y U = 1) are the hospitalization rates in the treated universe
and untreated universe, respectively. Thus, we can interpret the lower hospitalization rate
of the treatment group as a causal effect (ATE) of the drug molnupiravir, and interpret
a 95% CI for the mean difference as a 95% CI for the ATE.

Example 4.34 (Kaplan video). Imagine you have a random sample of students and that
you can force half of them (chosen at random) to attend the charter school, and force the
other half not to attend the charter school. Then (ignoring possible SUTVA violations),
the ATE is identified. However, clearly this is not ethical/legal (a common difficulty). (To
address the ethical challenge: if we have 200 students who want to join the charter school,
but there are only 100 openings, then we could randomize which 100 are admitted, with
the caveat that these 200 students are not representative of the full student population:
they’re the ones whose families wanted to apply to the charter school.)

Hypothetically, there could be a treatment that happens to be “as good as random-
ized,” in which case the ATE would be identified, but this is rare; see Section 4.6.3.

4.6.3 Reasons for Identification Failure

ATE identification can fail due to violations of SUTVA (as discussed in Section 4.4.3) or
if the treatment assignment is related to the potential outcomes, which is the focus here.

Outside of experiments, random or “as good as random” treatment is rare. This is
often because the treatment is chosen based on its costs and benefits, as economic theory

https://youtu.be/MOp8e7TAbEE
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suggets. That is, there is self-selection into treatment. For example, if the treatment
has a net benefit for some people but not others, and people are free to choose treatment,
then we observe the treated potential outcomes of individuals who (on net) benefit from
the treatment, and we observe untreated potential outcomes of individuals who don’t.
Similarly, although government decisions are not always based on good reasons, they are
not completely randomized; they usually take into account what’s going on economically
or otherwise.

Example 4.35. In the right-to-work example, treatment is almost certainly not random.
For example, optimistically, legislatures may consider the distribution of Y U when decid-
ing whether or not to pass the law (which would switch everyone’s annual earnings from
their Y U to their Y T ), to see if they think the law would be helpful for their particular
state (with their particular mix of industries, skills, etc.). More realistically, just looking
at a map, it is notable that (as of 2019) zero U.S. states in the Northeast census region
have right-to-work laws, whereas almost all states in the South census region have right-
to-work laws (the exceptions being Delaware and Maryland, which are not particularly
“Southern” and indeed border the Northeast region). If the potential outcome annual
earnings distributions already differ between South and Northeast for other reasons (be-
sides right-to-work laws), then interpreting the entire mean difference as due solely to the
right-to-work effect is not correct. Whatever effect the law has, we cannot isolate it from
the mix of other effects on earnings due to other Notheast/South differences.

Example 4.36 (Kaplan video). If charter school attendance is not randomized, then
maybe families who apply tend to be those who value education most highly (and are
organized enough to submit an application on time). If so, they may help their children
in other ways. Even if the charter school graduation rate is higher, we can’t isolate the
effect of the school itself from the effect of everything else these families do to help their
children. In sum: charter school attendance is not “as good as random” but related to
family characteristics, so the ATE is not identified, meaning we can’t interpret the mean
difference as only the effect of the charter school.

Example 4.37 (Kaplan video). Consider some other brief examples of treatment not
being random but rather based on factors that are in turn related to outcomes. Whether
or not a road is widened (treatment) is related to the existing traffic level (outcome).
Whether or not somebody gets a college degree (treatment) is related to factors like family
wealth that themselves affect wages (outcome). Whether or not Walmart builds a store
in a particular town (treatment) is related to existing economic conditions (outcome).
Somebody’s choice of health insurance plan (treatment) depends on their anticipated
utilization based on their anticipated health level (outcome).

Even with randomized treatment assignment, treatment itself may not be random if
it’s not ethical or legal to force somebody to be (un)treated. That is, if individuals can
still ultimately choose their treatment status, then there is still a self-selection problem.
Included in this is if individuals can choose to not participate (attrition) after learning
their treatment assignment.

https://youtu.be/MOp8e7TAbEE
https://youtu.be/bPnIL6wcfnw
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Example 4.38 (Kaplan video). Imagine you randomly assign people to attend a job
training program, but some do not. People who skip the program may also skip work
regularly, which results in lower income. Thus, many low-income individuals who should
have been in the treatment group (if we could force them) are now in the control group.
This decreases the control group’s average income and raises the treatment group’s average
income, which falsely makes the treatment seem more effective than it is.

One way to avoid this incorrect conclusion is to change perspective: compare groups
based on treatment assignment rather than actual treatment. The resulting ATE is called
the intention-to-treat effect because it measures the mean change in Y corresponding
to the intention to treat (i.e., assignment to treatment, or offer of treatment). Sometimes
this is more directly relevant for policy anyway, if the actual policy would not force people
to be treated.

Example 4.39. In the job training example, we can compare mean earnings for the
treatment group that was invited to the training with the control group that was not
invited. Even if some invited individuals do not attend, this lets us estimate the effect of
being invited, if not the effect of attending.

Other concerns are introduced later, especially in Section 12.3.

Discussion Question 4.4 (breakfast effect?). Schools with a high enough percentage
of low-income students are eligible for a federally-funded free breakfast program for all
students. Although the program is not mandatory, all eligible schools choose to have it.
You compute a 95% CI for the mean math test score of the “breakfast” schools minus
the mean of the other schools, and it is [−32,−17] points. (The test is out of 100 points;
most scores are in the 60 to 100 range.) How do you interpret this result? Think about
ATE identification, statistical uncertainty, and frequentist vs. Bayesian perspectives.

4.7 ATE: Estimation and Inference

If the ATE is identified, then estimates and CIs for the ATE are identical to those for the
mean difference (Section 4.1.2) because the ATE equals the mean difference. However, a
CI does not incorporate any uncertainty about identification. For example, if the ATE is
actually not identified, then a 95% CI for the mean difference may only contain the ATE
with 80% probability, or even 50% or near 0%.

Optional Resources

Optional resources for this chapter

• Structural and reduced form approaches: Lewbel (2019)

• Potential outcomes and SUTVA (Wikipedia)

https://youtu.be/0-NpAxUQPFk
https://en.wikipedia.org/wiki/Rubin_causal_model
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• Causal inference intro (Masten video)

• Correlation vs. causation (Masten video)

• ATE (Masten video)

• Individual causal effects (Masten video)

• Potential outcomes example (Masten video)

• Counterfactuals (Masten video)

• Randomized experiments (Masten video)

• SUTVA and spillovers (Masten video)

• Empirical example: property rights effect (Masten video)

• Structural modeling advantages (Masten video)

• Potential outcomes and confounding (Lambert video)

https://www.youtube.com/watch?v=FNpcwiOme1g
https://www.youtube.com/watch?v=vtSCZcKXw1w
https://www.youtube.com/watch?v=ln5LBKiF8hE
https://www.youtube.com/watch?v=Cf5aJGyadEE
https://www.youtube.com/watch?v=2CSSwKFE7iQ
https://www.youtube.com/watch?v=9j_HWkrSxzI
https://www.youtube.com/watch?v=crpuBZv6XtA
https://www.youtube.com/watch?v=J2Zt59FN-Rc
https://www.youtube.com/watch?v=JtbrG6TRDtw
https://www.youtube.com/watch?v=nlsR4lxYBRo
https://www.youtube.com/watch?v=CMjM5nJTOx4
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Empirical Exercises

Empirical Exercise EE4.1. You will analyze the effects of being assigned to a job
training program, where assignment was randomized. The specific program was the
National Supported Work Demonstration in the 1970s in the U.S. Data are originally
from LaLonde (1986), via Wooldridge (2020). You will look at effects on earnings (re78)
and unemployment (unem78), both overall and for different subgroups (e.g., married or
not). The train variable indicates (randomized) assignment to job training if it equals
1, and 0 otherwise. For now, we focus on computing various estimates; in later chapters
we’ll think more critically about what could go wrong even with randomized assignment.

a. R only: run install.packages('wooldridge') to download and install that pack-
age (if you have not already)

b. Load the jtrain2 dataset.

R: load package wooldridge with command library(wooldridge) and a data.
frame variable named jtrain2 becomes available; the command ?jtrain2 then
shows you details about the dataset.

Stata: run ssc install bcuse to ensure command bcuse is installed, and then
load the dataset with bcuse jtrain2 , clear

c. R only: separate the data into “treatment” and “control” groups (depending on the
value of train, the job training variable) with
trt <- jtrain2[jtrain2$train==1 , ]
ctl <- jtrain2[jtrain2$train==0 , ]

d. Estimate the mean 1978 earnings (in thousands of dollars) for the treatment group
minus that of the control group, along with a 95% CI for the mean difference.

R:
mean(trt$re78) - mean(ctl$re78)
t.test(x=trt$re78, y=ctl$re78)

Stata: ttest re78 , by(train) unequal (also estimates the mean difference)

e. R only: separate out the data for treated, married individuals and untreated, mar-
ried individuals, with
trt.mar1 <- trt[trt$married==1 , ]
ctl.mar1 <- ctl[ctl$married==1 , ]

f. Compute the mean difference estimate and 95% CI for the 1978 earnings outcome
variable, comparing treated and untreated married individuals.

R:
mean(trt.mar1$re78) - mean(ctl.mar1$re78)
t.test(x=trt.mar1$re78, y=ctl.mar1$re78)
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Stata: ttest re78 if married==1 , by(train) unequal or alternatively
bysort married : ttest re78 , by(train) unequal

g. Repeat your above analysis in parts (c)–(f), but first create a variable where earnings
are in dollars (instead of thousands of dollars).

R: jtrain2$re78USD <- 1000*jtrain2$re78

Stata: generate re78USD = re78*1000

h. Optional: repeat your analysis in parts (e) and (f) for unmarried (instead of married)
individuals.

i. Optional: repeat your analysis in parts (d)–(f) but for unemployment (unem78)
instead of earnings. For interpretation: note that unem78 equals 1 if unemployed
all of 1978, and equals 0 otherwise, so the population mean is the probability of
being unemployed all year (a value between 0 = 0% and 1 = 100%), and the sample
average is the fraction of the sample thus unemployed. So, a value like 0.14 means
14%, and a difference of 0.14 − 0.11 = 0.03 is a difference of 3 percentage points,
etc.

Empirical Exercise EE4.2. You will analyze data from an “audit study” that attempts
to measure the effect of race on receiving a job offer. The Urban Institute found pairs
of seemingly equally qualified individuals (one black, one white) and had them interview
for a variety of entry-level jobs in Washington, DC in 1988. See Siegelman and Heckman
(1993) for details and critique, and the raw data in their Table 5.1 (p. 195). In the
data, each row (observation) corresponds to one job, to which one pair applied. Value
w=1 indicates that the white applicant in the pair got a job offer, while b=1 if the black
applicant got an offer.

a. R only: run install.packages('wooldridge') to download and install that pack-
age (if you have not already)

b. Load the audit dataset.

R: load package wooldridge with command library(wooldridge) and a data.
frame variable named audit becomes available; the command ?audit then shows
you details about the dataset.

Stata: run ssc install bcuse to ensure command bcuse is installed, and then
load the dataset with bcuse audit , clear

c. Compute the difference (white minus black) in the sample fraction of job offers.

R: mean(audit$w) - mean(audit$b)

Stata: ttest w==b (which also computes a 95% CI)

d. Compute the sample mean of all the pairs’ white-minus-black difference. Note that
w-b equals 1 if the white individual got a job offer but the black individual did not,
equals −1 if the black but not white individual got an offer, and equals 0 if both or
neither of the pair got an offer.
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R: mean(audit$w - audit$b)

Stata: generate wminusb = w-b then ttest wminusb==0 (also computes 95% CI;
see row labeled diff for both).

e. R only (because Stata already reported this in the row labeled diff): compute
a 95% CI for the population mean difference with either t.test(x=audit$w, y=
audit$b, paired=TRUE) or t.test(x=audit$w-audit$b)
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Chapter 5

Midterm Exam #1

=⇒ Kaplan video: Chapter Introduction

When I teach this class, the first midterm exam is this week. This “chapter” makes
the chapter numbers match the week of the semester. The midterm covers Chapters 2–4,
i.e., everything up till now except R/Stata coding.

83

https://youtu.be/IYDBAC_HnhM
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Part II

Regression
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Introduction

Part II concerns regression. Regression is the workhorse of empirical economics (and
many other fields), for description, prediction, and causality alike.

Part II extends the concepts and methods of Part I to the regression setting. In
the population, the concepts of description, prediction, and causality from Part I are
extended to regression models. In the data, estimation and inference methods extend
those of Part I.

More flexible regression is also considered, including different models, interpretation,
and a glimpse of nonparametric regression and machine learning.
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Chapter 6

Comparing Two Distributions by Re-
gression

=⇒ Kaplan video: Chapter Introduction

Chapter 6 revisits Chapter 4 from the perspective of regression, with a single binary
regressor X. The concepts of description, prediction, and causality are translated into
regression language and regression models in the population. Estimation and quantifying
uncertainty are also discussed.

The term regression has different meanings in different contexts (and by different
people). In the population, it usually refers to how the mean of a random variable Y
depends on the value of another random variable(s), as in Section 6.3. In the sample, as
in Section 6.6, it usually refers to a particular estimation technique. But, beware of other
(or ambiguous) uses of the word “regression,” especially in online resources.

Unit learning objectives for this chapter

6.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

6.2. Describe different ways of thinking about two distributions, both mathematically
and intuitively [TLO 3]

6.3. Describe, interpret, identify, and distinguish among different population models and
their parameters and estimators [TLO 3]

6.4. Judge which interpretation of a regression slope is most appropriate in a real-world
example [TLO 6]

6.5. Interpret logical relationships and form appropriate logical conclusions [TLO 2]

6.6. In R (or Stata): estimate the parameters in a simple regression model, along with
measures of uncertainty, and judge economic and statistical significance [TLO 7]

89

https://youtu.be/tASAgtqHVM0
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6.1 Logic

=⇒ Kaplan video: Logic Terms Example

Some basic logic is useful for understanding certain parts of econometrics. Theo-
retically, logic helps you understand the relationships among different conditions, like
assumptions for theorems. Practically, logic helps you interpret results.

6.1.1 Terminology

Many words and notations can refer to the same logical relationship. Let A and B be
two statements that can be either true or false. For example, maybe A is “Y ≥ 10” and
B is “Y ≥ 0.” Or, A is “this animal is a cat,” and B is “this animal is a mammal.” The
following ways of describing the logical relationship between A and B all have the same
meaning.

1. If A is true, then B is true (often shortened: “if A, then B”)
2. A =⇒ B
3. A implies B
4. B ⇐= A
5. B is implied by A
6. B is true if A is true
7. A is true only if B is true
8. A is a sufficient condition for B (shorter: “A is sufficient for B”)
9. B is a necessary condition for A (shorter: “B is necessary for A”)

10. A is stronger than B
11. B is weaker than A
12. It is impossible for B to be false when A is true (but it is fine if both are true, or

both are false, or A is false and B is true)
13. The truth table (T=true, F=false):

A B A =⇒ B

T T T
T F F
F T T
F F T

14. The diagram (everything in A is also in B):

AB

https://youtu.be/i1WNQdT32zg
https://en.wikipedia.org/wiki/Truth_table
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To state equivalence of A and B, opposite statements can be combined. Specifically,
any of the following have the same meaning.

1. A ⇐⇒ B (meaning both A =⇒ B and A ⇐= B)
2. A is true if and only if B is true (meaning A is true if B is true and A is true

only if B is true)
3. B is true if and only if A is true
4. A is necessary and sufficient for B
5. B is necessary and sufficient for A
6. A and B are equivalent
7. It is impossible for A to be false when B is true, and impossible for A to be true

when B is false.
8. The truth table (T=true, F=false):

A B A ⇐⇒ B

T T T
T F F
F T F
F F T

Variations of A =⇒ B have the following names. Read ¬A as “not A”: ¬A is false
when A is true, and ¬A is true when A is false.

• ¬A =⇒ ¬B is the inverse of A =⇒ B.

• B =⇒ A is the converse of A =⇒ B.

• ¬B =⇒ ¬A is the contrapositive of A =⇒ B.

The statement A =⇒ B is logically equivalent to its contrapositive. That is, state-
ments “A =⇒ B” and “¬B =⇒ ¬A” can be both true or both false, but it’s impossible
for one to be true and the other false.

The statement A =⇒ B is not logically equivalent to either its inverse or con-
verse. (The inverse and converse are equivalent to each other because the inverse is the
contrapositive of the converse.)

Example 6.1 (Kaplan video). Let A be “X ≤ 0” and let B be “X ≤ 10.”
• A =⇒ B: any number below 0 is also below 10.
• We could equivalently say “A implies B” or “B is true if A is true” or “A is stronger

than B” or “A is sufficient for B.”
• The contrapositive is X > 10 =⇒ X > 0, which is also true: any number above
10 is also above 0.

• The inverse is X > 0 =⇒ X > 10, which is false: e.g., if X = 5, then X > 0 but
not X > 10.

• The converse is X ≤ 10 =⇒ X ≤ 0, also false: again if X = 5, then X ≤ 10 but
not X ≤ 0.

https://youtu.be/GRCa5-TxBUM
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6.1.2 Theorems

Theorems all have the same logical structure: if assumption A is true, then conclusion
B is true. Sometimes A and B have multiple parts, like A is really “A1 and A2.” (Like,
“If SUTVA holds and treatment is randomized, then the ATE is identified and equals the
mean difference.”) The theorem’s practical use is: if we can verify that A is true, then we
know B is also true.

What if we think A is false? Then, B could be false, or it could be true. This may be
seen most readily from the picture version of the A and B relationship in Section 6.1.1:
we could be somewhere inside B but outside A (i.e., B true, A false); or we could be
outside both (both false). That is, as in Section 6.1.1, the theorem A =⇒ B is not
equivalent to its inverse.

Also from Section 6.1.1, a theorem is equivalent to its contrapositive. That is, if the
theorem’s conclusion is false, then we know at least one of its assumptions is false.

Example 6.2 (Kaplan video). Consider three line segments, x, y, and z. Let A be “x,
y, and z form a triangle”; let B be “the length of z is less than or equal to the sum of the
lengths of x and y.”

• In Euclidean geometry, if assumption A is true, then conclusion B is true; the
theorem “A =⇒ B” is correct (known as the triangle inequality).

• The inverse is, “if A is false, then B is false,” or: “if x, y, and z do not form a
triangle, then the length of z is greater than the sum of the lengths of x and y.”
This statement is incorrect: if the segments do not form a triangle, then they can
be any lengths.

• The contrapositive is, “if B is false, then A is false,” or: “if the length of z is
greater than the sum of the lengths of x and y, then the three segments do not
form a triangle.” The contrapositive is true; if you have three such segments, it’s
impossible to arrange them into a triangle.

6.1.3 Comparing Assumptions

To compare assumptions, the terms “stronger” and “weaker” are most commonly used.
Let A1 and A2 denote different assumptions. Per Section 6.1.1, “A1 is stronger than A2”
is equivalent to A1 =⇒ A2, which is also equivalent to “A2 is weaker than A1.”

All else equal, it is more useful to have a theorem with weaker assumptions because
it applies to more settings. That is, if A1 =⇒ A2, then we prefer a theorem based
on A2, the weaker assumption. A theorem based on A1 can only be used when A1 is
true. In contrast, a theorem based on A2 can be used not only when A1 is true (because
A1 =⇒ A2), but also sometimes when A1 is false (but A2 is still true).

Example 6.3 (Kaplan video). Let assumption A1 be, “a city is in Missouri,” and let
assumption A2 be, “a city is in the United States.” Consider the theorems A1 =⇒ B
and A2 =⇒ B. (The conclusion is irrelevant here, but to be concrete you could imagine
B is “the city is in the northern hemisphere.”) Because Missouri is part of the United

https://youtu.be/ipkmpzbDtSY
https://en.wikipedia.org/wiki/Triangle_inequality
https://youtu.be/dMOhEYfkkOM
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States, A1 =⇒ A2, i.e., A1 is the stronger assumption and A2 is the weaker assumption.
We prefer the theorem based on the weaker assumption because it applies to more cities.
For example, only the theorem A2 =⇒ B applies to Houston; A1 is false, but A2 is true.
(And recall that when A1 is false, the theorem A1 =⇒ B does not conclude that B is
false; it just says, “I don’t know if B is true or false,” i.e., it is useless.)

Practice 6.1 (median theorem logic). Consider the theorem, “If sampling is iid, then
the sample median consistently estimates the population median.” Hint: draw a picture
and/or write it as A =⇒ B.

a) What does this tell us about consistency of the sample median when sampling is
not iid?

b) What does this tell us about sampling when the sample median is not consistent?

Practice 6.2 (mean theorem logic). Consider the theorem, “If sampling is iid and the
population mean is well-defined, then the sample mean consistently estimates the popu-
lation mean.” Hint: there may be multiple possible pictures that show this relationship
among A1 (iid), A2 (well-defined), and B (consistency).

a) What does this tell us about consistency of the sample mean when sampling is not
iid?

b) What does this tell us about sampling when the sample mean is not consistent?

Discussion Question 6.1 (logic with feathers). Consider two theorems. Theorem 1
says, “If X is an adult eagle, then it has feathers.” Theorem 2 says, “If X is an adult bird,
then it has feathers.”

a) Describe each theorem logically: what’s the assumption (A), what’s the conclusion
(B), what’s the relationship?

b) State Theorem 1’s contrapositive; is it true?
c) Compare: does Theorem 1 or Theorem 2 have a stronger assumption? Why?
d) Compare: which theorem is more useful? (Which applies to more situations?)

6.2 Preliminaries

=⇒ Kaplan video: Joint, Marginal, and Conditional Distributions

This section reviews some material particularly useful for understanding regression.
If it is not familiar to you from a previous statistics class, then you may want to consult
additional resources for a deeper understanding; or you may not. In Section 6.2, there is
no data; only the population is considered.

6.2.1 Population Mean Model in Error Form

The population mean E(Y ) can be “modeled” in two equivalent ways. Both look silly
and over-complicated, but they help bridge Chapter 4 to Chapter 6. Both use notation
µY ≡ E(Y ).

https://youtu.be/aoCie3v6DA4


94 CHAPTER 6. COMPARING TWO DISTRIBUTIONS BY REGRESSION

First, the mean can be written directly:

E(Y ) = µY . (6.1)

Second, in terms of an error term U ≡ Y − µY , the error form of this model is

Y = µY + U, E(U) = 0. (6.2)

Here E(U) is not “assumed” but simply follows from the definition of U and linearity:

E(U) = E(Y − µY ) = E(Y )− E(µY ) = µY − µY = 0. (6.3)

This error term has a precise statistical meaning, but no causal or economic meaning.
To see the equivalence of the two models, take the mean of both sides of (6.2):

E(Y ) = E(µY + U) = E(µY ) + E(U) = µY + 0 = µY . (6.4)

The error form often facilitates theoretical analysis, but the direct model is easier to
interpret.

6.2.2 Joint and Marginal Distributions

The joint distribution describes the probabilities of possible (X,Y ) pair values, like
P(X = 4, Y = 1) or P(X = cat, Y = dog). (With continuous X or Y , there are added
technical complications, but the intuition is the same.) For regression, the focus is on
numeric (discrete or continuous) X and Y . Implicitly, this also applies to categorical
variables that have been turned into dummy variables with the indicator function, like
X = 1{cat} or Y = 1{employed}.

Each joint probability can be written multiple equivalent ways:

P((X,Y ) = (x, y)) = P(X = x, Y = y) = P(X = x and Y = y). (6.5)

Example 6.4. Let X be years of education and Y type of pet. The joint distribution of
(X,Y ) consists of probabilities like P((X,Y ) = (12, rabbit)) = 0.02, meaning 2% of the
population has both 12 years of education and a pet rabbit. Or, P(X = 16, Y = dog) =
0.11 means that 11% of the population has both 16 years of education and a pet dog.

Example 6.5 (Kaplan video). Let Y = 1 if somebody is employed, and Y = 0 if not. Let
X = 1 if somebody is married, and X = 0 if not. The joint distribution of employment and
marital status describes the probabilities of each possible value of (X,Y ). There are four
possible values: not married and not employed (0, 0); not married and employed (0, 1);
married and not employed (1, 0); and married and employed (1, 1). Table 6.1 shows an
example, where P(X = 0, Y = 0) = 0.1, P(X = 0, Y = 1) = 0.1, P(X = 1, Y = 0) = 0.2,
and P(X = 1, Y = 1) = 0.6.

https://youtu.be/IlZiHVXnx9k
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Table 6.1: Joint distribution of marital status (X) and employment status (Y ).

Y = 0 Y = 1 Marginal for X (row sum)
X = 0 0.10 0.10 0.20
X = 1 0.20 0.60 0.80

Marginal for Y (column sum) 0.30 0.70 1.00

A marginal probability (or unconditional probability) considers just one of the
random variables, ignoring the other. Whereas P(X = x, Y = y) is a joint probability,
P(X = x) is a marginal probability, as is P(Y = y).

Example 6.6 (Kaplan video). In Table 6.1, the outer values show the marginal prob-
abilities: P(X = 0) = 0.20 (at the right end of the X = 0 row), P(X = 1) = 0.80,
P(Y = 0) = 0.30 (at the bottom of the Y = 0 column), and P(Y = 1) = 0.70. That
is, X by itself is a random variable with P(X = 0) = 0.20 and P(X = 1) = 0.80: the
population probability of an individual being married is 0.8 (80%). Similarly, by itself, Y
is a random variable with P(Y = 0) = 0.30 and P(Y = 1) = 0.70.

6.2.3 Conditional Distributions

The conditional distribution of Y given X = x refers to the distribution of Y among
individuals in the population with X = x.

The conditional probability of one event (like Y = 1) given another event (like
X = 0) considers only the times when the conditioning event (like X = 0) occurs,
and then takes the proportion of those times that the first event (like Y = 1) occurs.
Mathematically, the conditional probability P(Y = 1 | X = 0) can be read as “the
probability that Y equals one conditional on X equal to zero” or “the probability of Y
being one given X equals zero” or other variations. More generally, P(Y = y | X = x) is
“the probability that Y equals y conditional on X equal to x.”

Example 6.7 (Kaplan video). Let X be the type of pet and Y its age (years). The joint
distribution of (X,Y ) consists of probabilities like P(X = cat, Y = 5). The marginal
distribution of Y is the distribution of age for all pets in the population, consisting of
probabilities like P(Y = 5). The conditional distribution of Y given X = cat is the
distribution of age for cats, consisting of probabilities like P(Y = 5 | X = cat).

For non-continuous variables, a conditional probability can be written in terms of joint
and marginal probabilities. Specifically,

P(Y = y | X = x) =
P(Y = y,X = x)

P(X = x)
. (6.6)

(This doesn’t apply directly to continuous X because the denominator would be P(X =
x) = 0, but there is an analogous result with similar intuition.)

https://youtu.be/IlZiHVXnx9k
https://youtu.be/y_1Ahhva8nE
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Example 6.8 (Kaplan video). Continuing Example 6.7, applying (6.6) yields P(Y = 5 |
X = cat) = P(Y = 5, X = cat)/P(X = cat), the probability of a 5-year-old cat divided
by the probability of a cat.

Example 6.9 (Kaplan video). For intuition, it can help to write probabilities as per-
centages and imagine each percent is a person. For example, in Table 6.1, P(X = 1, Y =
1) = 0.6 = 60%, so we can imagine 60 people who are both married and employed. Sim-
ilarly, P(X = 1, Y = 0) = 0.2 = 20%, so we can imagine 20 people who are married and
not employed. The conditional probability of employment given being married is then
the proportion of married individuals who are employed: there are 60 + 20 = 80 total
married individuals, of whom 60 are employed, so 60/80 = 0.75. This matches (6.6),
which says P(Y = 1 | X = 1) = P(X = 1, Y = 1)/P(X = 1) = 0.6/0.8 = 0.75. Simi-
lary, 20/80 = 0.25 is the proportion of married individuals who are not employed, which
matches P(X = 1, Y = 0)/P(X = 1) = 0.2/0.8 = 0.25.

6.2.4 Conditional Mean

The conditional mean is the mean of a conditional distribution. Notationally,

E(Y | X = x) (6.7)

is “the conditional mean of Y given X = x” or “the mean of Y conditional on X = x.” This
is the mean of the conditional distribution of Y given X = x. Extending the unconditional
mean formula (2.4), the conditional mean is an average of possible values yj weighted by
their conditional probability P(Y = yj | X = x),

E(Y | X = x) =

J∑
j=1

P(Y = yj | X = x)yj . (6.8)

Example 6.10 (Kaplan video). In Example 6.9, we computed the conditional distribu-
tion of employment status (Y ) given being married (X = 1): P(Y = 1 | X = 1) = 0.75
and P(Y = 0 | X = 1) = 0.25. The mean of that conditional distribution is written
E(Y | X = 1). We can use the usual expected value formula, plugging in conditional
probabilities. For comparison, the unconditional and conditional (on X = 1) means of Y
are, respectively,

E(Y ) = (0)P(Y = 0) + (1)P(Y = 1) = (0)(0.3) + (1)(0.7) = 0 + 0.7 = 0.7, (6.9)

E(Y | X = 1) = (0)P(Y = 0 | X = 1) + (1)P(Y = 1 | X = 1)

= (0)(0.25) + (1)(0.75) = 0 + 0.75 = 0.75.
(6.10)

Because Y is binary (0 or 1), the (conditional) mean is the (conditional) probability
of Y = 1: E(Y ) = P(Y = 1) = 0.7 and E(Y | X = 1) = P(Y = 1 | X = 1) = 0.75.
Compared to the overall population employment rate 0.7, the employment rate for married
individuals is modestly higher, 0.75.

https://youtu.be/y_1Ahhva8nE
https://youtu.be/ZP_6q10tVKE
https://youtu.be/_HTPRAyV8Cs
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Table 6.2: Joint distribution of education (X) and weekly hours worked (Y ).

Y = 0 Y = 20 Y = 40
X = 11 0.10 0.05 0.05
X = 12 0.05 0.10 0.15
X = 16 0.10 0.10 0.30

Example 6.11 (Kaplan video). Imagine Y is hours worked per week, which is either 0,
20, or 40, and X is years of education, which is either 11, 12, or 16. Using (6.8), the
conditional mean is

E(Y | X = x) = (0)P(Y = 0 | X = x) + (20)P(Y = 20 | X = x)

+ (40)P(Y = 40 | X = x). (6.11)

Table 6.2 shows example joint probabilities. Consider the conditional mean E(Y | X =
16), the mean hours worked for individuals with 16 years of education. First, the marginal
probability P(X = 16) sums all entries in the X = 16 row:

P(X = 16) = 0.10 + 0.10 + 0.30 = 0.5. (6.12)

Second, plugging this into (6.6),

P(Y = 20 | X = 16) =
P(Y = 20, X = 16)

P(X = 16)
=

0.10

0.50
= 0.2,

P(Y = 40 | X = 16) =
P(Y = 40, X = 16)

P(X = 16)
=

0.30

0.50
= 0.6.

(6.13)

Third, plugging these into (6.11),

E(Y | X = 16) = 0 + (20)(0.2) + (40)(0.6) = 4 + 24 = 28. (6.14)

As a sanity check, the probability of Y = 40 is higher than that of Y = 0, so it makes
sense that the conditional mean is above 20.

6.2.5 Independence and Dependence

If random variables X and Y are independent, then they are completely unrelated,
statistically speaking. Notationally, independence is usually written as X ⊥⊥ Y , which is
equivalent to Y ⊥⊥ X.

Independence implies equality of marginal and conditional distributions. Mathemat-
ically, the marginal (unconditional) distribution of Y is the same as the conditional dis-
tribution of Y given X = x, for any x. Intuitively, if X is unrelated to Y , then knowing
the value of X has no information about the value of Y . Mathematically,

Y ⊥⊥ X =⇒ P(Y = y) = P(Y = y | X = x). (6.15)

https://youtu.be/AvHh_fGqHEA
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If the right side holds for all possible y and x, then it is equivalent to independence:

Y ⊥⊥ X ⇐⇒ P(Y = y) = P(Y = y | X = x) for all possible y and x. (6.16)

For continuous variables, the technicalities differ, but the intuition is the same.
Independence implies equality of marginal and conditional means, known as mean

independence. That is, for any possible x value,

Y ⊥⊥ X =⇒ E(Y ) = E(Y | X = x). (6.17)

Independence implies many other properties, too, like Cov(X,Y ) = Corr(X,Y ) = 0
and P(X = x, Y = y) = P(X = x) P(Y = y).

The opposite of independence is dependence. If any condition implied by indepen-
dence does not hold, then the variables are dependent, written X ⊥̸⊥ Y . That is, using
Section 6.1, if A is “X ⊥⊥ Y ” and B is such that A =⇒ B, then the contrapositive is
true: if B is false, then A is false.

Example 6.12. Here are a few examples, using definitions, implications, and contrapos-
itives.

• Independence implies zero correlation; thus, if X and Y are correlated (Corr(X,Y ) ̸=
0), then X ⊥̸⊥ Y .

• Mean independence is defined as E(Y ) = E(Y | X = x) for all x; thus, if E(Y |
X = 1) ̸= E(Y | X = 0), then X and Y are not mean independent.

• Independence implies mean independence; thus (the contrapositive), if X and Y
are not mean independent, then they are not independent.

• Consider binary X and Y with P(Y = 1 | X = 0) = 0.3 and P(Y = 1 | X = 1) =
0.3, which implies P(Y = 0 | X = 0) = P(Y = 0 | X = 1) = 0.7. Thus, X ⊥⊥ Y .

• Consider binary X with Y taking values 1, 2, or 3. Let P(Y = 2 | X = 0) = 1
and P(Y = j | X = 1) = 1/3 for j = 1, 2, 3. Here, X and Y are mean inde-
pendent because E(Y | X = 0) = (1)(2) = 2 and E(Y | X = 1) = (1/3)(1) +
(1/3)(2) + (1/3)(3) = 2. However, they are not fully independent because (among
other reasons) P(Y = 1 | X = 0) = 0 but P(Y = 1 | X = 1) = 1/3, not equal.

6.3 Conditional Mean Function: Description and Prediction

=⇒ Kaplan video: CMF (Binary X)

This and the following sections consider what we want to learn about the population,
and how we can write it mathematically. There is no data, no estimation, no uncertainty.

For simplicity, X is binary (X = 0 or X = 1) in this chapter.
A model describes the relationship between two (or more) variables, like education

and income. If it describes how income changes with education, then income is the usually
written as Y and called the outcome variable, regressand, dependent variable,

https://youtu.be/vdabs1Ro368
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left-hand side variable, or response variable, while education is written as X and
called the regressor, independent variable, right-hand side variable, predictor,
covariate, or conditioning variable.

Like before, these variables are treated mathematically as random variables, and the
“population” is a joint probability distribution of the observable variables, (Y,X).

There are different models for different types of relationships between two variables.
Section 6.3 models a statistical relationship with interpretations for description or predic-
tion, whereas Sections 6.4 and 6.5 model causal relationships. Sometimes the descriptive
and causal models coincide, but generally they differ.

In Sum: Conditional Mean Function

CMF: m(x) ≡ E(Y | X = x)
Description: mean Y for subpopulation with same X = x
Prediction: with quadratic loss, optimal prediction of Y given X = x
Causality: CMF difference/slope sometimes has causal interpretation (Sections 6.4
and 6.5)

6.3.1 Conditional Mean Function

Using (6.7), let m(·) be the conditional mean function (CMF) of Y given X:

m(x) ≡ E(Y | X = x). (6.18)

That is, the CMF m(·) takes a value of x as input, like x = 1, and tells us the corre-
sponding conditional mean of Y , like E(Y | X = 1) = 7. Other names for the CMF are
conditional mean response (CMR) and conditional expectation function (CEF).

Example 6.13 (Kaplan video). For the example in Table 6.1, the CMF is m(0) = 0.5
and m(1) = 0.75, as shown here. From (6.10), m(1) ≡ E(Y | X = 1) = 0.75. Also,

m(0) ≡ E(Y | X = 0) = (0)P(Y = 0 | X = 0) + (1)P(Y = 1 | X = 0)

= P(Y = 1 | X = 0) =
P(Y = 1, X = 0)

P(X = 0)
=

0.1

0.2
= 0.5.

The two conditional means could be studied directly, as in Chapter 4. That is, Y A

has the distribution of Y for the X = 0 subpopulation, and Y B has the distribution of
Y for the X = 1 subpopulation; then, E(Y A) = m(0) and E(Y B) = m(1). However, the
CMF regression model extends more readily to more complex settings.

It helps to remember what’s random and what’s non-random. The CMF m(·) is a
non-random function, just as E(Y ) is non-random. For any X = x, Y has a conditional
distribution whose mean is m(x), a non-random value. You can draw a graph of a CMF
just like you graphed any other (non-random) function in high school. In contrast, m(X)

https://youtu.be/txSZM5ZUS8Q
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is a random variable. That is, there are multiple possible values of m(X) because there
are multiple possible values of X.

Example 6.14 (Kaplan video). Continuing Example 6.13, consider m(X) as a random
variable. From Table 6.1, the marginal distribution of X is P(X = 0) = 0.2, P(X = 1) =
0.8. Thus, m(X) is a random variable with

P(m(X) = 0.5) = P(X = 0) = 0.2, P(m(X) = 0.75) = P(X = 1) = 0.8. (6.19)

6.3.2 Linear CMF Model

With binary X, the model in (6.26) is equivalent to

Y = m(0)1{X = 0}+m(1)1{X = 1}+ V (6.20)
= m(0)(1−X) +m(1)(X) + V

= m(0) + [m(1)−m(0)]X + V. (6.21)

Substituting β0 ≡ m(0) and β1 ≡ m(1)−m(0) yields the conventional linear CMF form,

Y = β0 + β1X + V, E(V | X) = 0. (6.22)

In (6.22), β0 and β1 are called the parameters. Greek letters like β are commonly
used to denote unknown parameters in a population model. In the frequentist frame-
work, these are seen as unknown but fixed (non-random) values, whereas Y , X, and V
are random variables. In (6.22) specifically, β0 is the intercept, and β1 is the slope. Some-
times regression parameters are called coefficients; β1 is the slope coefficient or the
coefficient on X.

Model (6.22) is a linear CMF model. It is a “CMF” model because E(Y | X = x) =
β0 + β1x, or E(Y | X) = β0 + β1X. The “linear” part is explained in Section 8.2.1; for
now, it suffices to recall that a graph of β0 + β1x is a straight line.

Because X is binary, no assumptions were required to write (6.22) given (6.26). How-
ever, when X has more than two possible values, it is more complicated, as in Chapter 7.

In Sum: Linear CMF with Binary X

m(x) = E(Y | X = x) = β0 + β1x
β0 = E(Y | X = 0)
β1 = E(Y | X = 1)− E(Y | X = 0)

6.3.3 CMF Interpretation: Units of Measure

To interpret (6.22), first consider the units of measure of the parameters. Use the equiv-
alent form E(Y | X) = β0 + β1X. If Y is numeric, then the left-hand side E(Y | X)

https://youtu.be/txSZM5ZUS8Q
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has the same units as Y . If Y is binary, then E(Y | X) = P(Y = 1 | X), in probability
units (like 0.43 for 43%). (Some variables may happen to only have values 0 and 1 in the
data, but are numeric, like “number of siblings” or “number of master’s degrees,” whereas
others are not numeric, like Y = 1 if it rains, or Y = 1 if it’s a cat.) Because they are
equal, the right-hand side must have the same units as E(Y | X). If X is numeric, then

1. β0 has the same units as Y if Y is numeric, otherwise β0 has probability units if Y
is binary;

2. β1X has the same units as E(Y | X), so the units of β1 are the units of Y divided
by units of X if Y is numeric, otherwise probability units divided by units of X (if
Y is binary).

If X is not numeric, then β1 is interpreted as m(1) − m(0) and has the same units as
E(Y | X). For example, if X = 1 means cat and X = 0 means dog, then β1 is the mean
Y difference between cats and dogs.

Example 6.15. If Y is salary measured in $/yr, and X is the number of college degrees,
then the units of β0 are $/yr and the units of β1 are ($/yr)/(#degrees).

Example 6.16. If Y = 1 if employed (and Y = 0 otherwise) and X is the number of
pets, then β0 has probability units, and β1 is probability units divided by number of pets.
For example, β0 = 0.80 is 80 percentage points, and β1 = 0.11 would be 11 percentage
points per pet.

Practice 6.3 (regression parameter units). Let Y be a country’s annual GDP in $/yr,
and let X be how many oceans it borders. In (6.22), what are the units of measure for
β0 and β1, respectively?

6.3.4 CMF Interpretation: Description

For description, the CMF is a summary of the conditional distribution. As seen in (6.21),
β0 = m(0) = E(Y | X = 0), the mean outcome among all individuals with X = 0, while
β1 = m(1) − m(0), the mean Y difference between the X = 1 and X = 0 subpopula-
tions. A common phrase to describe such statistical (but maybe not causal) differences
is associated with.

Example 6.17 (Kaplan video). If individuals who attended college (X = 1) have a
mean annual income that is $20,000/yr higher than the mean annual income of non-
college individuals (X = 0), then β1 = $20,000/yr, and you could say, “On average,
having a college degree is associated with having a $20,000/yr higher annual income.”
This does not claim that attending college has such a causal effect on income, only a
statistical association.

6.3.5 CMF Interpretation: Prediction

For prediction, with a quadratic loss function, the CMF provides the optimal prediction
of Y given X = x. Section 2.5.2 says the mean is the best predictor of Y (unconditionally)

https://youtu.be/bQVOgHPQg0U
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if the loss function is quadratic. This continues to be true conditionally: the conditional
mean of Y given X = x is the best predictor given quadratic loss. Intuitively, if you know
somebody is from the X = x subpopulation, then you want to use the subpopulation
mean, which is E(Y | X = x).

Formally, a slightly different statement of prediction optimality follows, again assum-
ing quadratic loss. Let g(·) denote any possible guess of Y , as a function of X. For an
individual with (Y,X), our prediction error Y − g(X) shows how wrong our guess was,
and applying quadratic loss gives (Y − g(X))2. Mean loss is thus E[(Y − g(X))2]. The
CMF m(·) is the best possible guess in that it achieves the minimum possible mean loss:

m(·) = argmin
g(·)

E[(Y − g(X))2]. (6.23)

In terms of the model parameters in (6.22), the best predictor of Y given X = 0 is
m(0) = β0, the best predictor of Y given X = 1 is m(1) = β0+β1, and the best predictor
of Y given X is m(X) = β0 + β1X.

As before, if quadratic loss is not appropriate in a particular situation, then the CMF
may not provide a good prediction.

Example 6.18 (Kaplan video). You know whether somebody is currently employed
(X = 1) or not (X = 0), and want to predict their total net wealth (Y ). With quadratic
loss, the optimal prediction is E(Y | X), the mean wealth given their employment status.

Example 6.19 (Kaplan video). You know whether somebody is currently employed
(X = 1) or not (X = 0), and want to predict whether next week they will be employed
(Y = 1) or not (Y = 0). The conditional mean gives you a decimal number (probability)
between 0 and 1, like 0.86, which cannot possibly equal next week’s employment status
(Y = 1 or Y = 0), so you will always be wrong. Here, quadratic loss is not appropriate,
so the conditional mean is not the best prediction.

6.3.6 CMF Model in Error Form

The CMF model is more confusing in error form, but it is commonly presented that way,
so it is helpful to understand what it really means.

Extending the population mean error term in Section 6.2.1, the CMF error term is

V ≡ Y −m(X), (6.24)

the difference between an individual’s actual outcome Y and the CMF evaluated at their
X value, m(X). (Other letters could be used besides V , like U or W ; in other textbooks,
you may see u or e or ϵ.) Because Y and X are random variables, so is V .

Example 6.20 (Kaplan video). Consider binary X and Y , with E(Y | X = 0) = 0.2 and
E(Y | X = 1) = 0.3, and P(X = 1) = 0.6. Because m(X) has two possible values, and Y
has two possible values, the CMF error term V ≡ Y −m(X) has four possible values:

https://youtu.be/bQVOgHPQg0U
https://youtu.be/bQVOgHPQg0U
https://youtu.be/d-m_Bmll6Fw
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• V = 1− 0.2 = 0.8 if Y = 1 and X = 0 (so m(X) = 0.2);
• V = 0− 0.2 = −0.2 if Y = 0 and X = 0 (so m(X) = 0.2);
• V = 1− 0.3 = 0.7 if Y = 1 and X = 1 (so m(X) = 0.3);
• V = 0− 0.3 = −0.3 if Y = 0 and X = 1 (so m(X) = 0.3).

Thus, V is a random variable, with P(V = 0.8) = P(Y = 1, X = 0), P(V = −0.2) =
P(Y = 0, X = 0), P(V = 0.7) = P(Y = 1, X = 1), and P(V = −0.3) = P(Y = 0, X = 1).

The CMF error always has conditional mean zero. Again, this is not an “assumption”
but follows directly from its definition. Extending (6.3), for any X = x,

E(V | X = x) = E(Y −m(X) | X = x) = E(Y | X = x)− E(m(X) | X = x)

= m(x)−m(x) = 0.

Equivalently,
E(V | X) = 0. (6.25)

That is, E(V | X) is a random variable depending on X, but it equals zero for every
possible value of X; or, just imagine “E(V | X = x) = 0 for all x” every time you see
“E(V | X) = 0.”

Given (6.24), extending (6.2), the CMF model in error form is

Y = m(X) + V, E(V | X) = 0. (6.26)

As shown, this is mathematically equivalent to saying explicitly that m(·) is the CMF
and defining V ≡ Y −m(X), which is much more clear but less commonly seen (on the
internet, etc.).

6.4 Causality: Potential Outcomes and ATE

=⇒ Kaplan video: Identification of College Effect on Earnings

Sections 4.4 and 4.6 are extended this chapter’s notation, including more formal re-
sults. As before, Y U and Y T denote the untreated and treated potential outcomes,
respectively.

Updating (4.12) to this chapter’s notation, the ATE is identified when

E(Y T )− E(Y U ) = E(Y | X = 1)− E(Y | X = 0). (6.27)

We can directly learn about the right-hand side because we observe (Y,X) for all indi-
viduals, and it always has a descriptive and predictive interpretation. We cannot directly
learn about the left-hand side because Y T and Y U are not both observable for all indi-
viduals. However, if (6.27) is true, then the conditional mean difference (right-hand side)
also has a causal interpretation as the ATE (left-hand side).

https://youtu.be/TBDlWjbrySA


104 CHAPTER 6. COMPARING TWO DISTRIBUTIONS BY REGRESSION

6.4.1 Identifying Assumptions

Assumption A6.1 is SUTVA, as discussed in Section 4.4.
Assumption A6.2 is related to the discussion of randomized treatment in Section 4.3.

Mathematically, the key is that randomization satisfies statistical independence between
the treatment assignment and the individual’s pair of potential outcomes: X ⊥⊥ (Y U , Y T ).
(Technically, this could be weakened to “mean independence,” but the intuition is the
same.)

Assumption A6.3 was not discussed before, but it is intuitive: if everybody (or nobody)
is treated, then it’s impossible to compare treated and untreated outcomes. For example,
if P(X = 1) = 0, then nobody is treated, so it’s impossible to learn about E(Y T ) because
Y T is never observed.

The following identifying assumptions combined together are sufficient, but not nec-
essary. That is, if they are all true, then the ATE is identified, but there may be other
ways to identify the ATE even if they are violated.

The assumptions have various names. Assumption A6.1 is usually just called SUTVA,
but the main part of it is often called no interference (or non-interference). Assump-
tion A6.2 has many names: independence, ignorability, or unconfoundedness. The
combination of A6.2 and A6.3 is called strong ignorability. For more detail, history,
and discussion, see Imbens and Wooldridge (2007).

Assumption A6.1 (SUTVA). Everyone with X = 1 receives the same treatment, and
one individual’s treatment does not affect any other individual’s potential outcomes.

Assumption A6.2 (unconfoundedness). Treatment is independent of the potential out-
comes: X ⊥⊥ (Y U , Y T ).

Assumption A6.3 (overlap). There is strictly positive probability of both treatment
and non-treatment: 0 < P(X = 1) < 1.

6.4.2 Identification Results

Theorem 6.1 formally states the ATE identification result. Intuitively, the key is that
A6.2 allows us to observe representative samples of both Y U and Y T ; treatment cannot
be chosen or assigned based on an individual’s potential outcomes. Mathematically, A6.2
implies that the means of the potential outcomes do not statistically depend on the
treatment X:

E(Y T ) = E(Y T | X = 1), E(Y U ) = E(Y U | X = 0). (6.28)

We observe Y = Y T when X = 1 and Y = Y U when X = 0, so

E(Y T | X = 1) = E(Y | X = 1), E(Y U | X = 1) = E(Y | X = 0). (6.29)

Combining (6.28) and (6.29), this says that the population mean of the treated potential
outcome, E(Y T ), equals the mean of the observed outcome in the treated population,



6.5. CAUSALITY: STRUCTURAL MODEL 105

E(Y | X = 1). Thus, E(Y T ) = E(Y | X = 1) is identified. Similarly, E(Y U ) = E(Y |
X = 0) is identified, so E(Y T )− E(Y U ) is identified.

Theorem 6.1 (ATE identification). Under A6.1–A6.3, the ATE is identified:

E(Y T − Y U ) = E(Y T )− E(Y U ) = E(Y | X = 1)− E(Y | X = 0),

which is the slope β1 in the linear CMF model in (6.22).

Proof. Using the above,

ATE ≡

use linearity, (4.3)︷ ︸︸ ︷
E(Y T − Y U ) =

use (6.28)︷ ︸︸ ︷
E(Y T )− E(Y U )

=

use (6.29)︷ ︸︸ ︷
E(Y T | X = 1)−

use (6.29)︷ ︸︸ ︷
E(Y U | X = 0)

= E(Y | X = 1)− E(Y | X = 0).

Example 6.21. Imagine a knee surgery treatment (X) to help arthritis, where Y is
knee-specific pain (between 0 and 100). For each individual, we can imagine two parallel
universes, identical except for whether the individual gets the treatment (surgery) or not.
It is the same surgery for everybody, and naturally one person’s surgery cannot affect
another person’s pain, so SUTVA is satisfied. Half of patients are randomly assigned the
treatment, so X ⊥⊥ (Y U , Y T ) and 0 < P(X = 1) < 1. Thus, Assumptions A6.1–A6.3 are
all satisfied, and Theorem 6.1 says the ATE equals the CMF slope.

Example 6.22 (Kaplan video). Consider Theorem 6.1 when X is rain and Y is commute
time. In Columbia, MO, there is much less traffic in the “summer” (mid-May to mid-
August) when most students are gone, meaning both Y T and Y U are lower. There is also
more rain (X = 1). That is, X and (Y U , Y T ) are related, violating Assumption A6.2.
Intuitively, the problem is that we see more short rainy commutes in the summer and
more long dry commutes during the academic year, which makes it seem like rain causes
short commutes; but correlation does not imply causation.

Practice 6.4. Discuss the right-to-work example from Sections 4.3–4.5 in terms of As-
sumptions A6.1–A6.3.

6.5 Causality: Structural Model

A structural model also captures causal relationships. The assumption is that the
model itself does not change even when variable values and policies change. (“Policy”
has a broad meaning here: policies of countries, firms, schools, etc., or even just personal
decisions.) More specifically, if we want to assess the causal effect of a certain policy
change, then the structural model should be invariant to that particular policy change.
That is, the policy may change the population distribution of variables, but it cannot
change the structural model itself, otherwise the model is not useful.

https://youtu.be/bbvUYMy9TVY
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6.5.1 Linear Structural Model

Consider the linear structural model

Y = β0 + β1X + U. (6.30)

Unlike in a CMF, the structural model’s β1 and U have economic and/or causal
meaning by definition. In (6.30), β1 is called a structural parameter (as is β0). It
has some economic or causal interpretation, like an elasticity or demand curve slope.
Similarly, U is called the structural error term. This U can be interpreted as the
aggregation of all other variables that causally determine Y . It’s possible E(U | X) = 0,
but usually not. In contrast, the CMF error Y −m(X) usually does not have causal or
economic meaning.

Example 6.23. Let Y be an individual’s income and X = 1 if they have a college
degree. In the structural model (6.30), β1 is the causal effect (on income) of getting a
college degree, and U contains everything else that helps determine a person’s income:
their occupation, their different skill levels (human capital), where they live, etc.

The coefficient β1 is perhaps best interpreted as an average effect of X on Y ; we’ll
call it the average structural effect (ASE). Superficially, (6.30) seems to state that the
effect of X on Y is the same for everybody, but it is possible that X secretly appears
inside the structural error term U , too. For example, using potential outcomes notation,
Y = Y U +X(Y T − Y U ): we observe Y = Y U if X = 0, or we observe Y = Y T if X = 1.
If we define β0 ≡ E(Y U ) and β1 ≡ E(Y T − Y U ) = ATE, then

Y = β0 + β1X + U, U ≡ Y U − β0 +X(Y T − Y U − β1). (6.31)

Here, the structural error term U includes Y T − Y U − β1, which is how much the indi-
vidual’s treatment effect Y T − Y U differs from the average treatment effect β1. In other
settings, the ASE may not be directly related to the ATE and potential outcomes, but
the interpretation is qualitatively similar.

Warning(!): if you see a model Y = β0+β1X+U , make sure you know whether it’s a
CMF model or a structural model, or yet another type of model (like in Chapter 7). The
equation by itself only shows a linear relationship; it does not tell us the meaning of the
parameters or the error term U . This is something to be very wary of when you look at
econometric resources online or in other books; they may have models that look identical
but are interpreted very differently.

Practice 6.5. Let X = 1 if an individual’s body mass index (BMI) is 30 or greater
(the technical definition of obesity) and X = 0 otherwise, and let Y denote hourly wage.
Consider the model Y = δ0 + δ1X + W , where δ0 and δ1 are unknown, non-random
parameters, and W is the unobserved error term. What is the interpretation of δ1 and
W? Explain. (Hint: yes, this is a “trick” question with a very short answer, related to
the above warning.)

Structural models do not need to be linear. More general models like Y = h(X,U)
are more realistic, but also more complex, so they are not considered here.

https://www.cdc.gov/obesity/adult/defining.html
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6.5.2 Identifying Assumptions

Qualitatively, the structural slope is identified if X and U are “unrelated.” That is, the
regressor X must be unrelated to the unobserved determinants of Y (that comprise U); U
cannot be systematically higher or lower for certain X values. If they are indeed unrelated,
then X is called exogenous (link to pronunciation). If not, then X is called endogenous
(link to pronunciation). The precise mathematical condition for a regressor’s exogeneity
(or endogeneity) depends on the model.

Assumption A6.4 (mean independent error). U is mean independent of X: E(U | X) =
E(U). For binary X, equivalently, E(U | X = 0) = E(U | X = 1).

Assumption A6.4 is one way to quantify “exogeneity” of X here, because it is sufficient
for the identification result in Theorem 6.2. Other ways to quantify exogeneity here are
X ⊥⊥ U (independent) and Corr(U,X) = 0 (uncorrelated). Generally, from strongest to
weakest,

X ⊥⊥ U =⇒ E(U | X) = E(U) =⇒ Corr(U,X) = 0, (6.32)

although with binary X the last two are equivalent ( ⇐⇒ ).

6.5.3 Formal Results

Theorem 6.2 formally states the identification theorem. You do not need to write (or even
fully understand) proofs for this class, but the proof may help deepen understanding and
appreciation for some students.

Theorem 6.2 (linear structural identification). Consider the linear structural model in
(6.30) with binary X. If A6.4 holds, then the structural slope β1 is identified and equals
the CMF slope. If additionally E(U) = 0, then the structural intercept β0 is also identified
and equals the CMF intercept.

Proof. Starting from the structural model,

Y = β0 + β1X + U = β0 + β1X + U +

=0︷ ︸︸ ︷
E(U)− E(U) =

γ0︷ ︸︸ ︷
β0 + E(U)+β1X +

V︷ ︸︸ ︷
U − E(U) .

The CMF intercept is γ0 = β0 +E(U) (which equals β0 if E(U) = 0) and the CMF slope
is β1 because V ≡ U − E(U) is a CMF error:

E[U − E(U) | X] =

=E(U) by A6.4︷ ︸︸ ︷
E[U | X] −E[E(U) | X] = E(U)− E(U) = 0.

Example 6.24 (Kaplan video). Let Y be commute time and X = 1 if people are carrying
umbrellas (otherwise X = 0). Because the umbrellas themselves have no effect on Y , the
structural β1 = 0. Because rain affects Y , rain is part of U , although U may also include
traffic conditions and such. When X = 0, there is probably no rain, whereas when X = 1,

https://www.google.com/search?q=Dictionary#dobs=exogenous
https://www.google.com/search?q=Dictionary#dobs=endogenous
https://youtu.be/c7m5-k3MTQo
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there probably is rain; thus, E(U | X = 1) > E(U | X = 0). This structural error U is
clearly not a CMF error. Consequently, the CMF slope has only statistical meaning, not
causal meaning. If we could also observe weather conditions, then it might be plausible
that the remaining parts of U are unrelated to X; this strategy is considered in Chapters 9
and 10.

Discussion Question 6.2 (ES habits and final scores). Let Y be a student’s final
semester score in this class, 0 ≤ Y ≤ 100, and X = 1 if the student starts each ex-
ercise set well ahead of the due date (and X = 0 if not). Consider the structural model
Y = a+ bX + U and the CMF model Y = c+ dX + V .

a) What does U represent? Give some specific examples of what U includes here.
(Hint: imagine two students with the same X but different Y ; what causes them to
have different Y ?)

b) Do you think E(U | X = 0) = E(U | X = 1)? Why/not?
c) Do you think b = d, b < d, or b > d? Why?

Practice 6.6 (ES habits: parameters). In DQ 6.2, what would you guess are reasonable
possible values of the parameters a, b, c, and d? Explain.

Discussion Question 6.3 (marriage and salary). Let X = 1 if married and otherwise
X = 0. Let Y be annual salary. Consider the structural model Y = β0 + β1X + U .

a) Explain why probably E(U | X = 1) ̸= E(U | X = 0), and say which you think
is higher. (Hint: first think about what else is in U , i.e., what determines some-
one’s salary; or think about variables that differ on average between married and
unmarried individuals, and whether any of those help determine salary.)

b) Does the average salary difference between married and unmarried individuals have
a structural meaning? Why/not?

6.6 Estimation: OLS

=⇒ Kaplan video: OLS in R

This section considers estimation of the CMF model (6.22) when X is binary. The
interpretation (description, prediction, causality) does not matter for estimation.

6.6.1 The Least Squares Approach

One approach is to define Y A as the X = 0 subpopulation and Y B as the X = 1
subpopulation. Then β0 = E(Y A) and β1 = E(Y B)−E(Y A), so Section 4.1.2 can be used
to estimate E(Y A) and E(Y B).

Though simple, that approach does not generalize as well as ordinary least squares
(OLS). The least squares intuition comes from the characterization of the CMF as mini-
mizing the mean quadratic loss. This idea extends (3.9) for estimating the unconditional

https://youtu.be/8GLhpdE9kDM
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mean of Y . In the population, from (6.23) with E(Y | X) = β0 + β1X,

(β0, β1) = argmin
b0,b1

E[(Y − b0 − b1X)2]. (6.33)

The analogous minimization problem in the sample is

OLS: (β̂0, β̂1) = argmin
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1Xi)
2. (6.34)

The estimated CMF is thus
m̂(x) = β̂0 + β̂1x. (6.35)

Equation (6.34) can be described with the terms introduced around (3.10). Given any
estimates (β̂0, β̂1), the fitted values are

Ŷi ≡ β̂0 + β̂1Xi = m̂(Xi). (6.36)

Given Ŷi, the residual is defined as

Ûi ≡ Yi − Ŷi = Yi − β̂0 − β̂1Xi. (6.37)

Consequently, (6.34) can be interpreted as saying that the OLS estimates (β̂0, β̂1) make the
sum of squared residuals

∑n
i=1 Û

2
i as small as possible, hence “least” (smallest) “squares.”

6.6.2 Code

The following is the same empirical example from Section 4.1.2 but now with the lm()
function to run OLS estimation. The outcome variable is wage; it is divided by 100 to
get dollars instead of cents. The regressor is Xi = 1 if individual i at age 14 lived with
their mother and father, and Xi = 0 if not. In the output below, the Xi = 0 sample
mean equals the estimated regression intercept (β̂0), and the Xi = 1 sample mean equals
the sum of the estimated regression intercept and slope (β̂0 + β̂1), so the sample mean
difference equals the estimated slope (β̂1).

library('wooldridge')
# run OLS with lm()
ret <- lm(formula=wage/100~momdad14, data=card)
# show estimated intercept and slope
print(coef(ret), digits=2)

## (Intercept) momdad14
## 5.11 0.84
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# compute subsample means
means <- c( mean(card$wage[card$momdad14==0]),

mean(card$wage[card$momdad14==1]) )
# show subsample means and mean difference
round( c(means, means[2]-means[1]) / 100 , digits=2)

## [1] 5.11 5.95 0.84

6.7 Quantifying Uncertainty

=⇒ Kaplan video: OLS in R (again)

The ways to quantify uncertainty in Section 3.7 also apply to β0 and β1 in the linear
CMF model (6.22). The same interpretations and misinterpretations apply. In particular,
these methods do not reflect uncertainty about identifying assumptions.

One new consideration is discussed in Section 6.7.1, followed by sample code in Sec-
tion 6.7.2.

6.7.1 Heteroskedasticity

Different methods for quantifying uncertainty make different assumptions about the con-
ditional variance. Whereas the conditional mean E(Y | X = x) is the mean of the con-
ditional distribution of Y given X = x, the conditional variance Var(Y | X = x) is the
variance of the conditional distribution of Y given X = x. The term homoskedasticity
means Var(Y | X = x) is a constant that does not depend on x, whereas heteroskedas-
ticity means Var(Y | X = x) is not constant but instead varies with x. Equivalently,
we could write Y = β0 + β1X + U and consider the conditional variance of U because
Var(Y | X) = Var(U | X), so often homoskedasticity and heteroskedasticity are thought
of as properties of the error term.

Always use methods that are robust to heteroskedasticity (or heteroskedasticity-
robust). This means they’re valid with homoskedasticity or heteroskedasticity, whereas
other methods only work with homoskedasticity. Logically, the heteroskedasticity-robust
methods have weaker assumptions, so they work more often. Besides, heteroskedasticity
is very common in real economic data.

(The term “robust” by itself is ambiguous. You should always ask: robust to what?
Methods can be robust to heteroskedasticity, robust to clustered sampling, robust to
measurement error, robust to infinite variance, etc.)

Example 6.25 (Kaplan video). Consider a population of pets including birds, cats,
dogs, and horses. Let Y be weight, and X = 1 if cat (otherwise X = 0). There
is heteroskedasticity because there is much more variance in weight among non-cats

https://youtu.be/8GLhpdE9kDM
https://youtu.be/g6DlRcn23qA
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(including very light birds and very heavy horses) than among cats. Mathematically,
Var(Y | X = 0) > Var(Y | X = 1).

Practice 6.7 (heteroskedasticity). Let Y = 1 if employed (and Y = 0 if not), and let
X = 1 if female (and X = 0 if not). Explain why there is probably heteroskedasticity.
(Hint: if p = P(Y = 1), then Var(Y ) = p(1− p). If px = P(Y = 1 | X = x), then what’s
Var(Y | X = x)?)

6.7.2 Code

Unfortunately, the default in R is to use homoskedasticity-based methods, so you have to
make an extra effort to get heteroskedasticity-robust results. The below code does this.
Because X is binary, the same results can be obtained with a two-sample unpaired t-test
with “unequal variances,” as shown.

The below code quantifies uncertainty about the CMF slope in a regression with a
single, binary regressor. Using a variety of methods, the code computes a 95% confidence
interval.

In the table of output at the very end, the first two rows assume homoskedasticity,
whereas the remaining four rows do not. The first row uses a two-sample t-test assuming
equal variances; the second row shows the default results based on lm() output. The
third row uses a two-sample t-test allowing for unequal variances. The remaining rows
use more general, regression-based methodology allowing for heteroskedasticity, based on
the lmtest and sandwich packages in R (Zeileis, 2004; Zeileis and Hothorn, 2002).

Overall, the first two output rows are identical, and the following four rows are very
similar to each other, but there is a big difference between the first two rows and the next
four rows. This shows the (potentially) big difference between assuming homoskedasticity
(as in the first two rows) and allowing for heteroskedasticity (as in the last four). There
are multiple ways to allow for heteroskedasticity, like the HC0, HC1, and HC3 shown in
the table. The differences are beyond our scope, but as the table suggests, the differences
are often very small in practical terms.

library(lmtest); library(sandwich)
set.seed(112358)
n <- 1000
df <- data.frame(Y=c(rnorm(n=n/4,mean=0,sd=1),

rnorm(n=3*n/4,mean=0.2,sd=2)),
X=c(rep(0,n/4), rep(1,3*n/4)))

ret <- lm(formula=Y~X, data=df)
# Store results for slope in sl.out
rn <- c('ttest.eq','Homosk.','ttest.uneq','HC0','HC1','HC3')
sl.out <- data.frame(row.names=rn, CI.lower=rep(NA,6), CI.upper=NA)
# HC0: original from Hal White (1980)
retVC0 <- vcovHC(ret, type="HC0")
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# HC1: matches Stata default, and two-sample t.test below
retVC1 <- vcovHC(ret, type="HC1")
# HC3: recommended/default (and larger SE than HC0, HC1)
retVC3 <- vcovHC(ret, type="HC3")
# Heteroskedasticity-robust CIs (shortest to longest)
sl.out['HC0',] <- coefci(ret, vcov. = retVC0)['X',]
sl.out['HC1',] <- coefci(ret, vcov. = retVC1)['X',]
sl.out['HC3',] <- coefci(ret, vcov. = retVC3)['X',]
sl.out['Homosk.',] <- confint(ret, level=0.95)['X',]

# For comparison: t.test() results for slope
t.sl <- t.test(x=df$Y[df$X==1], y=df$Y[df$X==0], mu=0, conf.level=0.95,

alternative='two.sided', paired=FALSE, var.equal=FALSE)
sl.out['ttest.uneq',] <- t.sl$conf.int
# For comparison: var.equal=TRUE
t2 <- t.test(x=df$Y[df$X==1], y=df$Y[df$X==0], mu=0, conf.level=0.95,

alternative='two.sided', paired=FALSE, var.equal=TRUE)
sl.out['ttest.eq',] <- t2$conf.int
print(round(sl.out, digits=4))

## CI.lower CI.upper
## ttest.eq -0.0259 0.476
## Homosk. -0.0259 0.476
## ttest.uneq 0.0382 0.412
## HC0 0.0385 0.412
## HC1 0.0383 0.412
## HC3 0.0381 0.412

Practice 6.8 (regression significance). Consider the setup of the “audit study” from
Bertrand and Mullainathan (2004). Resumes were fabricated that were identical except
for the name: Emily (suggesting a white female), Greg (white male), Lakisha (black
female), or Jamal (black male). The resumes were then submitted to job openings, and
it was recorded whether or not an in-person interview for the job was then offered. Here,
let Y = 1 if an interview was offered and Y = 0 if not; let X = 1 if the name is “black”
and X = 0 if not. Note that E(Y | X = x) = P(Y = 1 | X = x), i.e., the conditional
probability of an interview. A regression of Y on X (including an intercept, as always)
is run, and heteroskedasticity-robust 95% CIs are computed. Consider both economic
significance and statistical significance in the following possible results.

a) Slope estimate β̂1 = 0.00001, CI [0.000008, 0.000012].
b) β̂1 = −0.1, CI [−0.3, 0.1].
c) β̂1 = −0.2, CI [−0.24,−0.16].
d) β̂1 = −0.01, CI [−0.03, 0.01].
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Optional Resources

Optional resources for this chapter

• Conditional probability (Khan Academy)

• Basic joint, marginal, and conditional distributions (Khan Academy)

• James et al. (2013, §3.1)

• Covariance and correlation (Lambert video)

• Overlap assumption (Masten video)

• Correlation vs. causation (Masten video)

• Assumptions for randomized experiment validity (Masten video)

• Structural vs. causal/reduced form approach (Masten video)

• OLS computation (Masten video)

• Sections 2.1 (“Simple OLS Regression”) and 2.2 (“Coefficients, Fitted Values, and
Residuals”) in Heiss (2016)

• Section 5.3 (“Regression When X is a Binary Variable”) in Hanck et al. (2018)

• R packages lmtest and sandwich (Zeileis, 2004; Zeileis and Hothorn, 2002)

https://www.khanacademy.org/math/ap-statistics/probability-ap#stats-conditional-probability
https://www.khanacademy.org/math/ap-statistics/analyzing-categorical-ap
https://www.youtube.com/watch?v=KDw3hC2YNFc
https://www.youtube.com/watch?v=K12qDIHAK54
https://www.youtube.com/watch?v=vtSCZcKXw1w
https://www.youtube.com/watch?v=kYf2bHdgUHc
https://www.youtube.com/watch?v=L2ybepEF9dM
https://www.youtube.com/watch?v=iHZLHdTPc6E
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Empirical Exercises

Empirical Exercise EE6.1. You will essentially replicate EE4.1 but with regression
commands.

a. R only: load the needed packages and look at a description of the dataset:
library(wooldridge); library(sandwich); library(lmtest)
?jtrain2

b. Stata only: run ssc install bcuse if necessary, then load the data with
bcuse jtrain2 , nodesc clear

c. Run a regression of 1978 earnings (re78) on the job training assignment indicator
(train).

R: ret <- lm(re78~train, data=jtrain2)

Stata: regress re78 train , vce(robust) in which vce(robust) requests
heteroskedasticity-robust standard errors

d. R only (because already reported in Stata): output the estimates along with
heteroskedasticity-robust standard errors and two-sided 95% confidence intervals
with the code
coeftest(ret, vcov.=vcovHC(ret, type='HC1'))
coefci( ret, vcov.=vcovHC(ret, type='HC1'))

where argument type='HC1' refers to one specific type (among multi-
ple) of heteroskedasticity-robust standard error estimator (HC stands for
“heteroskedasticity-consistent”)

e. R only: create a subset of the data including only married individuals, with code
jt2.mar1 <- jtrain2[jtrain2$married==1 , ]

f. Run your previous analysis for the subset of married individuals.

R: replace data=jtrain2 with data=jt2.mar1

Stata: regress re78 train if married==1 , vce(robust)

g. Repeat your analysis, but for unmarried individuals

h. Repeat your analysis on the full sample of individuals, but for the outcome variable
unem78 (1978 unemployment indicator) instead of re78 (and remember unemploy-
ment is bad, so negative coefficient is good).



Chapter 7

Simple Linear Regression

=⇒ Kaplan video: Chapter Introduction

Surprisingly, many critical issues arise with three (instead of two) possible X values.
With two, the regression modeled conditional means, useful for description, prediction,
and (sometimes) causality. However, with three (or more) X values, we may fail to model
the conditional means. In simple cases, this can be solved with a more flexible model; in
other cases, we need to reinterpret what OLS actually estimates in practice.

Generally, OLS estimates something called a linear projection. This can also be
interpreted as a “best” linear approximation of the CMF (for description) or a “best”
linear predictor of Y given X (for prediction). These interpretations are discussed along
with statistical properties of OLS as an estimator of the linear projection (not CMF).

Unit learning objectives for this chapter

7.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

7.2. Interpret what a linear regression estimates, in multiple ways, mathematically and
intuitively [TLOs 2 and 3]

7.3. Assess whether certain assumptions for linear regression seem true or not in real-
world examples [TLOs 2 and 6]

7.4. In R (or Stata): estimate a simple linear regression, along with measures of statis-
tical uncertainty, and judge economic and statistical significance [TLO 7]

7.1 Misspecification

=⇒ Kaplan video: Misspecification of Linear CMF
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https://youtu.be/sX3A64Xy80A
https://youtu.be/82quini7x7A
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Consider the linear population model

Y = β0 + β1X + U, (7.1)

where supposedly E(U | X) = 0, and this time X has three possible values: 0, 1, and 2.
Intuitively, you should worry already: there are now three conditional means, but still

only two parameters. That is, we want to learn the three values

m(0) ≡ E(Y | X = 0), m(1) ≡ E(Y | X = 1), m(2) ≡ E(Y | X = 2),

but (7.1) has only two parameters, β0 and β1. That’s like trying to put three babies into
only two car seats.

Mathematically, the question is whether the true m(x) is indeed a straight line,

m(x) = β0 + β1x, x = 0, 1, 2.

Note: when economists (like me) call such functions “linear,” they really mean “affine.”
A wrong model is euphemistically termed misspecified. That is, the model assumes

something that is not actually true. For the linear CMF model, it is misspecified when
the true CMF is not linear, or equivalently when m(1) − m(0) ̸= m(2) − m(1). This
type of misspecification is called functional form misspecification because it is the
linear functional form that is wrong. That is, even though any values of (β0, β1) are
allowed, β0 + β1x is always a straight-line function of x, so it has a linear functional
form (the general “shape” of the function). If a model happens to be correct, then it is
called properly specified (or correctly specified).

Example 7.1 (Kaplan video). Consider Figure 7.1, in which Y is income and X is
number of siblings. The three points represent the true CMF (in thousands of $/yr):
m(0) = 60 and m(1) = m(2) = 40. Qualitatively, there is a big income gap between only
children (X = 0) and individuals with one sibling (X = 1), but having a second sibling
(X = 2) is on average the same as having just one. From m(1) and m(2) alone, the CMF
appears flat (zero slope); the line in Figure 7.1 with β0 = m(1) and β1 = 0 fits these
two points, but not the first point. But from m(0) and m(1) alone, the slope appears
negative; the line in Figure 7.1 with β0 = m(0) and β1 = m(1) −m(0) < 0 fits the first
two CMF points, but not the third. Evidently, it is impossible to draw a straight line
(β0+β1x) through all three points on this CMF, as Euclid could tell us. Thus, the linear
CMF is misspecified.

Practice 7.1 (misspecification). Investigate whether the problem with the sibling exam-
ple was that X = 0 was a possible value (so that the intercept had to be β0 = m(0)),
as follows. Consider the same example but with X = 1, 2, 3 instead of X = 0, 1, 2, so
m(1) = 60, m(2) = m(3) = 40. Is it possible to write m(x) = β0 + β1x now? Why or
why not?

https://youtu.be/J0H36SbaHlk
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Figure 7.1: Misspecification of linear CMF.

7.2 Coping with Misspecification

There are two ways to cope with misspecification: change the model, or reinterpret it. The
first way is now discussed for (7.1), while reinterpretation is detailed in Sections 7.3–7.5.

7.2.1 Model of Three Values

To fix the misspecification, the model needs to be more flexible. Continuing with X =
0, 1, 2 for simplicity, there are three conditional means, so the model should have three
parameters to be flexible enough to avoid misspecification.

One way to add another parameter is to use a dummy variable (Section 2.3.1) for each
possible value of X. Here,

1{X = j} =

{
1 if X = j
0 otherwise , j = 0, 1, 2. (7.2)

Because only three values of X are possible, 1{X = 0} = 1 − 1{X = 1} − 1{X = 2}.
Thus, extending (6.20),

m(x) = m(0)1{x = 0}+m(1)1{x = 1}+m(2)1{x = 2} (7.3)
= m(0)[1− 1{x = 1} − 1{x = 2}] +m(1)1{x = 1}+m(2)1{x = 2}
= m(0) + [m(1)−m(0)]1{x = 1}+ [m(2)−m(0)]1{x = 2}
= β0 + β1 1{x = 1}+ β2 1{x = 2},

β0 ≡ m(0), β1 ≡ m(1)−m(0), β2 ≡ m(2)−m(0).
(7.4)

Although the structure of (7.3) is easier to interpret, the structure of (7.4) is more
common and can be interpreted as follows. The parameter β0 = m(0) is the conditional
mean for the base category X = 0. The other parameters show how other conditional
means differ from this base category. Specifically, β1 = m(1) − m(0) is the conditional
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mean difference between the X = 1 and X = 0 subpopulations, and β2 = m(2)−m(0) is
the conditional mean difference between the X = 2 and X = 0 subpopulations.

Example 7.2 (Kaplan video). Continue from Example 7.1, where Y is income (in thou-
sands of $/yr), and X is number of siblings. The parameter β0 is the population mean
income among individuals with zero siblings (the base category). Then, β1 is the dif-
ference in mean income between the 1-sibling and 0-sibling subpopulations. Earlier,
m(0) = 60 and m(1) = 40, so β1 = m(1) − m(0) = −20. Finally, β2 is the mean
income difference between the 2-sibling and 0-sibling (not 1-sibling) subpopulations,
m(2)−m(0) = 40− 60 = −20.

Discussion Question 7.1 (Facebook). Let X = 0, 1, 2 be the number of Facebook
accounts somebody has, and Y is hours of social media consumption per week.

a) Explain what it means for a CMF model E(Y | X = x) = β0+β1x to be misspecified.
b) Describe a specific real-world reason to suspect misspecification in this example.
c) Consider the CMF model in (7.4). Guess whether β1 is negative, zero, or positve,

and explain why (using real-world reasons). Do the same for β2.

7.2.2 More Than Three Values

More generally, even if X has more than three possible values, dummy variables could be
used similarly to avoid CMF misspecification. Extending (7.3), there can be a dummy
variable for each possible value of X, and a corresponding parameter for each. Any such
model allowing an arbitrarily different conditional mean of Y for each possible value of X
is called fully saturated. A fully saturated CMF model cannot be misspecified. (But,
it may not have any causal meaning and may be practically impossible to estimate.)

In more complex settings, it is impossible to fix misspecification completely. For
example, if X could be any real number between 0 and 1, then an infinite number of
parameters is required to model the conditional expectations for the infinite number of
X values; this is impossible in practice.

In such settings where misspecification is unavoidable, how can we interpret the model
and its parameters? There are three interpretations of a more general linear model that
includes the linear CMF model as a special case. These are discussed next.

In Sum: Interpretations of What OLS Estimates

1. Linear projection (LP): gets β0+β1X “closest to” Y , probabilistically (Section 7.3)
2. “Best” linear approximation (BLA) of CMF : “best” (smallest mean quadratic loss)
approximation of E(Y | X) with linear form β0 + β1X (Section 7.4)
3. “Best” linear predictor (BLP): “best” (smallest mean quadratic loss) prediction of
Y given X with linear form β0 + β1X (Section 7.5)

https://youtu.be/G5X48Zo9OUI
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7.3 Linear Projection

=⇒ Kaplan video: Linear Projection and “Best” vs. “Good”

The linear projection model is important because it is what OLS actually estimates.
Two additional interpretations are described in Sections 7.4 and 7.5.

7.3.1 Geometric Intuition

You may have seen orthogonal projection in geometry or linear algebra. There is some
shape (or vector space), and there is a point outside it. Projecting the point onto the
shape consists of finding the point within the shape that is closest to the outside point.

Figure 7.2: Orthogonal projection

Figure 7.2 illustrates projection. There is a large gray circle shape, and two points
outside of it (small triangle, dot). The small triangle on the border of the large circle
is the “closest” point to the outside small triangle, as measured by Euclidean distance.
That is, the dashed line connecting the small triangles is just barely long enough to reach
the gray circle from the outside triangle point; if it were any shorter, it could not reach
any point in the gray circle. Similarly, the dot on the border of the gray shape is the
projection of the outside dot onto the shape: of all the points in the gray space, it is
closest to the outside dot (by Euclidean distance).

This idea can be written mathematically. Let dE(w, z) denote the Euclidean distance
between points w and z. Let S denote a shape, which is a set of points. Let y denote
the outside point, and p the projection. In Figure 7.2, the gray circle is S, the outside
small triangle (or dot) is y, and the small triangle (or dot) on the circle’s border is p.
The projection of point y onto shape S is the point inside S that’s closest to y, i.e., that
minimizes the distance to y. Mathematically,

p = argmin
s∈S

dE(y, s). (7.5)

https://youtu.be/nK2NA1BiSyI
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7.3.2 Probabilistic Projection

Linear projection with random variables is the same idea, but with a different definition
of distance and a different “shape” to search over.

Notationally, let LP(Y | 1, X) denote the linear projection (LP) of Y onto (1, X).
The (1, X) specifies the “shape” that we search over: random variables that can be written
as a+ bX for constants a and b, i.e., linear combinations of (1, X). (Linear combinations
and linearity are detailed in Section 8.2.1.) Without the 1, LP(Y | X) would only consider
bX with no intercept.

The closest “point” inside the “shape” is usually written β0 + β1X. Mathematically,
parallel to (7.5),

LP(Y | 1, X) = β0 + β1X = argmin
a+bX

d(Y, a+ bX) = argmin
a+bX

√
E[(Y − a− bX)2], (7.6)

where Euclidean distance dE(·, ·) has been replaced by a probabilistic “distance” measure

d(A,B) ≡
√

E[(A−B)2]. (7.7)

Linear projection gets β0 + β1X as “close” to Y as possible, in a probabilistic sense.

7.3.3 Formulas and Interpretation

Some calculus (omitted) yields a formula for each linear projection coefficient (LPC),
β0 and β1. In this special case with a single regressor X and an intercept,

β1 =
Cov(Y,X)

Var(X)
, β0 = E(Y )− β1 E(X). (7.8)

The slope β1 can be rewritten in terms of correlation:

β1 =
Cov(Y,X)

Var(X)
=

Cov(Y,X)√
Var(X)Var(Y )

√
Var(Y )

Var(X)
= Corr(Y,X)

√
Var(Y )

Var(X)
. (7.9)

Either version of the formula shows how the linear projection slope β1 is related to the
linear dependence (covariance or correlation) between Y and X. Once the slope is de-
termined, the intercept β0 simply moves the linear projection line up or down so that
E(Y ) = β0 + β1 E(X). That is, the linear projection always goes exactly through the
point (x, y) = (E(X),E(Y )).

People often interpret the linear projection coefficients less precisely. For the slope,
a common phrase is, “A one-unit increase in X is associated with a β1 change in
Y .” The intercept is often not mentioned because β0 = E(Y ) − β1 E(X) is not easy to
interpret, except when the regressor has been demeaned so that E(X) = 0, in which case
β0 = E(Y ). In this case, β0 is called the “centercept” instead of intercept; but despite the
better interpretation, it is rarely seen in economics.
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For description, (7.8) shows that the LPCs summarize the joint probability distri-
bution of (Y,X). The joint distribution of (Y,X) determines E(Y ), E(X), Cov(Y,X),
and Var(X), which then determine β0 and β1. Although a two-number summary of a
complicated joint distribution is very convenient, clearly much information is lost in such
a summary. Methods like quantile regression complement the LPCs in describing (Y,X),
but such are beyond our scope.

7.3.4 Linear Projection Model in Error Form

Analogous to (6.26) for the CMF, the linear projection model can be written in error
form. Define the LP error as

U ≡ Y − LP(Y | 1, X) = Y − (β0 + β1X). (7.10)

This implies E(U) = Cov(X,U) = 0. Thus, the model

Y = β0 + β1X + U, E(U) = Cov(X,U) = 0 (7.11)

is equivalent to LP(Y | 1, X) = β0 + β1X.

7.4 Description: “Best” Linear Approximation

=⇒ Kaplan video: “Best” Linear Approximation

=⇒ Kaplan video: Linear Projection and “Best” vs. “Good” (again)

7.4.1 Definition and Interpretation

For description, the linear projection can be interpreted as the best linear approxi-
mation (BLA) of the true CMF. “Best” here assumes quadratic loss, similar to how the
mean E(Y ) is the “best” predictor of Y with quadratic loss. “Linear” refers to a function
of the form a+ bX (details in Section 8.2.1). Mathematically,

LP(Y | 1, X) = β0 + β1X =

BLA︷ ︸︸ ︷
argmin
a+bX

E
{
[m(X)− (a+ bX)]2

}
, m(X) ≡ E(Y | X).

(7.12)
That is, among all possible a + bX, the linear projection β0 + β1X is the function of X
that best approximates E(Y | X).

The linear projection equals the CMF if the CMF is linear, but otherwise the BLA
treats more probable X as more important when trying to get the linear approximation
“close” to the true CMF. The mean E{·} in (7.12) is a weighted average with more weight
on more probable X, so it is more important to make m(X)− (a+ bX) close to zero for
such X values.

https://youtu.be/UGj3x7HhMOA
https://youtu.be/nK2NA1BiSyI
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7.4.2 Limitations

Unfortunately, “best” does not always mean “good.” Sometimes, the CMF is so highly
nonlinear that even the best linear approximation is still a very poor approximation. By
analogy: “Among all cities in Missouri, St. Louis is closest to Kuwait” does not mean “St.
Louis is close to Kuwait.” (Kuwait is the true CMF, Missouri is the set of all functions
linear in X, and St. Louis is the BLA.) Sometimes the best (closest) is still not good (not
close).

Example 7.3 (Kaplan video). The following example of a “bad” BLA is from Hansen
(2020, §2.28). Let Y = X+X2, with no error term, so m(x) = x+x2, too. If X ∼ N(0, 1),
then the BLA/LP turns out to be LP(Y | 1, X = x) = 1+ x. The function 1+ x is a bad
approximation of x+ x2 (try graphing it).

Further, the distribution of X can greatly affect the BLA of a nonlinear CMF.

Example 7.4 (Kaplan video). Figure 7.1 showed two possible BLA lines for the same
nonlinear CMF. One line is the BLA when the distribution of X satisfies P(X = 2) = 0.
The other line is the BLA when P(X = 0) = 0. The two lines are very different.

7.5 Prediction: “Best” Linear Predictor

For prediction, the linear projection can be interpreted as the best linear predictor
(BLP) of Y given X. As with the BLA, “best” assumes quadratic loss, and “linear” refers
to the form a + bX. As in (2.23), the optimal predictor minimizes mean quadratic loss.
Mathematically,

LP(Y | 1, X) = β0 + β1X =

BLP︷ ︸︸ ︷
argmin
a+bX

E
{
[Y − (a+ bX)]2

}
. (7.13)

That is, among all possible a+bX, the linear projection β0+β1X is precisely the function
of X that “best” predicts Y given knowledge of X.

Mathematically, (7.13) is the same as (7.6) but without the
√
·. Although phrased

differently, the linear projection goal of getting β0 + β1X “closest” to Y is essentially the
same as prediction: we want a predictor β0 + β1X that is “closest” to Y .

Unfortunately, as with BLA, “best” does not mean “good.” However, as with BLA,
this means the CMF does not need to be exactly linear in order for the linear projection
to make good predictions.

As in Section 2.5, “prediction” here is defined entirely within the population. It does
not refer to using data to guess the future; there is no data here. Instead, the BLP is an
ideal predictor; it is the (linear) predictor we would use if we fully knew everything about
the population. The BLP is something we wish to learn. Fortunately, the BLP (and BLA
and LP) is precisely what OLS estimates.

https://youtu.be/c9nmdlCmkos
https://www.google.com/search?q=x%2Bx^2%2C+x%2B1
https://youtu.be/W44s_pc2y7M
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Discussion Question 7.2 (BLP). Let Y be income (thousands of dollars per year) and
X be number of siblings. When X = 0, the mean Y is 60 and 50 ≤ Y ≤ 70. When
X = 1, the mean Y is 40 and 30 ≤ Y ≤ 50. When X = 2, it’s the same as when X = 1:
the mean Y is 40 and 30 ≤ Y ≤ 50. In a population with mostly X = 1 and X = 2, the
BLP is LP(Y | 1, X) = 43− 2X.

a) What Y does the BLP predict when X = 0?
b) Is the prediction from (a) good? Why/not?

7.6 Causality Under Misspecification

Some things can be said about causality under misspecification, but none as pleasing as
the BLP for prediction or BLA for description. For example, if the structural error U
satisfies the CMF error property E(U | X) = 0, then the structural function is the CMF,
so the linear projection is also the best linear approximation of the structural function.
Alternatively, if the structural model is linear, Y = β0 + β1X +U , and if Cov(X,U) = 0,
then β1 equals the linear projection slope coefficient (regardless of whether the CMF
is linear). However, the linear structural model may be misspecified, too. This is one
motivation for “nonparametric” CMF estimation (Section 8.3).

7.7 OLS Estimation and Inference

=⇒ Kaplan video: OLS in R

OLS estimation was initially discussed in Section 6.6, along with important terms like
fitted values and residuals. Here are additional insights, statistical properties, and code.

7.7.1 OLS Estimator Insights

OLS does not try to estimate the CMF, but rather the BLP. The “least squares” for-
mulation of the OLS estimator in (6.34) mirrors the BLP definition in (7.13). That is,
following the analogy principle (Section 3.3), replacing the population mean (E) in (7.13)
with the sample mean ( 1n

∑n
i=1) yields the OLS estimator, (6.34). This reinforces that

OLS fundamentally estimates the BLP (or equivalently LP or BLA), not the CMF.

7.7.2 Statistical Properties

The following statistical properties consider OLS as an estimator of the linear projection
coefficients. These properties hold true under relatively general assumptions.

Assumptions

The following assumptions combined are sufficient for Theorems 7.1 and 7.2 but not
necessary (using logical terms from Section 6.1).

https://youtu.be/Tx53Q146Qsk
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Assumption A7.1 (iid sampling). Sampling of (Yi, Xi) is iid.

Assumption A7.2 (non-constant regressor). The regressor X is not a constant, i.e.,
there is no single value x such that P(X = x) = 1.

Assumption A7.3 (finite variances). The variances of Y and X are finite: Var(Y ) < ∞,
Var(X) < ∞. Or, equivalently, the expected values of Y 2 and X2 (the second moments
of Y and X) are finite: E(Y 2) < ∞, E(X2) < ∞.

Assumption A7.4 (finite fourth moments). The expected values of Y 4 and X4 (fourth
moments) are finite: E(Y 4) < ∞, E(X4) < ∞.

Assumption A7.1 was discussed in Section 3.2 for Yi by itself. If we let vector
Wi ≡ (Yi, Xi) be what’s observed about individual i, and vector Wk ≡ (Yk, Xk) be
the observation for individual k, then the iid assumption is essentially the same as before:
Wi ⊥⊥ Wk for i ̸= k (“independent”), and Wi and Wk have the same distribution (“identi-
cally distributed”). That is, “independent” means (Yi, Xi) ⊥⊥ (Yk, Xk) for i ̸= k, which im-
plies Yi ⊥⊥ Yk, Xi ⊥⊥ Xk, Yi ⊥⊥ Xk, and Xi ⊥⊥ Yk, but implies nothing about (in)dependence
between Xi and Yi (or Xk and Yk). “Identically distributed” says (Yi, Xi) and (Yk, Xk)
have the same joint distribution, which implies the conditional and marginal distributions
(and their features) are also identical. For example, E(Yi) = E(Yk), Var(Xi) = Var(Xk),
E(Yi | Xi = x) = E(Yk | Xk = x), P(Yi ≤ 0 | Xi = x) = P(Yk ≤ 0 | Xk = x), etc. All this
readily generalizes to multiple regressors, just redefining Wi ≡ (Yi, X1i, X2i, . . .).

Assumption A7.2 is qualitatively similar to the overlap assumption (A6.3). They both
say we must see different values of X in order to learn about a relationship involving X.
Conveniently, if A7.2 seems false in the data, then your statistical software will report an
error or warning.

Assumptions A7.3 and A7.4 are similar, but A7.4 is stronger: A7.4 =⇒ A7.3.
Assumptions A7.3 and A7.4 are usually true with economic data, but there are some

exceptions. For example, bounded variables like age or education have |Y | ≤ b for some
(finite) maximum possible value b, in which case E(Y 4) ≤ E(b4) = b4 < ∞, satisfying
A7.3 and A7.4. However, stock returns (or other asset returns) may not have finite fourth
moment or even variance. (Or, maybe technically they do, but it is not a good theoretical
approximation because they can have large outliers.) Whether to model such financial
returns with finite or infinite variance is a matter of ongoing debate (e.g., Grabchak and
Samorodnitsky, 2010).

Theoretical Results

Theorem 7.1 (OLS consistency, 1 regressor). If A7.1–A7.3 are true, then the OLS in-
tercept and slope estimators are consistent for the population linear projection intercept
and slope.

Theorem 7.1 says that with enough data, the OLS coefficient estimators should be
close to the true linear projection coefficients with high probability. However, with a
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small dataset, the OLS estimates may not be close to the true values; and even with a
large dataset, without further assumptions, the OLS estimates may not tell us anything
about causality or even the CMF.

Logically, Theorem 7.1 does not say that OLS is a bad estimator if sampling is not iid
(the “inverse”), as discussed in Section 6.1. In fact, the iid assumption can be relaxed in
certain ways; for example, even with some “dependence” (like with time series data as in
Part III), OLS can still consistently estimate the population linear projection coefficients.

Theorem 7.2 (coverage probability, 1 regressor). If A7.1, A7.2, and A7.4 are true,
then the heteroskedasticity-robust confidence intervals in Section 7.7.3 are asymptotically
correct. That is, with a large enough sample size, the coverage probability is approximately
equal to the desired confidence level.

The accuracy of the confidence intervals mentioned in Theorem 7.2 comes from being
able to accurately approximate the sampling distribution of the OLS estimator, but the
technical details are not helpful in practice. A good approximation of the sampling
distribution is also possible with non-iid sampling, but the confidence intervals must be
constructed differently (like with a different R function).

7.7.3 Code

The following code is based on the example from Section 7.1. Each row in the final output
shows the estimate β̂1 (in the column labeled X) along with a heteroskedasticity-robust
95% CI for β1 (lower endpoint in column 2.5 \%, upper endpoint in column 97.5 \%).

There are three randomly simulated datasets. All have X ∈ {0, 1, 2}. The first dataset
has linear CMF m(x) = 60 − 20x, and P(X = j) = 1/3 for j = 0, 1, 2. The next two
datasets have nonlinear CMF m(0) = 60, m(1) = m(2) = 40, but different distributions
of X: for j = 0, 1, 2, the first distribution has P(X = j) = (3− j)/6 while the second has
P(X = j) = (j + 1)/6. As seen, the distribution of X affects the linear projection slope
when the CMF is nonlinear, as discussed in Section 7.4.

Finally, dummy variables are used to estimate a properly specified nonlinear CMF, as
in (7.4). Only the estimated coefficients are displayed below, using the coefficients()
function. Specifically, the number under (Intercept) is the estimated intercept (the
conditional mean for the X = 0 base category), the number under D1 is the estimated
coefficient on D1 (the dummy for X = 1), and the number under D2 is the estimated
coefficient on D2 (the dummy for X = 2).

library(lmtest); library(sandwich)
set.seed(112358)
n <- 500 # sample size
m012 <- c(60,40,20) # m(0),m(1),m(2) (linear CMF)
df <- data.frame(X=sample(x=0:2, size=n, prob=c(1,1,1)/3, replace=TRUE),

U=rnorm(n))
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df$Y <- rnorm(n=n, mean=m012[1+df$X]) + df$U
ret <- lm(formula=Y~X, data=df)
retVC1 <- vcovHC(ret, type="HC1")
CMF <- c(coef(ret)['X'], coefci(ret, vcov. = retVC1)['X',])
#
# Now: nonlinear CMF; LPC depends on X dist
set.seed(112358)
n <- 500; m012 <- c(60,40,40)
df <- data.frame(X=sample(x=0:2, size=n, prob=3:1/6, replace=TRUE),

U=rnorm(n))
df$Y <- rnorm(n=n, mean=m012[1+df$X]) + df$U
ret <- lm(formula=Y~X, data=df)
retVC1 <- vcovHC(ret, type="HC1")
LP1 <- c(coef(ret)['X'], coefci(ret, vcov. = retVC1)['X',])
#
set.seed(112358)
n <- 500; m012 <- c(60,40,40)
df <- data.frame(X=sample(x=0:2, size=n, prob=1:3/6, replace=TRUE),

U=rnorm(n))
df$Y <- rnorm(n=n, mean=m012[1+df$X]) + df$U
ret <- lm(formula=Y~X, data=df)
retVC1 <- vcovHC(ret, type="HC1")
LP2 <- c(coef(ret)['X'], coefci(ret, vcov. = retVC1)['X',])
tmp <- rbind(CMF, LP1, LP2)
round(x=tmp, digits=3)

## X 2.5 % 97.5 %
## CMF -19.8 -19.98 -19.67
## LP1 -12.3 -12.91 -11.69
## LP2 -7.7 -8.31 -7.09

#
# Use dummies to estimate nonlinear CMF
df$D0 <- (df$X==0) # not used
df$D1 <- as.integer(df$X==1) # D1=1 iff X=1
df$D2 <- as.integer(df$X==2) # D2=1 iff X=1
ret <- lm(formula=Y~D1+D2, data=df)
coefficients(ret)

## (Intercept) D1 D2
## 59.8 -19.8 -19.8
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7.8 Simple Linear Regression

=⇒ Kaplan video: OLS in R

The prior results are essentially the same when X has more than three possible values,
too. Misspecification is likely. The linear projection, best linear approximation, and best
linear predictor interpretations all still apply. OLS estimation and heteroskedasticity-
robust confidence intervals are computed the same way. As in Section 6.3.3, the units of
measure of β1 are the units of Y divided by the units of X, if both Y and X are numeric.

The main difference is that using dummy variables to avoid misspecification is more
difficult or impossible when X has many possible values. Chapter 8 addresses alternative
ways to model a CMF that is not linear in X.

Although we won’t go into detail (but see some commands in EE7.1), it is very
helpful to visualize your data. Humans are good at seeing visual patterns and anomalies.
Plot histograms (or boxplots) of each variable individually. Then make a scatter plot of
(Xi, Yi).

Practice 7.2 (linear fit). For each scatterplot in Figure 7.3, guess what the OLS esti-
mated regression line looks like, i.e., the line β̂0 + β̂1x. (Hint: remember OLS minimizes
the sum of the squares of the vertical distances from each point to the fit line.) You can
also make your own puzzles in R: first make a scatterplot like
Y <- c(1,2,3,4,13); X <- c(1,2,3,4,5); plot(X,Y)

and then (after guessing) plot the OLS fit with abline(lm(Y~X))

Practice 7.3 (regression units). Consider a regression of wage Y ($/hr) on “distance to
nearest university” X. Let γ1 be the estimated slope when X is measured in miles, and
let δ1 be the estimated slope when X is measured in kilometers, where 1mi = 1.6 km.

a) What are the units of γ1? δ1?
b) Do you think γ1 = δ1, γ1 > δ1, or γ1 < δ1?
c) Can you come up with a formula relating γ1 and δ1? (Hint: what change in Y is

associated with a 1.6 km increase in X, in terms of γ1? In terms of δ1?)

Discussion Question 7.3 (student-teacher ratio simple regression). Let Y be the av-
erage math standardized test score (in units of points) for a school’s 5th-grade students.
Let X be the 5th-grade student-teacher ratio (total number of 5th-grade students di-
vided by total number of 5th-grade teachers; like the average class size), generally around
15 ≤ X ≤ 25. For schools i = 1, . . . , n, the values (Yi, Xi) are recorded. A linear regres-
sion is run to estimate β0 and β1 in the CMF model Y = β0 + β1X + V , E(V | X) = 0.
Respond to any three of the following (for example, parts a, c, and e; or b, c, f; or d, e,
f; etc.).

a) What are the units of β0 and β1?
b) What’s the interpretation of β0? What is it useful for?

https://youtu.be/Tx53Q146Qsk
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Figure 7.3: Scatterplots for Practice 7.2.

c) Consider the estimate β̂1 = −2.28. What does this imply about the average score
difference between 15-student classes and 25-student classes? Is it economically
significant (Section 3.8.3)? (Hint: make additional assumptions about the scoring
system/scale if you need to.)

d) Consider further that β̂1 has heteroskedasticity-robust standard error 0.8, so a 95%
CI is [−3.88,−0.068]. Describe our statistical uncertainty about β̂1.

e) Describe one reason you doubt β̂1 has a causal interpretation.
f) Describe one reason you think the linear CMF model is misspecified.

Optional Resources

Optional resources for this chapter

• Regression as description (Masten video)

• James et al. (2013, §3.1)

• Sections 4.1–4.2 (“Simple Linear Regression” and “Estimating the Coefficients of the
Linear Regression Model”) in Hanck et al. (2018)

• Sections 2.1 (“Simple OLS Regression”) and 2.2 (“Coefficients, Fitted Values, and
Residuals”) in Heiss (2016) [repeated from Chapter 6]

https://www.youtube.com/watch?v=ROLeLaR-17U
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Empirical Exercises

Empirical Exercise EE7.1. You will analyze data on colleges’ athletic success and
number of applications. The data were collected by Patrick Tulloch for an economics
term project, from various college and sports data records. As the R description says,
“The ‘athletic success’ variables are for the year prior to the enrollment and academic
data.”

a. Load the data (assuming you’ve already installed the R package or Stata command).

R: library(wooldridge)

Stata: bcuse athlet1 , nodesc clear

b. Keep only data from 1993.

R: dat <- athlet1[athlet1$year==1993 , ]

Stata: keep if year==1993

c. Create a new variable equal to the sum of bowl (football bowl game) and finfour
(men’s basketball Final Four).

R: dat$bowl4 <- dat$bowl + dat$finfour

Stata: generate bowl4 = bowl + finfour

d. Display the number of observations with each possible value of bowl4 (0, 1, or 2).

R: table(dat$bowl4)

Stata: tabulate bowl4

e. Regress the number of applications (for admission) on the prior year’s athletic suc-
cess.

R: ret <- lm(apps~bowl4, data=dat)

Stata: regress apps bowl4 , vce(robust)

f. R only: save the fitted OLS values of Ŷ for the three possible values of X (bowl4
) with fit012 <- predict(ret, newdata=data.frame(bowl4=0:2)) and option-
ally add helpful labels with names(fit012) <- c('X=0','X=1','X=2')

g. Estimate and store the three CMF values.

R: mean(dat$apps[dat$bowl4==0]) to estimate m(0), and replace 0 with 1 to
estimate m(1) and with 2 to estimate m(2); store these into a vector named m012
with m012 <- c( m0 , m1 , m2 ) where m0 is your code for estimating m(0) and
similarly for m1 and m2.

Stata: bysort bowl4 : egen CMF = mean(apps) to compute the sample mean of
apps within each group of observations with the same value of bowl4, storing it into
a new variable named CMF
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h. Display the numerical values of the OLS fit and the estimated CMF.

R: rbind(m012, fit012)

Stata: collapse (mean) meanapps=apps , by(bowl4) followed by predict
OLSfit , xb and list

i. Plot the fitted OLS line against the estimated CMF points.

R: plot(x=0:2, y=m012) (to plot estimated CMF points) followed by abline(ret)
(to plot the OLS fit line)

Stata: twoway scatter CMF bowl4 || lfit apps bowl4

j. Optional: make the same plot, but adjust the line color and style, the title, the axis
labels, and whatever else you’d like to adjust.

R: inside the plot() command, add argument main='...' to set the title and simi-
larly for xlab='...' and ylab='...' to set the x-axis and y-axis labels (where you
replace all the ... with whatever names you want); inside the abline() function,
add arguments col=2 to change the line’s color, lty=2 to change the line style, and
lwd=3 to change the line width; again, you can set whatever values you like.

Stata: twoway scatter CMF bowl4 || lfit apps bowl4 , XXX but replace the
XXX with options to change the graph’s appearance (all separated by spaces, not
any more commas), like title("...") xtitle("...") ytitle("...") for the title
and axis labels, and lcolor(red) lpattern(dash) for the line color and style; use
whatever values you’d like.



Chapter 8

Nonlinear and Nonparametric Regres-
sion

=⇒ Kaplan video: Chapter Introduction

Having mastered regression with a linear functional form, we now consider nonlinear
functions. First nonlinear functions of X are allowed, and then nonparametric estimation
and machine learning are introduced.

Unit learning objectives for this chapter

8.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

8.2. Interpret the coefficients in various nonlinear regression models [TLOs 3 and 5]

8.3. Judge which model seems most appropriate, using both economic reasoning and
statistical insights [TLO 6]

8.4. In R (or Stata): estimate nonlinear and nonparametric regression models, along with
measures of uncertainty, and judge economic and statistical significance [TLO 7]

8.1 Log Transformation

Sometimes a simple regression model improves greatly by transforming Y or X or both.
The most common transformation in economics is the natural logarithm function, which
economists just call “log.”

Three different log models are discussed below. A model with the familiar form
Y = β0 + β1X + U could be called a “linear-linear” model (although it’s just called a
linear model), meaning both Y and X are in their original units, i.e., in levels. If Y is
replaced by its log, ln(Y ), it’s called a log-linear model; if instead we have Y and ln(X),
then it’s linear-log; and if both are in logs, then log-log.
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https://youtu.be/TQjCwAcjsek
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Here in Section 8.1, the distinction among causal, CMF, and linear projection models
is unimportant. The interpretation of U is left ambiguous intentionally. Instead, emphasis
is on the interpretation of β1 in terms of units of measure.

8.1.1 Properties of the Natural Log Function

Basic Shape and Properties

The natural log function is peculiar, especially if you haven’t taken calculus. It is
written ln(·), although often people will simply say “log” (without “natural”) and write
log(·), because the natural log is the only one commonly used in economics; in R, the
function is log().

The log function is the inverse of the exponential function: ln(exp(x)) = x, where
exp(x) is the same as ex. Consequently, if ex = M , then ln(M) = ln(ex) = x.

Figure 8.1 shows the log function, giving a general idea of its shape. However, two
important features are unclear. First, as x gets closer and closer to 0, ln(x) decreases
toward −∞. Second, ln(x) keeps increasing to ∞ as x increases to ∞.
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−
2

−
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2

x

ln
(x

)

Figure 8.1: The (natural) log function, ln(·).

The log function has many properties, including the following.
1. ln(x) is only defined for x > 0
2. ln(x) is strictly increasing: for any x2 > x1 > 0, ln(x2) > ln(x1)
3. ln(x) increases more slowly with larger x; it is very steep for x near zero, but less

and less steep (i.e., flatter) as x increases
4. For any x > 0 and any b, ln(xb) = b ln(x)
5. For any x1 > 0 and x2 > 0, ln(x1/x2) = ln(x1) − ln(x2) and ln(x1x2) = ln(x1) +

ln(x2)
6. limx↓0 ln(x) = −∞ and limx→∞ ln(x) = ∞
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Percentage Approximation

Near w = 1, ln(w) is approximately the same as the linear function f(w) = w − 1:
ln(w) ≈ w− 1. At w = 1 exactly, ln(1) = 1− 1 = 0 exactly. However, the approximation
is worse when w is farther from one.

Example 8.1.
• For w = 1.01, ln(1.01) = 0.00995, very close to w − 1 = 0.01.
• For w = 0.99, ln(0.99) = −0.01005, very close to w − 1 = −0.01.
• For w = 1.1, ln(1.1) = 0.0953, close to w − 1 = 0.1.
• For w = 1.5, ln(1.5) = 0.405, not close to w − 1 = 0.5.

A difference of p in log units is approximately a 100p% difference. That is, for values
y2 and y1, if p = ln(y2)− ln(y1), then the difference between y2 and y1 is approximately
100p%, meaning y2/y1 ≈ 1 + p. Mathematically, assuming y2 is near y1 (so y2/y1 is near
1), the reason is

ln(y2)− ln(y1) = ln(y2/y1) ≈ (y2/y1)− 1 = (y2 − y1)/y1. (8.1)

Again, this approximation is exact with p = 0 but worse for p farther from zero.

Example 8.2. Let y1 = 100 and y2 = 105.2, a percentage difference of 5.2%: (y2 −
y1)/y1 = 5.2/100 = 0.052. The log difference is ln(105.2) − ln(100) = 4.656 − 4.605 =
0.051, a good approximation of the true 0.052. The approximation becomes poor if
instead y2 = 152: ln(152)− ln(100) = 0.42, not close to the true percentage difference of
(y2 − y1)/y1 = 0.52 (52%).

Recall the difference between a percentage change and a percentage point change.
“Percentage point” only applies when the units are already percentages. For example,
a 1 percentage point increase is changing from 10% to 11%, or from 67% to 68%. A
percentage change can apply to any numeric variable and equals 100[(y2 − y1)/y1]%.

Example 8.3. Let W be hourly wage ($/hr). Consider a change from w1 = $12.50/hr
to w2 = $13.75/hr. Then, (w2 − w1)/w1 = (13.75 − 12.50)/12.50 = 0.10, meaning a
100[(w2 − w1)/w1]% = 100[0.10]% = 10% increase.

Example 8.4. Let R be the one-year recidivism rate for individuals convicted of a felony
whose sentence does not include prison time. If the initial rate r1 = 0.08 (meaning 8%)
changes to r2 = 0.06 (6%), then we could say that the recidivism rate decreased by two
percentage points (8 − 6 = 2), or we could say that the rate decreased by 25%, because
(r2 − r1)/r1 = (0.08 − 0.06)/0.08 = −0.25. Both statements are mathematically true,
although one may sound to you (and others) like a bigger decrease.
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8.1.2 The Log-Linear Model

Interpretation

A log-linear model specifies

ln(Y ) = β0 + β1X + U. (8.2)

Because X is in levels, the coefficient β1 tells us about a one unit increase in X.
Specifically, a one unit increase in X is associated with a β1 change in ln(Y ) (increase if
β1 > 0, decrease if β1 < 0). Sometimes, people call this a β1 change in Y in log units.

Instead of log units, we can interpret β1 in terms of a percentage change in Y .
Specifically, a one-unit increase in X is associated with a change from Y to rY , which
is a 100(r − 1)% change in Y . Using some properties of log and rearranging, β1 =
ln(rY )− ln(Y ) = ln(rY/Y ) = ln(r), so r = eβ1 , meaning a 100(eβ1 − 1)% change in Y .

If β1 is close to zero, then (8.1) offers a simpler but approximate interpretation: a
one-unit increase in X is associated with an approximate 100β1% change in Y . Mathe-
matically, if r ≈ 1, then ln(r) ≈ r− 1, so (from above) β1 ≈ r− 1; thus, the 100(r− 1)%
change is approximately a 100β1% change. However, as usual, the approximation may be
poor for large β1, or when considering changes in X larger than one unit.

Example 8.5 (Kaplan video). Let β1 = 0.02. A one-unit increase in X is associated
with a 0.02 increase in ln(Y ), meaning a 0.02 “log point” increase in Y . Alternatively, a
one-unit increase in X is associated with a 100(eβ1 − 1)% = 2.02% increase in Y . This is
approximately a 100β1% = 2% increase in Y .

Example 8.6. Again let β1 = 0.02. Now consider a 50-unit increase in X. This is
associated with a 50β1 = 1 log point increase in Y , or a 100(e50β1 − 1)% = 172% increase
in Y . However, this increase is poorly approximated by 100(50β1)% = 100%.

When to Use It

When does a log-linear model make sense? Sometimes, scatterplots of the raw Y and X
data suggest it. For example, maybe the relationship between Y and X looks nonlinear,
but the relationship between ln(Y ) and X looks approximately linear.

Sometimes the log-linear model makes more sense economically or intuitively. For
example, with Y variables like income, it may seem more natural to model effects as
(approximate) percentage changes in Y , like a 1% higher income instead of a $500/yr
higher income. Further, the log-linear form derives from economic models of human
capital where there is a multiplicative effect on wage. The most famous of these is the
“Mincer equation” for earnings as a function of education (schooling) and experience,
named after the log-linear model in Mincer (1974, Ch. 5, p. 84).

https://youtu.be/fZFbf6wlqe0
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Issue with Prediction

Unfortunately, the log-linear model is not optimal for predicting Y , even if E(U | X) = 0.
From (8.2), the CMF is

E(Y | X = x) = eβ0+β1x E(eU | X = x).

It is easy to plug in β̂0 and β̂1, but difficult to estimate E(eU | X = x). We could simply
ignore the difficult term, but eβ0+β1x is generally not the best predictor of Y given X = x.
There are alternatives, but they are beyond our scope.

8.1.3 The Linear-Log Model

Interpretation

A linear-log model specifies

Y = β0 + β1 ln(X) + U. (8.3)

When X increases by one log unit, the corresponding change in Y is β1; but one log
unit is a very big change (more than doubling). To use the percentage approximation,
a smaller change in X must be used. Specifically, an increase of X by 1% is associated
with a change in Y of approximately β1/100 units.

For larger changes in X, use the exact change in Y . Consider X increases by 100p%,
from x to (1 + p)x. The corresponding log difference is ln((1 + p)x) − ln(x) = ln((1 +
p)x/x) = ln(1 + p), so Y changes by β1 ln(1 + p) units:

[β0 + β1 ln((1 + p)x)]− [β0 + β1 ln(x)] = β1[ln((1 + p)x)− ln(x)] = β1 ln(1 + p).

Example 8.7 (Kaplan video). Consider a change from X = 40 to X = 60. This is a
50% increase (p = 0.50), so the corresponding change in Y is β1 ln(1.5) = 0.41β1. More
directly,

[β0 + β1 ln(60)]− [β0 + β1 ln(40)] = β1[ln(60)− ln(40)] = β1 ln(60/40) = 0.41β1.

The approximation pβ1 = 0.5β1 is not good. If instead p = 0.01 for a change from
X = 40 to X = 40.4, then the exact change is β1 ln(40.4/40) = 0.00995β1, very close
to the approximation pβ1 = 0.01β1. Note the accuracy of the approximation does not
depend on β1.

Example 8.8. Let β1 = 23 and consider a 1% increase in X. This is associated with an
approximate β1/100 = 0.23-unit change in Y , and this is a very good approximation (the
exact change is 0.229 units).

https://youtu.be/4bfmv2D964A
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When to Use It

When does a linear-log model make sense? Sometimes, the scatterplot of Y and X
reveals a shape that looks like a log function: increasing steeply at first, then getting less
and less steep, but without ever decreasing. (Or: switch “increasing” and “decreasing,” if
β1 < 0.) That is, the relationship between Y and X looks nonlinear, but maybe plotting Y
against ln(X) looks closer to linear. The log function’s shape also helps model diminishing
marginal benefits: the first unit of X helps increase Y a lot, but each additional unit of
X helps less and less.

8.1.4 The Log-Log Model

Interpretation

A log-log model specifies

ln(Y ) = β0 + β1 ln(X) + U. (8.4)

A 1% increase in X is associated with an approximate β1% change in Y . This percentage
interpretation is particularly nice: β1 represents an elasticity of Y with respect to X.
But, if the percentages are too large, then the approximation is poor. To be exact, a p%
increase in X is associated with a 100[(1+p)β1−1]% change in Y , which is approximately
pβ1% for small pβ1.

Example 8.9 (Kaplan video). Let β1 = 3.2. A 1% increase in X (p = 0.01) is
associated with a 100[(1 + p)β1 − 1]% = 3.24% increase in Y , which indeed is ap-
proximately 100pβ1% = 3.2%. A 20% increase in X (p = 0.20) is associated with
a 100[(1 + 0.2)3.2 − 1]% = 79.2% increase in Y , which is not well approximated by
100pβ1% = 64%.

When to Use It

When does a log-log model make sense? First, it’s a simple way to get an elasticity
interpretation. Second, a scatterplot of ln(Y ) against ln(X) may look roughly linear.
Third, if you suspect a power law type of relationship between Y and X, exponentiating
both sides of (8.4) yields

exp{ln(Y )} = exp{β0 + β1 ln(X) + U}, =⇒ Y = eβ0 exp{ln(Xβ1)}eU = eβ0Xβ1eU .

Issue with Prediction

As with the log-linear model, eβ0Xβ1 is generally not the CMF because E(eU | X) = 1

is not implied by E(U | X) = 0. Consequently, predicting Y as eβ̂0X β̂1 is generally not
optimal.

https://youtu.be/SdUO8SB4S9Y
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In Sum: Regression Models with Log Transformations

Log-linear : 1-unit ↑ X associated with 100(eβ1 − 1)% change in Y , approximately
100β1% if β1 near zero; d-unit ↑ X associated with 100(edβ1 − 1)% change in Y ,
approximately 100dβ1% for small dβ1
Linear-log : 1% ↑ X associated with β1 ln(1.01)-unit change in Y , approximately
β1/100-unit change; 100p% ↑ X associated with β1 ln(1 + p)-unit change in Y , ap-
proximately pβ1-unit change for small p
Log-log : 1% ↑ X associated with 100(1.01β1 − 1)% change in Y , approximately β1%
change in Y (elasticity); 100p% ↑ X associated with 100((1 + p)β1 − 1)% change in
Y , approximately 100pβ1% for small pβ1

Discussion Question 8.1 (pollution and house price). Consider the relationship be-
tween the price of a house and the concentration of air pollution. Explain which type of
model (linear, log-linear, linear-log, or log-log) you think would best fit, and why. (Hint:
think especially about changes in levels vs. in logs.)

8.1.5 Warning: Model-Driven Results

=⇒ Kaplan video: Warnings About Model-Driven Results

When choosing a model, beware self-fulfilling prophecy. Empirical results are driven
by data, but also by your model’s structure. For example, the function β0+β1X specifies
a constant (β1) change for every unit increase in X; different datasets can lead to different
estimated slopes (β̂1), but the slope will always be constant, regardless of the data. The
log-linear model may seem more flexible than a linear model, but it is not: it still only has
two parameters. It is just different, not more flexible. Consequently, the fitted log-linear
model always shows a diminishing effect of X on Y as X increases. This pattern does
not come from the data, but from the model itself, regardless of the data.

Figure 8.2, based on the comic at https://xkcd.com/2048, illustrates such self-
fulfilling prophecy. Each graph shows the same scatterplot from the same data (the
dots), but with a very different fitted model in each (the line). Clearly, the differences
do not come from the data because it’s the exact same data. All differences are entirely
due to the model. The top-left shows the linear model, which by construction imposes a
constant slope β1. Below that is a log-linear model; the constant percentage increase of
Y with each unit of X leads to exponential growth (hence the “exponential” label in the
comic). The top-right shows the “tapering off” of the linear-log model. Although mostly
beyond our scope, some comments on “model selection” are in Sections 8.3 and 15.2.

https://youtu.be/OMwuFFvefik
https://en.wikipedia.org/wiki/Self-fulfilling_prophecy
https://xkcd.com/2048
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Figure 8.2: Same data, different models.

8.1.6 Code

Figure 8.2 is generated by the following code that compares linear, log-linear, linear-log,
and log-log estimation given the same dataset. The four fitted functions are plotted on
four copies of the same scatterplot in Figure 8.2, in homage to https://xkcd.com/2048.
The results illustrate the concerns of Section 8.1.5.

par(family='serif', mar=c(3,3,1,1), mgp=c(2.1,0.8,0), mfrow=c(2,2))
set.seed(112358)
n <- 31
X <- sort(runif(n=n, min=1, max=9))
Y <- 1 + pnorm(q=X, mean=5, sd=1.5) +

2*( rbeta(n=n, shape1=10-X, shape2=X) - (10-X)/10 )
df <- data.frame(X=X, Y=Y)
ret.linlin <- lm(Y~X, data=df)
ret.loglin <- lm(log(Y)~X, data=df)
ret.linlog <- lm(Y~log(X), data=df)
ret.loglog <- lm(log(Y)~log(X), data=df)
#
XL <- ''; YL <- ''
plot(x=df$X, y=df$Y, type='p', pch=16, main='', xlab=XL, ylab=YL)

https://xkcd.com/2048
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lines(predict(ret.linlin)~df$X, col=2)
title("Linear", line=-1, adj=0.1)
#
plot(x=df$X, y=df$Y, type='p', pch=16, main='', xlab=XL, ylab=YL)
lines(predict(ret.linlog)~df$X, col=2)
title("Linear-Log", line=-1, adj=0.1)
#
plot(x=df$X, y=df$Y, type='p', pch=16, main='', xlab=XL, ylab=YL)
lines(exp(predict(ret.loglin))~df$X, col=2)
title("Log-Linear", line=-1, adj=0.1)
#
plot(x=df$X, y=df$Y, type='p', pch=16, main='', xlab=XL, ylab=YL)
lines(exp(predict(ret.loglog))~df$X, col=2)
title("Log-Log", line=-1, adj=0.1)

8.2 Nonlinear-in-Variables Regression

Discussion Question 8.2 (nonlinear OVB). Imagine a structural model Y = β0+β1X+
β2X

2, with no error term: X completely determines Y . To be more concrete, imagine
Y = 1 +X2 (i.e., β0 = 1, β1 = 0, β2 = 1), with 0 ≤ X ≤ 5. You run a linear-in-variables
regression; OLS estimates the function γ̂0 + γ̂1X.

a) Approximately what value would you expect γ̂1 to be? (Hint: recall Sections 7.3–
7.5.)

b) What does γ̂0 + γ̂1X suggest about the relationship between X and Y ? What
features are similar or different compared to the true 1 + X2? (Hint: draw a
picture.)

Beyond replacing X with a single transformation of X like ln(X), we can replace
X with a more complicated nonlinear function involving multiple terms and multiple
parameters. OLS can still be used for estimation as long as the function is “linear-in-
parameters” (Section 8.2.1). Again, the distinctions among causal, CMF, and linear
projection models are not emphasized here.

There are two types of (non)linearity. They are often confused. Further, people often
say “linear model” or “nonlinear model” without clarifying which type they mean.

8.2.1 Linearity

The root of “linearity” is linear combination. A linear combination is like a weighted
sum. For example, a linear combination of A and B is anything with the form

w1A+ w2B, (8.5)
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where w1 and w2 are weights that may take any value, including zero or even negative
numbers. Linear combinations may involve more than two terms, like w1A+w2B+w3C+
w4D. In some cases, instead of A, B, C, and D, we have something like Y1, Y2, Y3, and
Y4, in which case the linear combination may be written in summation notation:

w1Y1 + w2Y2 + w3Y3 + w4Y4 =
4∑

i=1

wiYi. (8.6)

Example 8.10. The expected value formula P(Y = y1)y1+P(Y = y2)y2+· · · for discrete
random variables in (2.4) is a linear combination of the possible values yj , where the linear
combination weights are the probabilities, wj = P(Y = yj).

Example 8.11. The sample mean is a linear combination of observed Yi values, with
weights wi = 1/n:

Ȳn =

n∑
i=1

wiYi =

n∑
i=1

(1/n)Yi = (1/n)

n∑
i=1

Yi.

A function is linear-in-parameters if it is a linear combination of the parameters.

Example 8.12 (Kaplan video). The function β0+β1x is linear-in-parameters because it
is a linear combination of the parameters β0 and β1 with weights w1 = 1 and w2 = x:

w1β0 + w2β1 = (1)(β0) + (x)(β1) = β0 + β1x.

A function is linear-in-variables if it is a linear combination of the regressors. How-
ever, here the intercept is interpreted as the “coefficient” on a secret regressor that’s a
always equals one, the constant X0 = 1.

Example 8.13 (Kaplan video). The function β0+β1x is linear-in-variables. Using x0 ≡ 1,
the linear combination of x0 and x has weights w1 = β0 and w2 = β1:

(w1)(x0) + (w2)(x) = (β0)(1) + (β1)(x) = β0 + β1x.

For this reason, in economics, people often call β0 + β1x “linear in x” even though tech-
nically it is “affine in x” and “linear in x0 and x.”

These two types of linearity can apply to CMFs or linear projections. For example,
if the CMF is E(Y | X = x) = β0 + β1x, then the CMF is linear-in-parameters and
linear-in-variables. Regardless of the CMF, the linear projection of Y onto (1, X) is
LP(Y | 1, X) = β0+β1X, which is always linear-in-parameters and linear-in-variables by
definition.

Confusingly, people often refer to models themselves as linear. For example, Y =
β0+β1X+U is often called a “linear model” even though β0+β1X+U is neither a linear
combination of (β0, β1) nor of (1, X), due to the +U .

https://youtu.be/Bcj6TkvC4PE
https://youtu.be/Bcj6TkvC4PE
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8.2.2 Nonlinearity

To increase flexibility, economists often use functions that are nonlinear-in-variables but
still linear-in-parameters. That is, they can be written as a linear combination of the
parameters βj , but may include nonlinear functions of x in the linear combination weights:

J∑
j=0

βjfj(x). (8.7)

Example 8.14 (Kaplan video). A quadratic function is a special case of (8.7) with
J = 2, f0(x) = 1, f1(x) = x, and f2(x) = x2, yielding β0 + β1x + β2x

2. This is
nonlinear-in-variables because it cannot be written as a linear combination of (1, x). This
is linear-in-parameters because it is a linear combination of (β0, β1, β2), with weights
(1, x, x2).

Example 8.15. The function β0+β1x+β2x
2+β3x

3+β4x
4 is (8.7) with J = 4, fj(x) = xj .

The function β0 + β1 sin(x) + β2 cos(x) instead has J = 2, f0(x) = 1, f1(x) = sin(x),
and f2(x) = cos(x). The function β0 + β1 ln(x) + β2

√
x + β3x

1/3 has J = 3, f0(x) = 1,
f1(x) = ln(x), f2(x) =

√
x, and f3(x) = x1/3. All of these are nonlinear-in-variables and

linear-in-parameters.

A nonlinear-in-parameters model cannot be written as a linear combination of the
parameters. These are also used in economics, but less commonly; they are not discussed
further here.

Example 8.16 (Kaplan video). In the power law model

Y = β0X
β1 + U, (8.8)

the term β0X
β1 cannot be written as a linear combination of β0 and β1.

8.2.3 Estimation and Inference

OLS can estimate nonlinear-in-variables models as long as they are linear-in-parameters.
As always, the OLS estimates are the parameter values that minimize the sum of squared
residuals, solving the empirical analog of the optimal prediction problem (minimizing
mean quadratic loss).

Inference on parameters is also the same. For example, the same R code to compute a
confidence interval for β1 earlier still works, and a confidence interval for β2 can be com-
puted the same way. The underlying code/math is very similar, too, although confidence
intervals for predicted values now involve multiple coefficients.

8.2.4 Parameter Interpretation

Unlike estimation and inference, which remain similar, interpretation of parameters changes
greatly with nonlinear-in-variables models.

https://youtu.be/Bcj6TkvC4PE
https://youtu.be/Bcj6TkvC4PE
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Insufficiency of Linear Coefficient

With a nonlinear-in-variables function β0+β1x+· · · , we cannot learn anything by looking
at the coefficient β1 alone. Not even its sign (+ or −) has meaning.

Example 8.17 (Kaplan video). Consider the quadratic function β0+β1x+β2x
2. Specif-

ically, let β0 = 0, β1 = 5, and β2 = −1, so the function is 5x− x2. Going from x = 0 to
x = 1, the change is

[(5)(1)− 12]− [(5)(0)− 02] = 4− 0 = 4.

From x = 1 to x = 2, the change is

[(5)(2)− 22]− [(5)(1)− 12] = 6− 4 = 2,

still positive, but smaller. From x = 2 to x = 3,

[(5)(3)− 32]− [(5)(2)− 22] = 6− 6 = 0,

no change at all. And from x = 3 to x = 4,

[(5)(4)− 42]− [(5)(3)− 32] = 4− 6 = −2,

a negative change (decrease). Even though β1 = 5 is positive, sometimes the function
decreases as x increases.

Summarizing Nonlinear Functions

There are two general approaches to summarizing an estimated function f̂(·) from the
model Y = f(X) + U .

First, with only one X, the best summary is to plot the function (along with a
scatterplot of data), like in Figure 8.2. As the saying goes, “A picture is worth a thousand
words [or numbers].” However, with many different regressors (as in later chapters),
pictures get confusing (trying to show slices of many-dimensional manifolds. . . ).

Second, we can plug in changes of X that are relevant to policy or a particular eco-
nomic question. For a change from X = x1 to X = x2, the (estimated) associated change
in Y is

f̂(x2)− f̂(x1).

There are variations of this approach, like letting x1 be the average X value, or averaging
these changes over many (x1, x2) pairs, etc.

Example 8.18 (Kaplan video). Let Y be income and X education. We can compute f̂(x)
for x = 8, 9, 10, . . . , 21 and plot the estimated function in a graph. If we specifically want
to understand the value of the 12th year of education, then we can compute f̂(12)− f̂(11).
With a quadratic model, f̂(x) = β̂0 + β̂1x+ β̂2x

2, the estimated f̂(12)− f̂(11) is

β̂0+ β̂1(12)+ β̂2(12)
2− [β̂0+ β̂1(11)+ β̂2(11)

2] = β̂1(12−11)+ β̂2(12
2−112) = β̂1+23β̂2.

https://youtu.be/3eXaLjFkEOM
https://youtu.be/3eXaLjFkEOM
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In Sum: Interpreting and Summarizing Nonlinear Models

The β1X term alone has no meaning.
Given nonlinear model Y = f(X)+U , a change from X = x1 to X = x2 is associated
with a change in Y of f(x2)− f(x1), estimated by f̂(x2)− f̂(x1).

Practice 8.1 (quadratic example). You regress Y on X and X2 and get the fitted function
Ŷ = β̂0 + β̂1X + β̂2X

2 with β̂0 = 2, β̂1 = 4, and β̂2 = −2.
a) What’s the predicted value of Y when X = 0? X = 1? X = 2?
b) What’s the predicted change in Y when X changes from 0 to 1? from 1 to 2?

Discussion Question 8.3 (nonlinear wage model interpretation). Let Y be wage ($/hr)
and X years of education. Given a sample of data, you estimate Ŷ = β̂0 + β̂1X + β̂2X

2

with β̂0 = 14.4, β̂1 = −1.6, and β̂2 = 0.1.
a) Does β̂1 < 0 mean that more education is associated with lower wage? Why/not?
b) What does this estimated function suggest about the (descriptive) relationship be-

tween wage and education? (Hint: try plugging in salient values like X = 12 [high
school] or X = 16 [college], or graph the whole function.)

8.2.5 Description, Prediction, and Causality

The interpretation of a nonlinear-in-variables model as causal, CMF, or linear projection
is similar to linear-in-variables models. The main difference is that we may wish to clarify
the word “linear” in linear projection, best linear approximation, and best linear predictor.

Description and Prediction

Consider a quadratic model when the true CMF is not quadratic. Then, the “linear”
projection of Y onto X0 = 1, X, and X2 is defined the same way as in (7.6) before:

LP(Y | 1, X,X2) = β0 + β1X + β2X
2 = argmin

a,b,c
d(Y, a+ bX + cX2)

= argmin
a,b,c

√
E[(Y − a− bX − cX2)2]. (8.9)

These linear projection coefficients are what OLS estimates. This same function of X
is again a “best” CMF approximation and “best” predictor of Y . Specifically, mirroring
(7.12) and (7.13),

LP(Y | 1, X,X2) = β0 + β1X + β2X
2 =

BLA︷ ︸︸ ︷
argmin

a,b,c
E{[E(Y | X)− (a, b, c)]2}

=

BLP︷ ︸︸ ︷
argmin

a,b,c
E{[Y − (a+ bX + cX2)]2} . (8.10)
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As before, if the true CMF actually is quadratic, then these all equal the true CMF.

Structural Identification

When the structural model Y = f(X)+U satisfies E(U | X) = 0, changes in f(X) (which
is also the CMF) can be interpreted as average structural effects (ASEs) of X on Y . The
ASE of changing X = x1 to X = x2 is then f(x2) − f(x1). If we somehow correctly
guess the functional form of f(·), then OLS can estimate it, and then f̂(x2) − f̂(x1) is
the estimated ASE.

Example 8.19 (Kaplan video). Consider the quadratic structural model Y = m(X) +
U = β0 + β1X + β2X

2 + U , where the structural error U happens to satisfy the CMF
error property E(U | X) = 0. Then, running OLS can estimate the coefficients, and the
estimated ASE of changing from x1 to x2 is

m̂(x2)− m̂(x1) = β̂0 + β̂1x2 + β̂2x
2
2 − (β̂0 + β̂1x1 + β̂2x

2
1) = β̂1(x2 − x1) + β̂2(x

2
2 − x21).

8.2.6 Code
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Figure 8.3: Same data, different models.

Figure 8.3 is generated by the following code that fits the same data with four models:
linear, quadratic, and cubic polynomials, and a trigonometric model with a sine and cosine
term. Figure 8.3 shows four identical scatterplots with the four different fitted models.

https://youtu.be/7w7OABiDO5U
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Note how the four fitted lines have very different qualitative features, even though they
use the same data. This illustrates the same concerns about model-driven results and
“self-fulfilling prophecy” as in Section 8.1.5 and Figure 8.2.

par(family='serif', mar=c(3,3,1,1), mgp=c(2.1, 0.8, 0), mfrow=c(2,2))
set.seed(112358)
n <- 31
X <- sort(3*rbeta(n=n,shape1=1,shape2=1))
df <- data.frame(X=X, Y=1+10*(X/2-0.5)^2*(X/2-0.5-1) + rnorm(n=n))
ret.poly1 <- lm(Y~X, data=df)
ret.poly2 <- lm(Y~X+I(X^2), data=df)
ret.poly3 <- lm(Y~X+I(X^2)+I(X^3), data=df)
ret.trig <- lm(Y~I(cos(2*pi*(X-0)/3))+I(sin(2*pi*(X-0)/3)), data=df)
#
XL <- ''; YL <- ''
plot(x=df$X, y=df$Y, type='p', pch=16, xlab=XL, ylab=YL,

main='', xlim=c(0,3))
lines(predict(ret.poly1)~df$X, col=2)
title("Linear",line=-1,adj=0.1)
#
plot(x=df$X, y=df$Y, type='p', pch=16, xlab=XL, ylab=YL,

main='', xlim=c(0,3))
lines(predict(ret.poly2)~df$X, col=2)
title("Quadratic",line=-1,adj=0.1)
#
plot(x=df$X, y=df$Y, type='p', pch=16, xlab=XL, ylab=YL,

main='', xlim=c(0,3))
lines(predict(ret.poly3)~df$X, col=2)
title("Cubic",line=-1,adj=0.1)
#
plot(x=df$X, y=df$Y, type='p', pch=16, xlab=XL, ylab=YL,

main='', xlim=c(0,3))
lines(predict(ret.trig)~df$X, col=2,)
title("Trigonometric",line=-1,adj=0.1)

8.3 Nonparametric Regression

=⇒ Kaplan video: Model Flexibility in Nonparametric Regression

In nonparametric regression, the functional form of the CMF m(·) is unknown.
This is more general than nonlinear-in-variables regression, where m(·) is nonlinear but

https://youtu.be/Rvf_h8RnT_o
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has a known functional form, like a cubic polynomial or log-linear model, in which only
the coefficient values are unknown.

In principle, this allows a very flexible model for m(·), although in practice the
(hopefully) optimal level of flexibility must be chosen somehow. There is no universal
quantitative definition of “flexible,” but the qualitative meaning is the same as the physical
flexibility of a hose or cable: can it bend around sharply in many places to take whatever
shape you wish (flexible), or can it only take on particular shapes? The number of
parameters (terms) in a model is a general guide to how flexible the model is. For example,
a model with 20 paramters is more flexible than a model with only 2 parameters.

Example 8.20. The CMF m(x) = β0+β1x+β2x
2 is more flexible than m(x) = β0+β1x

because it allows both straight and curved lines, whereas the latter allows only straight
lines. Also, the CMFs are essentially the same except that the less flexible one implicitly
sets β2 = 0, whereas the first CMF more flexibly allows non-zero β2.

Example 8.21. Consider the CMFs m(x) = ln(x) and m(x) = β0+β1x. The log function
is curved, whereas the “linear” function is straight. However, here the linear function is
more flexible. In fact, the log function is not flexible at all: there is only one possibility
because there are no parameters! In contrast, the linear function has two parameters;
β0 allows the intercept to move up and down, while β1 allows the slope to change. In
general, the number of parameters is a better gauge of “flexibility” than curviness.

Many machine learning methods are nonparametric CMF estimators. In machine
learning, often prediction is emphasized over description and causality, but recall that the
CMF is the best predictor of Y given X (under quadratic loss).

8.3.1 Model Selection

One view of nonparametric regression is that it is like nonlinear regression, but choosing
the model with a formal statistical procedure instead of guessing. Even if we know our
chosen model will be wrong, we may hope to find the least-wrong model, and hope that
it is a good enough approximation to be useful. As Box (1979, p. 2) famously wrote, “All
models are wrong but some are useful.”1 The steps are basically:

1. Choose a group of possible regression models.

2. Choose a way to evaluate models.

3. Evaluate the quality of each model, given the data.

4. Select the best (least bad) model.

5. Use the estimates from the selected model.

Steps 1–4 describe model selection, i.e., choosing which model to use for estima-
tion. This is unavoidable. Sometimes model selection is informal; e.g., somebody just

1See https://en.wikipedia.org/wiki/All_models_are_wrong for additional discussion.

https://en.wikipedia.org/wiki/All_models_are_wrong
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feels like using a quadratic model today. With nonparametric regression, usually Step 1
is done informally (but thoughtfully). For Step 2, there are many formal, statistical eval-
uation procedures to choose from; this choice (of procedure) is also done informally but
thoughtfully. Steps 3 and 4 are done by the chosen statistical procedure using the data.

In R, usually Steps 1 and 2 require you to pick a particular R function (and certain ar-
guments), and then the function computes Steps 3 and 4 (and Step 5) for you. Depending
on the chosen model, Step 5 may be identical to Section 8.2.

Some intuitive ways to evaluate models are really bad. First, maximizing R2 is bad.
Whenever you add a term to your model, R2 always increases, even if the model is
worse (i.e., yields worse CMF estimates and predictions). Adjusted R2 is better but still
not designed for optimal model selection. Second, hypothesis testing is bad. Different
significance levels yield different chosen models, and the answer to “which model is best?”
never starts with “I controlled the type I error rate. . . .”

Example 8.22. You estimate m(x) = β0 + β1x + β2x
2 and test H0 : β2 = 0 to see if a

linear model would be better; the p-value is p = 0.08. You say this means you accept
β2 = 0 because p > 0.05, so a linear model is better. Your sister argues you should
actually reject linearity because p < 0.1. Your grandmother says you should both quiet
down and never use hypothesis testing for model selection anyway.

The first difficulty in selecting a good CMF model is that m(·) could be very nonlinear.
Imagine Y = m(X) exactly. Even without any error term, we could get a bad estimate
if we specify m(x) = β0 + β1x when really m(·) is not linear-in-variables. So, our model
must be flexible enough to approximate the true m(·) well.

The second difficulty is distinguishing m(Xi) from the CMF error Vi ≡ Yi −m(Xi) in
the data. If we knew Yi = m(Xi) exactly (Vi = 0), then we could learn m(x) perfectly
for all x = Xi. But in reality, we observe Yi = m(Xi) + Vi. If Yi is big, we don’t know if
m(Xi) is big or Vi is big. You can think of m(Xi) as the “signal” and Vi as the “noise”;
we want to distinguish the signal from the noise. If our model is too flexible, we risk
overfitting, mistaking noise for signal. For example, perhaps the true m(·) is linear, but
we estimate a very nonlinear function.

In practice, the key is balancing the two difficulties described above. If the model is
too simple, it may fail to approximate the true CMF. If the model is too complex, it may
lead to overfitting. The CMF estimate is bad in either case.

Example 8.23. Imagine the true CMF is m(x) = x2, and −1 ≤ X ≤ 1. First, you esti-
mate β0 + β1x. However, because there is no x2 term, this only estimates the population
linear projection, which is (let’s say) LP(Y | 1, X) = 0.4, a flat line that is very different
than the CMF x2. The linear model is not flexible enough here, so the approximation
error is very large. Second, you estimate

∑10
j=0 βjx

j . You estimate noticeably non-zero
values for all coefficients: β̂j ̸= 0 for all j. The resulting estimated function goes up
and down a lot, often far above or far below the true m(x) = x2. This is because the
observations are Yi = m(Xi)+Vi, and some Vi are very high and some are very negative.
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In this case, we get a bad estimate due to overfitting: our model is too flexible and fits
all the Vi “noise.”
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Figure 8.4: Estimates of relationship between wage and experience for Example 8.24.

Example 8.24. Consider the relationship between log wage and years of experience.
Figure 8.4 shows three different estimates using a real dataset, using the code below. The
linear model is too simple: it shows that an additional year of experience is associated
with the same increase in log wage, regardless of the initial experience level. This does
not reflect the pattern seen in the scatter plot: log wage increases more steeply with
experience at lower experience levels than at higher experience levels. At the other ex-
treme, the 22-degree polynomial is too flexible; its many ups and downs are very likely
from overfitting. The quadratic function is at least not obviously wrong, but a more
sophisticated nonparametric estimate may be even better.

library(wooldridge)
df <- data.frame(Y=beauty$lwage, X=beauty$exper)
lm1 <- lm(Y~X, data=df)
lm2 <- lm(Y~X+I(X^2), data=df)
lm22 <- lm(Y~poly(X,22), data=df)
plot(df$X+runif(length(df$X),-0.1,0.1), df$Y, type='p', pch=19,

cex=0.1, cex.lab=CEXLAB, cex.axis=CEXAXIS,
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main='', xlab='Experience', ylab='Wage ($/hr)')
abline(lm1, col=2)
lines(sort(df$X), predict(lm2)[order(df$X)], col=3)
lines(sort(df$X), predict(lm22)[order(df$X)], col=4)

In more complex models, optimal model selection for prediction may not be optimal
for causality. Historically, model selection has focused on prediction. Model selection for
causal estimation is a cutting edge area of econometrics research.

8.3.2 Code

The following code shows a particular example of nonparametric regression. Specifically,
it uses something called a smoothing spline estimator, implemented in function smooth
.spline() in R. The different estimates shown (thick red lines) correspond to different
levels of flexibility of the model. The plots labeled “GCV” and “LOOCV” refer to formal
model selection procedures, provided through the smooth.spline() function automat-
ically. The others show intentionally bad fits: one model is “Too flexible,” the other is
“Not flexible enough.” Note that the same data is used for each estimate, as seen in the
scatter plots. The thin black line is the true CMF.
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Figure 8.5: Smoothing spline estimates: same data, different amounts of flexibility.

Figure 8.5 shows the results from the following code.
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par(family='serif', mar=c(3,3,1,1), mgp=c(2.1,0.8,0), mfrow=c(2,2))
set.seed(112358)
n <- 48; CMF <- function(x) { 1 + pnorm(12*(x-1/2)) }
df <- data.frame(X=sort(runif(n)))
df$Y <- CMF(df$X) + rbeta(n=n,shape1=2,shape2=2)*2-1
rets <- list()
titles <- c('GCV','LOOCV','Too flexible', 'Not flexible enough')
rets[[1]] <- smooth.spline(x=df$X, y=df$Y, cv=FALSE) #GCV
rets[[2]] <- smooth.spline(x=df$X, y=df$Y, cv=TRUE) #LOOCV
rets[[3]] <- smooth.spline(x=df$X, y=df$Y, df=n)
rets[[4]] <- smooth.spline(x=df$X, y=df$Y, df=2)
xx <- seq(from=0, to=1, by=0.005)
for (ifig in 1:4) {
plot(x=df$X, y=df$Y, type='p', pch=16, xlab='', ylab='',

main='', xlim=0:1, ylim=0:1*3.04)
lines(x=xx, y=CMF(xx), col=1)
lines(predict(rets[[ifig]], x=xx), col=2)
title(main=titles[ifig], line=-1, adj=0.1)

}

Discussion Question 8.4 (model evaluation). In practice, why don’t we just make
graphs like in Figure 8.5 and see which fitted function looks best? (Hint: can we make
such graphs in practice? If so, how can we agree on which “looks best”? What does “best”
mean?)

Optional Resources

Optional resources for this chapter

• Functional form misspecification (Lambert video)

• Log-log example (Lambert video)

• Overfitting (Lambert video)

• Sections 2.4 (“Nonlinearities,” including log models), 6.1.3 (“Logarithms”), and 6.1.4
(“Quadratics and Polynomials”) in Heiss (2016)

• Section 8.2 (“Nonlinear Functions of a Single Independent Variable”) in Hanck et al.
(2018)

• Nonparametric regression: Chapter 7 (“Moving Beyond Linearity”) in James et al.
(2013), including §7.5 (“Smoothing Splines”); and Chapter 5 (“Basis Expansions
and Regularization”) in Hastie, Tibshirani, and Friedman (2009), including §5.4
(“Smoothing Splines”)

https://www.youtube.com/watch?v=5a6eW6UzTUk
https://www.youtube.com/watch?v=040N6ZIEgGM
https://www.youtube.com/watch?v=uIHpi6nYcRc
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• Model selection: Chapter 7 (“Model Assessment and Selection”) in Hastie, Tibshi-
rani, and Friedman (2009)

• Bias–variance tradeoff: James et al. (2013, §2.2.2), Hastie, Tibshirani, and Friedman
(2009, §§2.9,5.5.2,7.2,7.3)

• Part V (“Nonparametric Regression”) in Kaplan (2020)

• R package splines
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Empirical Exercises

Empirical Exercise EE8.1. You will analyze data on law schools and their student
outcomes, originally collected by Kelly Barnett for an economics term project. The idea
is to compare median starting salaries of graduates from each law school with the school’s
cost. Of course, these are not causal estimates: does a Harvard Law graduate make a
lot of money because Harvard is expensive, or because she’s very skilled (enough to get
into Harvard)? Because school cost is essentially a continuous variable, you will explore
possible nonlinearity in the (statistical) relationship between cost and salary.

a. Load the data (assuming you’ve already installed that R package or Stata com-
mand).

R: library(wooldridge)

Stata: bcuse lawsch85 , nodesc clear

b. Stata only: make a graph with a local linear nonparametric CMF estimate (of salary
given cost), a linear fit, and a quadratic fit, with command lpoly salary cost ,
degree(1) n(100) addplot(lfit salary cost || qfit salary cost) where
n(100) simply specifies the number of CMF values to estimate and plot, and lfit
and qfit stand for linear fit and quadratic fit, and model selection is done with a
“rule-of-thumb” formula that attempts to optimally balance variance and squared
bias.

c. R only: make a data frame named df with only salary and cost variables, and only
when both are observed, with
df <- data.frame(Y=lawsch85$salary, X=lawsch85$cost)
df <- df[!(is.na(df$Y) | is.na(df$X)) , ]

where is.na() is TRUE if the entry is missing and FALSE if not.

d. R only: compute and store linear and quadratic (in variables) regressions with
retlm <- lm(Y~X, data=df) and retnl <- lm(Y~X+I(X^2), data=df)

e. R only: compute and store a nonparametric smoothing spline CMF estimate with
GCV model selection with command retss <- smooth.spline(x=df$X, y=df$Y
, cv=FALSE)

f. R only: specify a sequence of X values and compute CMF estimates at each value
from each of the three models (linear, quadratic, nonparametric). Store the sequence
as xx with xx <- seq(from=min(df$X), to=max(df$X), length.out=100) and
then compute the estimates as
fitlm <- predict(retlm, newdata=data.frame(X=xx))
fitnl <- predict(retnl, newdata=data.frame(X=xx))
fitss <- predict(retss, newdata=data.frame(X=xx))

g. R only: make a scatterplot of raw data with
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plot(x=df$X, y=df$Y, xlab='Cost', ylab='Starting Salary')

h. R only: plot the three estimated CMFs as lines over the scatterplot with
lines(x=xx, y=fitlm, col=1, lty=1)
lines(x=xx, y=fitnl, col=2, lty=5)
lines(fitss, col=4, lty=3)

i. Optional: repeat your analysis but with the school’s rank (variable rank) instead
of cost.

j. Optional: repeat again but with log salary and log rank. Log salary is already in
the dataset as variable lsalary (that’s a lowercase L before salary).

R: df <- data.frame(Y=lawsch85$lsalary, X=log(lawsch85$rank))

Stata: generate lrank = log(rank) then use lrank and lsalary

Empirical Exercise EE8.2. You will analyze data on sleep and wages, originally from
Biddle and Hamermesh (1990). Specifically, you’ll estimate the CMF of daily hours of
sleep conditional on hourly wage. For now, just drop missing values without worry, and
focus on the linear, quadratic, and nonparametric estimation.

a. Load the data (assuming you’ve already installed that R package or Stata com-
mand).

R: library(wooldridge)

Stata: bcuse sleep75 , nodesc clear

b. R only: follow the same steps (identical code) as in EE8.1 through part (h), after
setting up the data frame named df. Specifically, replace EE8.1(c) with
df <- data.frame(Y=sleep75$slpnaps/7/60, X=sleep75$hrwage)
df <- df[!(is.na(df$Y) | is.na(df$X)) , ]

and then use the same code for all subsequent steps

c. Stata only: generate a new variable that translates the total weekly minutes of sleep
into average daily hours of sleep with generate sleephrsdaily = slpnaps/7/60

d. Stata only: graph linear, quadratic, and nonparametric (local linear) CMF estimates
similar to EE8.1(b), with command lpoly sleephrsdaily hrwage , degree
(1) n(100) addplot(lfit sleephrsdaily hrwage || qfit sleephrsdaily
hrwage )

e. Optional: repeat your analysis, but instead of hrwage use totwrk as the condition-
ing variable (regressor); this is total minutes of work per week. (You could also
adjust it to be average daily hours of work, to make it more comparable to the sleep
variable you use.)

Empirical Exercise EE8.3. You will analyze data from the 1994–1995 men’s college
basketball season scores and Las Vegas betting “spreads,” originally collected by Scott
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Resnick. Before each game, people can bet on whether the score difference will be “over”
or “under” the spread set by bookmakers in Las Vegas. (In the data, the “difference” is
the favored team’s score minus the other team’s score; so the variable spread is always
positive, but the actual score difference scrdiff can be negative if the favored team
loses.) Basically, the bookmaker adjusts the spread so that half the bets are “over” and
half “under,” so regardless of the actual score outcome, half win and half lose (and the
bookmaker always profits): the losers pay the winners, and the bookmaker keeps the
transaction fees. (It’s a little complicated because bets can be placed at different times,
and the spread can change over time, but we can imagine a simplified version where
everyone bets at once and the spread is set so that half bet “over” and half “under.”) See
the Wikipedia entry at https://en.wikipedia.org/wiki/Spread_betting for more on
spread betting. Consequently, the spread does not reflect the bookmaker’s belief, but
rather the aggregate beliefs of everybody betting on the game. The accuracy of such
aggregate wisdom has spurred the creation of “prediction markets” for events beyond
sports, like presidential elections, although there have been notable failures (e.g., 2016
U.S. presidential election).2 You will check whether the Las Vegas spread is indeed a
good predictor of the actual score difference.

Technically, the above arguments suggest that given the spread, the median score
difference should equal the spread, not the mean. But, such an investigation would
require “median regression” (a type of “quantile regression”), which is beyond our scope.
Instead, you will investigate whether the spread is still a good predictor of the actual
score difference with quadratic loss. Specifically, you can check if the OLS fit has intercept
close to 0 and slope close to 1 (and whether those values are in the respective confidence
intervals).

a. R only: load the needed packages (and install them before that if necessary) and
look at a description of the dataset:
library(wooldridge); library(sandwich); library(lmtest)
?pntsprd

b. Stata only: load the data with bcuse pntsprd , nodesc clear (assuming bcuse
already installed)

c. For each observation (each game), compute whether the actual score difference was
over, under, or equal to the spread. In math and in the code below, the “sign”
function (not to be confused with “sine”) equals +1 for strictly positive values, −1
for strictly negative values, and 0 for zero

R: overunder <- sign(pntsprd$scrdiff-pntsprd$spread)

Stata: generate overunder = sign(scrdiff - spread)

d. Display the frequency of over, under, and equal.

R: table(overunder, useNA='ifany')

2See https://en.wikipedia.org/wiki/Prediction_market for more.

https://en.wikipedia.org/wiki/Spread_betting
https://en.wikipedia.org/wiki/Prediction_market
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Stata: tabulate overunder , missing

e. Regress the score difference on the spread.

R: ret <- lm(scrdiff~spread, data=pntsprd)

Stata: regress scrdiff spread , vce(robust)

f. R only (because already reported by Stata): display the point estimates and
heteroskedasticity-robust 95% confidence intervals for the intercept and slope with
cbind(coeftest(ret, vcov.=vcovHC(ret, type='HC1'))[,1:2],

coefci( ret, vcov.=vcovHC(ret, type='HC1')) )

g. Plot nonparametric CMF fitted values against the line Y = X (intercept zero, slope
one).

R: plot(smooth.spline(x=pntsprd$spread, y=pntsprd$scrdiff)) then
abline(a=0, b=1, col=2)

Stata: lpoly scrdiff spread , degree(1) addplot(function y=x , range(
spread)) noscatter

h. Optional: repeat your analysis in parts (e)–(g) but with the reverse regression:
regress the spread on the score difference. (Is the slope still close to 1? Are you
surprised? Consider games with the biggest possible score difference; should the
spread be even bigger half the time?)
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Chapter 9

Regression with Two Binary Regres-
sors

=⇒ Kaplan video: Chapter Introduction

Perhaps surprisingly, there is a lot to think about with even just two binary regressors.
Topics include (mis)specification of a CMF model, interaction between regressors as a type
of nonlinearity, interpretation of regression coefficients, causality, estimation, and more.

Unit learning objectives for this chapter

9.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

9.2. Assess whether there is bias from omitting a variable in a real-world example, in-
cluding the direction of bias [TLOs 5 and 6]

9.3. Interpret (appropriately) the coefficients of a regression with two binary variables,
mathematically and intuitively, for description, prediction, and causality [TLO 3]

9.4. Assess whether comparing changes in two groups over time can be interpreted
causally, and interpret such differences appropriately [TLOs 2, 3, and 6]

9.5. In R (or Stata): estimate regression models with two binary variables, along with
measures of uncertainty, and judge economic and statistical significance [TLO 7]

9.1 Causality: Omitted Variable Bias

=⇒ Kaplan video: Omitted Variable Bias

For causality, omitted variable bias (OVB) is a common problem in economics.
More broadly, it is a common problem in any field that uses observational (non-experimental)
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https://youtu.be/VEiTvv3mZxA
https://youtu.be/dqoI8qA-it4
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data and has many variables interact in complex ways. Generally, OVB arises because
a variable outside our model is moving with X and causing Y to change, but our model
assumes these changes are entirely from X.

9.1.1 An Allegory

Imagine a ghost (Q) that often accompanies a child (X), i.e., the ghost and child are often
in the same place at the same time. The ghost always makes a huge mess (Y ): spilling
flour, knocking over chairs, drawing on walls, etc. The child’s parents only observe the
child and the mess; they do not observe the ghost. The parents note that when the child
is in the kitchen, then there is often a mess in the kitchen, and when the child is in the
bathroom, then there is often a mess in the bathroom, etc. Thus, they infer that the
child (X) causes the mess (Y ). However, we know that it only appears that way because

GHOST.1 the ghost (Q) often accompanies the child (X) and

GHOST.2 the ghost (Q) causes a mess (Y ).

The child is the regressor. The ghost is the omitted variable. The parents are economists
who over-estimate how much mess the child causes. This phenomenon is OVB.

9.1.2 Formal Conditions

The ghost of OVB can be formalized as follows. Consider the structural model

Y = β0 + β1X + β2Q+ V, (9.1)

where Cov(X,V ) = 0. If we don’t observe Q, then instead we have the structural model

Y = β0 + β1X + U, U ≡ β2Q+ V. (9.2)

Here, X is sometimes called the included regressor (included in the model; not omit-
ted). If X is binary, then for OLS to estimate β1 requires E(U | X = 0) = E(U | X = 1):
the average effect of the structural error term U must be the same for both X groups.
For simplicity, imagine Q is also binary.

Condition GHOST.1, “the ghost follows the child,” means that we usually see Q = 1
when X = 1, and Q = 0 when X = 0. More generally, it means Q is correlated with X.
This correlation does not need to have a causal interpretation. It does not matter why
the ghost follows the child: maybe the ghost likes the child’s company (or vice-versa), or
maybe they just get hungry at the same time. It only matters that they tend to be in
the same place: Q and X tend to have the same value. OVB can also occur if there is a
negative correlation, e.g., if usually Q = 1 when X = 0, and Q = 0 when X = 1.

Condition GHOST.2, “the ghost causes a mess,” means that Q is a causal determinant
of Y . In (9.1), this means β2 ̸= 0. Although in the example β2 > 0 (more mess), OVB
can occur with β2 < 0, too. For example, maybe the child is really messy, but the ghost
cleans everything up; then the parents would incorrectly think the child is not messy.
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To summarize: for variable Q that is not included as a regressor (it is omitted from
the model), it will cause OVB if both of the following conditions hold.

OVB.1 Corr(Q,X) ̸= 0: the omitted variable is correlated with the included regressor.

OVB.2 The omitted variable Q is a causal determinant of Y (not only through X).

The terms for Q can be confusing. The variable Q may be called an “omitted variable,”
although that can sound ambiguous. The term “confounder” is more precise but usually
is defined to require Q to have a causal effect on X, whereas here only correlation is
required. Sometimes people (including me) say “confounder” for any variable causing
OVB.

Assessing OVB Conditions Empirically

If Q is observed in the data, then you can compare β̂1 (the estimated coefficient on
X) when Q is included as a regressor to β̂1 when Q is omitted. If the estimates are
meaningfully different (economically), then it may be best to include Q to reduce OVB.
However, there are other types of variables that would also lead to a different β̂1 but are
actually worse to include, so careful thought is required; see Section 9.6.

If Q is not observed in the data, then even Corr(Q,X) in OVB.1 cannot be assessed
empirically (i.e., using data).

Beware of “omitted variable” tests that are not concerned with this type of OVB.
For example, Stata’s ovtest implements the Ramsey test (RESET). Although the ov
in ovtest indeed stands for “omitted variables,” the Ramsey test only looks for (certain
types of) nonlinearity, to see whether a polynomial model might be better than a linear
model. That is, it is about nonlinearity in X (Section 8.2), not about a separate Q
variable. Besides, as you learned in Section 8.3, hypothesis testing is a bad way to do
model selection.

Example

For example, imagine we want to learn the effect of kindergarten classroom size on earnings
as an adult. (This is inspired by Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan
(2011), who actually have randomized experimental data to answer this question.) Let
Y denote the annual earnings of the individual at age 30. Let X = 1 if (as a child)
the individual was in a kindergarten classroom with more than 24 students and X = 0
otherwise. Imagine X is not randomized. We are curious whether we can just regress Y
on X, or if there is OVB. Consider the following possible omitted variables.

First, consider Q to be somebody’s first grade class size. (First grade is the year
after kindergarten in the U.S.) As with X, Q = 1 if it is above 24 students and Q = 0
otherwise. Since it seems like kindergarten class size has an effect on adult earnings (Y )
according to Chetty et al. (2011), probably first grade class size does, too, satisfying
OVB.2. If all students in the population are completely randomly assigned to classes
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each year, Corr(X,Q) = 0; then, OVB.1 does not hold, so this Q would not cause OVB.
However, students tend to stay in the same school, and some schools tend to have smaller
class sizes than others, so OVB.1 probably does hold. Because both OVB.1 and OVB.2
are true, there is OVB.

Second, consider Q as the number of cubbies (places to put clothes, backpacks, etc.)
in somebody’s kindergarten classroom. Presumably larger classes (X = 1) require more
cubbies because there are more students, so Corr(Q,X) > 0, satisfying OVB.1. However,
I’d guess the number of cubbies does not have a causal effect on future earnings Y . That
is, if we simply went into classrooms and added a few cubbies (without adding students),
I don’t think it would affect students’ future earnings. Thus, OVB.2 does not hold, and
this Q does not cause OVB.

Third, consider Q = 1 if the kindergarten is in a high-income area and Q = 0 oth-
erwise. Areas with higher income are more likely to be able to afford more teachers to
keep class sizes small. That is, it’s more likely to see Q = 1 and X = 0, or Q = 0 and
X = 1, so Corr(Q,X) < 0, satisfying OVB.1. Also, Chetty, Hendren, and Katz (2016)
provide evidence that growing up in a higher-income area has a positive causal effect on
earnings as an adult (not only because of smaller kindergarten classes), meaning Q is a
causal determinant of Y , satisfying OVB.2. Thus, omitting this Q causes OVB.

In Sum: Possible Omitted Variables (Q) in Kindergarten Example

First grade class size: affects earnings (OVB.2), and probably correlated with kinder-
garten class size (OVB.1) if population includes multiple schools =⇒ OVB
Cubbies: more if more students (OVB.1), but no causal effect on earnings (no OVB.2)
=⇒ no OVB
Neighborhood income: smaller classes if higher income (OVB.1), and affects earnings
(OVB.2) =⇒ OVB

Discussion Question 9.1 (assessing OVB). Among public elementary schools (students
mostly 5–11 years old) in California, let Y be the average standardized math test score
among a school’s 5th-graders, and let X be the school’s student-teacher ratio for 5th-
graders (like average number of students per class). Consider a simple regression of Y
on X. For any two of the following variables, assess each OVB condition separately, and
then decide whether you think it’s a source of OVB.

a) School’s parking lot area per student. (Remember 5–11-year-olds don’t have cars
to park.)

b) Time of day of the test.
c) School’s total spending per student (including books, facilities, etc.).
d) Percentage of English learners (non-native speakers) among a school’s 5th-grade

students.
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9.1.3 Consequences

The practical problem of OVB is that we systematically over-estimate or under-estimate
the true structural parameter. This consequence is quantified below.

Formulas

The following results are much more general than OVB with binary regressors. Beyond
OVB, they quantify the consequences of any source of endogeneity that causes correlation
between the regressor X and structural error term U . Other sources of endogeneity are
discussed in Section 12.3. The results also apply to any discrete and continuous X.

Given structural model Y = β0+β1X +U , the OLS estimator of β1 has the property

plim
n→∞

β̂1 = β1 +
Cov(X,U)

Var(X)
. (9.3)

That is (from Section 3.6.3), for large samples (large n), the estimator β̂1 is close to the
right-hand side expression in most randomly sampled datasets.

Equation (9.3) shows OVB is not solved by having lots of data. Unless Corr(X,U) = 0,
the OLS estimator is not consistent for the structural β1.

Rearranging (9.3), the asymptotic bias (as in (3.26)) is

AsyBias(β̂1) ≡ plim
n→∞

β̂1 − β1 =
Cov(X,U)

Var(X)
= slope coefficient in LP(U | 1, X). (9.4)

The characterization as a linear projection slope coefficient comes from replacing Y with
U in (7.8). This can’t be computed from data because U is unobserved, but it is helpful
for thinking about the direction and magnitude of asymptotic bias.

Although technically this is “asymptotic bias” rather than “bias” (Section 3.6.1), the
practical implication is the same. Although very different mathematically, we won’t worry
about such technicalities.

Direction of Asymptotic Bias

The direction (+ or −) of the asymptotic bias in (9.4) depends on the sign (+ or −) of
the slope in LP(U | 1, X). Ths sign of this slope is equivalent to the sign of Corr(X,U).

If Corr(X,U) > 0, then AsyBias(β̂1) > 0. This is positive (upward) asymptotic bias,
meaning we systematically estimate a value “above” the true β1. “Above” does not mean
“bigger in magnitude”: it could be that β1 = −9 and positive asymptotic bias causes
plimn→∞ β̂1 = 0. This is “positive” because 0 − (−9) > 0 (positive), but we might also
say that we’re estimating a “smaller” effect (in fact zero effect) in the sense that |0| < |−9|.
This can be confusing.

If Corr(X,U) < 0, then AsyBias(β̂1) < 0, meaning negative (downward) asymptotic
bias. Again confusing, negative asymptotic bias can actually make effects look bigger,
e.g., if β1 = 0 and plimn→∞ β̂1 = −9: the true effect is zero, but the negative asymptotic
bias makes it appear like there is an effect.
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Results in Terms of Q

For OVB specifically, the general results in terms of U can be translated to Q. As in (9.2),
let U = β2Q+ V , with Cov(X,V ) = 0. Then, using a linearity property of covariance,

Cov(X,U) = Cov(X,β2Q+ V ) = β2Cov(X,Q) +

=0︷ ︸︸ ︷
Cov(X,V ) . (9.5)

Plugging this into (9.3),

plim
n→∞

β̂1 = β1 +
Cov(X,U)

Var(X)
= β1 + β2

Cov(X,Q)

Var(X)
= β1 + β2Corr(X,Q)

√
Var(Q)

Var(X)
. (9.6)

Interestingly, similar to (9.4), Cov(X,Q)/Var(X) is the slope of the population linear
projection of Q onto X (and an intercept), LP(Q | 1, X). So, the asymptotic bias is the
product β2γ1, where β2 is the structural slope coefficient on Q in (9.1), and γ1 is the
linear projection slope coefficient in LP(Q | 1, X) = γ0 + γ1X.

Equation (9.6) shows why both Conditions OVB.1 and OVB.2 are required for OVB.
Condition OVB.1 says Corr(X,Q) ̸= 0, while OVB.2 says β2 ̸= 0. If either β2 = 0 or
Corr(X,Q) = 0 in (9.6), then β2Corr(X,Q) = 0, and the asymptotic bias disappears,
AsyBias(β̂1) = 0.

The direction of asymptotic bias can also be interpreted in terms of Q. Using (9.6), the
sign of the asymptotic bias is the sign of β2Corr(X,Q). That is, if β2Corr(X,Q) > 0, then
there is positive (upward) asymptotic bias; if β2Corr(X,Q) < 0, then there is negative
(downward) asymptotic bias.

Example

Consider the asymptotic bias direction in the example where X = 1 if the kindergarten
class size is large and Q = 1 if the neighborhood income is high. Earlier, we thought prob-
ably Corr(X,Q) < 0 and β2 > 0. Thus, there is negative OVB because β2Corr(X,Q) < 0.
That is, if the true effect of class size on earnings is β1, then we systematically estimate
something below β1.

Does this make the effect size (absolute value) appear bigger or smaller? Because
smaller classes are better, average earnings (Y ) are higher when X = 0 than when X = 1.
This means a negative slope: β1 < 0. That is, the effect of changing from a smaller class
(X = 0) to a larger class (X = 1) is lower future earnings (β1 < 0). Negative asymptotic
bias means we estimate something even more negative: plimn→∞ β̂1 < β1 < 0. This
makes the size of the effect appear larger than it really is: we estimate something farther
away from zero.

Intuitively, this OVB direction makes sense. Individuals who had a small kindergarten
class tend to have grown up in wealthier areas with lots of other advantages that also
cause higher earnings. If we ascribe the entire mean earnings difference to kindergarten,
then it falsely appears that kindergarten alone cause the big difference, when in reality
many different forces were all working together in the same direction.
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In Sum: OVB Assessment

1. Think of a specific variable Q
2. Assess OVB.1: correlated with X?
3. Assess OVB.2: causal effect on Y ? (separate from X effect)
4. If both OVB.1 and OVB.2 =⇒ OVB
5. OVB direction: positive bias if Corr(X,Q) and effect of Q on Y are either both

+ or both −; otherwise, negative bias
6. OVB magnitude: all else equal, larger (in absolute value) if i) larger effect of Q

on Y , ii) larger Corr(X,Q), iii) larger Var(Q)/Var(X).

Practice 9.1 (OVB: kindergarten). Consider the OVB example with earnings as an
adult (Y ), kindergarten classroom size (X), and childhood neighborhood income (Q).
But, reverse the definition of X: let X = 1 for smaller classrooms (24 or fewer students)
and X = 0 for larger classrooms. Say whether you think each of the following is positive
or negative, and explain why: a) β1; b) Corr(X,Q); c) β2; and d) OVB. Also discuss:
e) will our estimated effect β̂1 tend to be larger or smaller than the true effect β1, and
why?

Discussion Question 9.2 (OVB: ES habits). Recall from DQ 6.2 the example with Y
as a student’s final semester score (0 ≤ Y ≤ 100) and X = 1 if a student starts the
exercise sets well ahead of the deadline (and X = 0 otherwise).

a) What’s one variable that might cause OVB? Explain why you think both OVB
conditions are satisfied.

b) Which direction of asymptotic bias would your omitted variable cause? Explain.

9.1.4 OVB in Linear Projection

For linear projection (without causal interpretation), the OVB formula is actually the
same as (9.6), just with β1 and β2 interpreted as linear projection coefficients rather than
structural coefficients. Similar results for larger linear projection models are in Hansen
(2020, §2.24), for example.

However, if we are interested in prediction, we don’t care whether our β̂1 estimates a
particular linear projection coefficient; we only care whether we can predict Y well. Of
course, we don’t want to omit Q if it’s helpful for prediction, but we don’t care about
OVB itself. That is, OVB is only a problem for causality, not prediction.

9.2 Linear-in-Variables Model

The simplest CMF model with two binary variables is linear-in-variables (Section 8.2.1),

E(Y | X1, X2) = β0 + β1X1 + β2X2. (9.7)
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Misspecification

Unfortunately, (9.7) may be misspecified. Recall from Section 7.1 that misspecification
arose when X had three values but the CMF model β0 + β1X had only two parameters.
The case here is similar: (9.7) has only 3 parameters, but there are 4 possible values of
(X1, X2). Specifically, (X1, X2) could equal (0, 0), (0, 1), (1, 0), or (1, 1). Consequently,
there are four CMF values:

m(0, 0) = E(Y | X1 = 0, X2 = 0), m(0, 1) = E(Y | X1 = 0, X2 = 1),

m(1, 0) = E(Y | X1 = 1, X2 = 0), m(1, 1) = E(Y | X1 = 1, X2 = 1).
(9.8)

To see the possible misspecification, we can write the βj regression coefficients in terms
of the CMF values m(x1, x2). If (9.7) were true, then

m(0, 0) = β0 + (β1)(0) + (β2)(0) = β0, (9.9)
m(0, 1) = β0 + (β1)(0) + (β2)(1) = β0 + β2, (9.10)
m(1, 0) = β0 + (β1)(1) + (β2)(0) = β0 + β1, (9.11)
m(1, 1) = β0 + (β1)(1) + (β2)(1) = β0 + β1 + β2. (9.12)

Consequently, β1 has two interpretations. It equals either (9.12) minus (9.10), or (9.11)
minus (9.9):

m(1, 1)−m(0, 1) = (β0 + β1 + β2)− (β0 + β2) = β1,

m(1, 0)−m(0, 0) = (β0 + β1)− β0 = β1.

Thus, the model implicitly assumes m(1, 1)−m(0, 1) = m(1, 0)−m(0, 0), which may not
be true of the real CMF. For example,

m(0, 0) = 0,m(1, 0) = 1,m(0, 1) = 2,m(1, 1) = 4

=⇒ m(1, 1)−m(0, 1) = 2,m(1, 0)−m(0, 0) = 1.

Because m(1, 1) − m(0, 1) ̸= m(1, 0) − m(0, 0), the CMF model in (9.7) is misspecified
(wrong). That is, there are no possible (β0, β1, β2) such that m(x1, x2) = β0+β1x1+β2x2.

As discussed in Chapter 7, if the CMF model is wrong, then OLS estimates the linear
projection. Here, OLS estimates LP(Y | 1, X1, X2). However, this is not useful for
causality, and the misspecification is easily fixed.

More Consideration

Before we fix the misspecification, consider more carefully why (9.7) is usually misspec-
ified. To be concrete, imagine Y is wage, X1 = 1 if an individual has a college degree
(and X1 = 0 if not), and X2 = 1 if an individual has at least 10 years of work experience
(and X2 = 0 if not). For simplicity, we’ll call X1 “education” and X2 “experience.” The
quantity m(1, 1)−m(0, 1) compares the mean wage in the high-education, high-experience
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group (subpopulation) with the mean wage in the low-education, high-experience group.
That is, within the high-experience subpopulation, it compares the mean wage of the
high-education and low-education sub-sub-populations. The quantity m(1, 0) − m(0, 0)
also compares mean wages across high and low education, but within the low-experience
subpopulation. Thus, assuming m(1, 1)−m(0, 1) = m(1, 0)−m(0, 0) can be interpreted as
assuming that the mean wage difference between high-education and low-education groups
is identical within the high-experience subpopulation and within the low-experience sub-
population. This is a strong assumption that is probably not true in this example (or in
most examples).

9.3 Fully Saturated Model

=⇒ Kaplan video: Fully Saturated Model Interpretation

Misspecification is avoided by adding the interaction term X1X2:

E(Y | X1, X2) = β0 + β1X1 + β2X2 + β3X1X2. (9.13)

Mathematically, interaction terms often involve the product of two regressors, like X1X2

here. Economically, the interaction term allows the mean Y difference associated with
X1 to depend on the value of X2. Similarly, it allows the mean Y difference associated
with X2 to depend on the value of X1. For example, the mean wage difference associated
with education can depend on the value of experience. More generally, interaction terms
allow the change in Y associated with a unit increase in one regressor to depend on the
value of another regressor.

The CMF model in (9.13) is also called fully saturated (Section 7.2.2) because it
is flexible enough to allow a different CMF value for each value of (X1, X2). Logically,
having the same number (four) of possible values of (X1, X2) as βj parameters is necessary
but not sufficient for the model to be fully saturated.

Interpretation of the coefficients requires writing them in terms of different CMF
values. First, similar to (9.9)–(9.12), each CMF value can be written in terms of the βj :

m(x1, x2) = β0 + (β1)(x1) + (β2)(x2) + (β3)(x1)(x2),

m(0, 0) = β0 + (β1)(0) + (β2)(0) + (β3)(0)(0) = β0, (9.14)
m(0, 1) = β0 + (β1)(0) + (β2)(1) + (β3)(0)(1) = β0 + β2, (9.15)
m(1, 0) = β0 + (β1)(1) + (β2)(0) + (β3)(1)(0) = β0 + β1, (9.16)
m(1, 1) = β0 + (β1)(1) + (β2)(1) + (β3)(1)(1) = β0 + β1 + β2 + β3. (9.17)

https://youtu.be/ZMpMQO_TIHg
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From (9.14)–(9.17) and their differences,

(9.14)︷ ︸︸ ︷
β0 = m(0, 0), (9.18)

β1 =

(9.16) minus (9.14)︷ ︸︸ ︷
(β0 + β1)− β0 = m(1, 0)−m(0, 0), (9.19)

β2 =

(9.15) minus (9.14)︷ ︸︸ ︷
(β0 + β2)− β0 = m(0, 1)−m(0, 0), (9.20)

β3 = [β2 + β3]− [β2] =

(9.17) minus (9.16)︷ ︸︸ ︷
[(β0 + β1 + β2 + β3)− (β0 + β1)]−

(9.15) minus (9.14)︷ ︸︸ ︷
[(β0 + β2)− (β0)]

=

difference-in-differences︷ ︸︸ ︷
difference︷ ︸︸ ︷

[m(1, 1)−m(1, 0)]−
difference︷ ︸︸ ︷

[m(0, 1)−m(0, 0)] (9.21)
= [m(1, 1)−m(0, 1)]− [m(1, 0)−m(0, 0)] (9.22)

=

(9.17) minus (9.15)︷ ︸︸ ︷
[(β0 + β1 + β2 + β3)− (β0 + β2)]−

(9.16) minus (9.14)︷ ︸︸ ︷
[(β0 + β1)− (β0)] .

Because of the difference-in-differences structure seen in (9.21) and (9.22), this model
is sometimes called a difference-in-differences model, particularly when X2 represents time
and X1 represents a “treatment” (see Section 9.7).

Using (9.18)–(9.22), the four βj in (9.13) have the following interpretations, both in
terms of the wage example (Y wage, X1 education, X2 experience) and more generally.

• β0 = m(0, 0) is the mean wage among low-education, low-experience individuals.

More generally, β0 is the mean Y in the subpopulation with X1 = 0 and X2 = 0.

Caution: generally β0 ̸= E(Y ).

• β1 = m(1, 0) − m(0, 0) is the mean wage difference between high-education and
low-education individuals within the low-experience subpopulation.

More generally, β1 is the mean Y difference between X1 = 1 and X1 = 0 individuals
within the X2 = 0 subpopulation.

Caution: generally β1 ̸= E(Y | X1 = 1)− E(Y | X1 = 0); it additionally conditions
on X2 = 0.

• β2 = m(0, 1) − m(0, 0) is the mean wage difference between high-experience and
low-experience individuals within the low-education subpopulation.

More generally, β2 is the mean Y difference between X2 = 1 and X2 = 0 individuals
within the X1 = 0 subpopulation.

Caution: generally β2 ̸= E(Y | X2 = 1)− E(Y | X2 = 0); it additionally conditions
on X1 = 0.
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• β3 = [m(1, 1) − m(1, 0)] − [m(0, 1) − m(0, 0)] is the mean wage difference associ-
ated with experience in the high-education subpopulation minus the mean wage
difference associated with experience in the low-education subpopulation.

More generally, β3 is the mean Y difference associated with X2 in the X1 = 1
subpopulation minus the mean Y difference associated with X2 in the X1 = 0
subpopulation.

• β3 = [m(1, 1) − m(0, 1)] − [m(1, 0) − m(0, 0)] is also the mean wage difference
associated with education in the high-experience subpopulation minus the mean
wage difference associated with education in the low-experience subpopulation.

More generally, β3 is the mean Y difference associated with X1 in the X2 = 1
subpopulation minus the mean Y difference associated with X1 in the X2 = 0
subpopulation.

The βj interpretations can also be seen by considering the regression of Y on X1 when
X2 = 0 and separately when X2 = 1. That is, plugging in x2 = 0 first and then x2 = 1
second,

m(x1, 0) = β0 + β1x1 + (β2)(0) + (β3)(x1)(0) = β0 + β1x1, (9.23)
m(x1, 1) = β0 + β1x1 + (β2)(1) + (β3)(x1)(1) = (β0 + β2) + (β1 + β3)x1. (9.24)

That is, when changing from X2 = 0 to X2 = 1, the intercept changes by β2 and the slope
changes by β3. These changes could be positive or negative, or zero. The interaction
coefficient β3 describes how the slope with respect to X1 differs when X2 = 1 versus
X2 = 0.

Equivalently, we could switch all the X1 and X2 and interpret β3 as the difference
between the slope with respect to X2 when X1 = 1 versus when X1 = 0:

m(0, x2) = β0 + (β1)(0) + β2x2 + (β3)(0)(x2) = β0 + β2x2, (9.25)
m(1, x2) = β0 + (β1)(1) + β2x2 + (β3)(1)(x2) = (β0 + β1) + (β2 + β3)x2. (9.26)

Example 9.1 (Kaplan video). Let Y be wage ($/hr), D1 = 1 if an individual has a
college degree (D1 = 0 if not), and D2 = 1 if an individual has more than 15 years of
experience (and D2 = 0 if not). You have a sample of data and run OLS on the fully
saturated model, yielding m̂(d1, d2) = 10 + 5d1 + d2 + 2d1d2. For the college-educated
subpopulation (d1 = 1), the estimated change in mean wage associated with changing
from low to high experience (d2 = 0 to d2 = 1) is

m̂(1,1)︷ ︸︸ ︷
10 + 5 + 1 + 2−

m̂(1,0)︷ ︸︸ ︷
10 + 5 + 0 + 0 = 3.

Within the low-experience subpopulation (d2 = 0), the estimated difference in mean wage
between the college (d1 = 1) and no-college (d1 = 0) subpopulations is

m̂(1,0)︷ ︸︸ ︷
10 + 5 + 0 + 0−

m̂(0,0)︷ ︸︸ ︷
10 + 0 + 0 + 0 = 5.

https://youtu.be/2R29RE7MEJM
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Within the high-experience subpopulation (d2 = 1), the estimated difference in mean
wage between the college (d1 = 1) and no-college (d1 = 0) subpopulations is

m̂(1,1)︷ ︸︸ ︷
10 + 5 + 1 + 2−

m̂(0,1)︷ ︸︸ ︷
10 + 0 + 1 + 0 = 7.

The interaction term coefficient 2 (in 2d1d2) represents the mean wage difference associ-
ated with higher education in the high-experience subpopulation minus the mean wage
difference associated with higher education in the low-experience subpopulation. This is
the difference between the last two results above (7 − 5 = 2). Compared with the low-
experience group, the high-experience group has a larger mean wage gap between college
and no-college individuals.

9.4 Causality: Structural Identification by Exogeneity

Imagine Y is determined by the structural model

Y = β0 + β1X1 + β2X2 + β3X1X2 + U. (9.27)

The qualitative condition for identification is the same as in Section 6.5. Specifically,
if U (which contains other causal determinants of Y ) is unrelated to the regressors, then
the structural parameters are identified.

Mathematically, one sufficient definition of “unrelated” here is “uncorrelated.” If

Cov(U,X1) = Cov(U,X2) = Cov(U,X1X2) = 0, (9.28)

then β1, β2, and β3 are the linear projection slope coefficients from LP(Y | 1, X1, X2, X1X2).
Other mathematical definitions of “unrelated” imply (9.28) and are thus sufficient for iden-
tification. For example, U ⊥⊥ (X1, X2) logically implies (9.28), as does mean independence
E(U | X1, X2) = E(U).

If the structural β1, β2, and β3 are also linear projection coefficients, then they can
be estimated by OLS. That is, we can interpret the OLS-estimated slope coefficients as
the structural parameters in (9.27).

9.5 Causality: Identification by Conditional Independence

By extending the independence assumption (A6.2), variants of the ASE and ATE can be
identified. The ASE argument applies to more realistic (more complex) models than in
Section 9.4, but we focus on the ATE here. (Note: more details and examples are in the
Spring 2020 edition.)

Consider the subpopulation with X2 = 1, and whether the mean difference E(Y |
X1 = 1, X2 = 1)− E(Y | X1 = 0, X2 = 1) has a causal interpretation. This is equivalent
to redefining the population as everybody with X2 = 1 and asking if the mean difference
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E(Y | X1 = 1)−E(Y | X1 = 0) has a causal interpretation. This question was studied in
Sections 6.4 and 6.5, for both structural and potential outcomes models.

Extending the independence assumption from Sections 6.4 and 6.5, conditional in-
dependence assumes independence within each subpopulation (X2 = 1 and X2 = 0).
The conditional independence assumption has other names like unconfoundedness, se-
lection on observables, and ignorability; see Imbens and Wooldridge (2007, p. 6) and
references therein. Mathematically, both structural and potential outcomes versions of
conditional independence are stated in Assumption A9.1.

Assumption A9.1 (conditional independence assumption). The binary treatment X1 is
independent of the potential outcomes Y T and Y C , conditional on the control variable
X2: (Y T , Y C) ⊥⊥ X1 | X2. More generally, X2 may be replaced by multiple control
variables, X2, X3, X4, . . ..

Given A9.1, the ATE within subpopulation X2 = 1 is identified and equal to the
conditional mean difference E(Y | X1 = 1, X2 = 1) − E(Y | X1 = 0, X2 = 1). Similarly,
the ATE within subpopulation X2 = 0 is identified and equal to the conditional mean
difference E(Y | X1 = 1, X2 = 0) − E(Y | X1 = 0, X2 = 0). The ATE for the full
population averages these two conditional ATEs, weighted by P(X2 = 1):

ATE = P(X2 = 1)[E(Y | X1 = 1, X2 = 1)− E(Y | X1 = 0, X2 = 1)]

+ P(X2 = 0)[E(Y | X1 = 1, X2 = 0)− E(Y | X1 = 0, X2 = 0)].

9.6 Collider Bias

Although OVB shows the risk of omitting certain types of variables, other types of vari-
ables actually should be omitted, otherwise they cause a different type of (asymptotic)
bias.

A collider or common outcome is a variable on which both X and Y have a
causal effect. For example, imagine you want to learn the effect of a firm’s ownership
structure (say X = 1 for family-owned, X = 0 otherwise) on its research and development
expenditure Y . Both X and Y affect the firm’s performance Z, so Z is a collider.

Including a collider as a regressor causes collider bias when estimating a causal
relationship. This is not as intuitive as OVB, but consider the following example.1

Imagine you’re interested in the causal effect of eating falafel or salad on having the flu
(which is zero effect), and you have a sample of 200 individuals. You randomly assigned
100 people to eat falafel for lunch, and 100 salad; a few hours later, you test each for flu
(assume there is no testing error). Let Y = 1 if somebody has the flu (otherwise Y = 0),
and X = 1 if somebody ate falafel for lunch (X = 0 if salad). Let Z = 1 if the individual
has a fever (otherwise Z = 0). Sadly, the salad had some romaine contaminated with E.
coli, so 40% of those who ate salad got a fever from the E. coli, unrelated to whether or
not they had the flu. Among individuals with flu, 90% have a fever, but 10% don’t.

1Modified from https://doi.org/10.1093/ije/dyp334

https://doi.org/10.1093/ije/dyp334
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Table 9.1: Counts in falafel/salad/flu example.

Fever No fever

Flu No flu Flu No flu Flu No flu

Falafel 50 50 45 0 5 50
Salad 50 50 47 20 3 30

Table 9.1 shows the number of individuals in different categories. Overall, there is no
relationship between lunch and flu, so the flu rate is the same in the falafel and salad
groups. To make the numbers easier, the overall flu rate is 50% (100/200 overall, 50/100
in each group). Because nobody who ate falafel got E. coli, the only reason for fever is the
flu, which has a 90% fever rate. Thus, among the 50 with flu who at falafel, (50)(0.9) = 45
have a fever and 5 do not. This entirely explains the Falafel row. In the salad row, given
the statistical independence of flu (probability 0.5) and E. coli (probability 0.4), the
probability of having neither is

P(not flu and not E. coli) = P(not flu) P(not E. coli) = [1−
0.5︷ ︸︸ ︷

P(flu)][1−
0.4︷ ︸︸ ︷

P(E. coli)]
= (0.5)(0.6) = 0.3,

hence (100)(0.3) = 30 salad-eaters who have neither flu nor E. coli, and thus no fever.
This explains the No fever / No flu entry of 30 in the Salad row. Similarly,

P(flu, not E. coli) = (0.5)(0.6) = 0.3 (30 people),
P(flu, E. coli) = (0.5)(0.4) = 0.2 (20 people),

P(not flu, E. coli) = (0.5)(0.4) = 0.2 (20 people).

The “not flu and E. coli” are the 20 individuals who have a fever (from the E. coli) but
not flu. The 20 with both flu and E. coli all have a fever, due to E. coli. Among the 30
with flu but not E. coli, 90% have a fever, i.e., (30)(0.9) = 27 have a fever, so 3 do not.
This 3 is the No fever / Flu entry in the Salad row. The 27 combine with the 20 who had
both illnesses to make 47 who have both flu and a fever in the Salad row.

If we regress Y (flu) on X (food), then we correctly estimate zero effect, but if we
also use Z (fever), then we incorrectly estimate a non-zero effect. If we only look at the
“no fever” group, then there is (appropriately) zero difference: the flu rate for the falafel
eaters is 5/55 = 1/11, identical to the 3/33 = 1/11 for the salad eaters. Mathematically,
these “rates” are estimates of the conditional mean of the binary Y flu variable; e.g.,
5/55 = Ê(Y | falafel, no fever), recalling E(Y ) = P(Y = 1) for binary Y . However, if we
also look at the “fever” group, the flu rate is much higher in the falafel group. In fact,
the falafel group’s flu rate is 45/45 = 100%, whereas the salad group’s flu rate is only
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47/(47 + 20) = 70%, substantially lower. Mathematically,
5/55︷ ︸︸ ︷

Ê(Y | X = 1, Z = 0)−

3/33︷ ︸︸ ︷
Ê(Y | X = 0, Z = 0) = 0,

45/45︷ ︸︸ ︷
Ê(Y | X = 1, Z = 1)−

47/67︷ ︸︸ ︷
Ê(Y | X = 0, Z = 1) = 0.30.

(9.29)

This suggests eating falafel causes flu, but this incorrect conclusion is entirely collider
bias.

9.7 Causal Identification: Difference-in-Differences

=⇒ Kaplan video: Diff-in-Diff Intuition

If X1 is a treatment indicator and X2 is a time period indicator, then the fully satu-
rated model with two binary regressors is called a difference-in-differences (diff-in-diff)
model. This is a special case of (9.13), whose coefficients were interpreted in Section 9.3.

Below, the parameter β3 from (9.13) is shown to have a certain causal interpretation
under certain conditions.

The general setup is that some individuals (or firms, or cities, etc.) were exposed to
some “treatment,” like a training program or law or other policy. The treatment wasn’t
randomized, but there’s a group of untreated individuals whose outcomes can be used to
form a counterfactual: what’s the mean outcome of treated individuals in the parallel
universe where they weren’t treated?

Such setups are sometimes called natural experiments or quasi-experiments (see
also Section 4.3.2). Because they weren’t fully randomized experiments, it’s invalid to
simply compare treated and untreated outcomes, as seen in Section 9.7.1. However, there
is enough randomness that a valid comparison can be found, with some additional work
(like diff-in-diff).

Example 9.2 (Kaplan video). Let Y be annual labor income, and we are interested in
the effect of minimum wage. Imagine our city recently implemented a large minimum
wage increase. The goal is to learn the effect of this particular minimum wage increase
on Y (income), for individuals in our city. Notationally, X1 = 1 if the individual lives in
our city (and X1 = 0 otherwise), and X2 = 1 if the observation is from the year after the
minimum wage increase (and X2 = 0 if before the increase).

Notationally, X1 = 1 is the “treated group” and X1 = 0 the “untreated group”; X2 = 0
is the time period “before” treatment and X2 = 1 is “after.”

9.7.1 Bad Approaches

One bad approach is to use only data from the treated group, comparing before and after.
That is, we could try to estimate E(Y | X2 = 1, X1 = 1)− E(Y | X2 = 0, X1 = 1). Part

https://youtu.be/sUtunK9162g
https://youtu.be/hz-pgwyGI7U
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of this mean difference is indeed due to the effect of the treatment. However, there are
almost always other important determinants of Y that change over time. In that case,
there is omitted variable bias: the mean difference is a combination of the treatment effect
plus many other effects, so it is wrong to interpret the mean difference as only the effect
of the treatment.

Example 9.3 (Kaplan video). Continuing the minimum wage example (Example 9.2),
one bad approach is to use only data from our city, before and after the minimum wage
increase. Coincidentally, there may have been a national (or global) recession right after
the minimum wage law was passed. This may make everybody’s income lower in the year
after. It would look like the minimum wage hurt incomes, but really it was the recession.
Alternatively, there may have been great national (macroeconomic) conditions that made
incomes go up, which would make us incorrectly conclude that the law increased incomes
greatly.

Another bad approach is to use only data from the “after” period, comparing the
treated group to an untreated group. That is, we could try to estimate E(Y | X2 =
1, X1 = 1) − E(Y | X2 = 1, X1 = 0). Part of this mean difference is indeed due to the
effect of the treatment. However, there are almost always other important determinants
of Y that differ between the treated and untreated groups. In that case, there is again
omitted variable bias.

Example 9.4 (Kaplan video). Again continuing the minimum wage example (Exam-
ple 9.2), this bad approach compares incomes in our city and another city, in the year
after our law passed. By using the other city as a sort of control group, we avoid the
problem of misinterpreting macroeconomic changes as treatment effects. However, it’s
hard to know which other city to pick. We could pick one that has the same population,
for example, but our city may still have much higher (or lower) income for reasons other
than our minimum wage. For example, San Francisco and Columbus, OH have very sim-
ilar populations, but they have (and have for a while had) very different incomes. If San
Francisco happens to have a higher minimum wage, it is wrong to attribute the entire
mean difference in income as a causal effect of their higher minimum wage. There may
indeed be a minimum wage effect, but it’s mixed with the effects of education, industry
types, geography, etc.

Discussion Question 9.3 (bad panel approach #1, for Mariel boatlift). Consider the
basic setup from Card (1990). Due to a seemingly random/exogenous political decision,
Cubans were temporarily permitted to immigrate to the U.S. for a few months in 1980.
About half settled in Miami, FL, while the other half went to live in other cities around the
U.S. We could compare wages of native-born workers in Miami in 1979 (before boatlift)
and 1981 (after). Explain why this change in average wage would not be a good estimate
of the average treatment effect of the Mariel boatlift on native worker wage. (Hint: are
1979 Miami and 1981 Miami the same except for how many Cubans live there, or might
something else have changed?)

https://youtu.be/hz-pgwyGI7U
https://youtu.be/hz-pgwyGI7U
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Discussion Question 9.4 (bad panel approach #2, for Mariel boatlift). Consider the
same setup as in DQ 9.3. But now compare 1981 wages of native workers in Miami and
Houston, TX, a city that did not receive a large influx of Cuban immigrants in 1980.
Explain why this difference (Miami minus Houston) in average wage would not be a good
estimate of the average treatment effect of the Mariel boatlift on native worker wage.
(Hint: are 1981 Miami and Houston the same except for how many Cubans live there,
or might there be other differences between the cities that might cause omitted variable
bias?)

Practice 9.2 (bad panel approach #1, for fracking). Practices 9.2 and 9.3 are based
loosely on the setting of Street (2018), who uses much better approaches. For counties
in North Dakota, let Y denote crime rate. Consider the average crime rate in counties
that started fracking activity, before and after the fracking started. (Fracking was a new
technology that allowed extraction of certain underground oil and natural gas reserves
that were previously infeasible or unprofitable to extract.) Explain why this change in
average crime rate would not be a good estimate of the average treatment effect of the
fracking activity on crime rate.

Practice 9.3 (bad panel approach #2, for fracking). Consider the same setup as in
Practice 9.2, but now compare the “after” crime rates in North Dakota counties with
fracking to those without fracking. Explain why this difference (fracking minus non-
fracking) in average crime rate would not be a good estimate of the average treatment
effect of fracking on crime rate.

9.7.2 Counterfactuals and Parallel Trends

The difference-in-differences idea is to combine the before vs. after comparison with the
treated vs. untreated comparison.

Conceptually, the goal is to construct a counterfactual (link to pronunciation), like
what our city’s mean income would have been if there were not a minimum wage increase.
Thinking of the potential outcomes framework, the counterfactual is the parallel universe
where the treatment never happened.

The key identifying assumption is called parallel trends. Conceptually, in the run-
ning example, parallel trends says that without the minimum wage law, our city’s mean
income would have increased by exactly the same amount as the other city’s mean in-
come. Mathematically, with m(x1, x2) ≡ E(Y | X1 = x1, X2 = x2), the other city’s mean
income increase (i.e., “after” minus “before”) is

m(0, 1)−m(0, 0) = E(Y | X1 = 0, X2 = 1)− E(Y | X1 = 0, X2 = 0). (9.30)

Parallel trends assumes that adding this increase to the “before” mean income in our city,
m(1, 0) = E(Y | X1 = 1, X2 = 0), gives us the counterfactual income for our city in the
“after” time period.

https://www.google.com/search?q=Dictionary#dobs=counterfactual
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Given parallel trends, we can learn about causality by comparing

actual (our city, after)︷ ︸︸ ︷
E(Y | X1 = 1, X2 = 1) vs.

counterfactual︷ ︸︸ ︷
E(Y | X1 = 1, X2 = 0)︸ ︷︷ ︸

our city, before

+E(Y | X1 = 0, X2 = 1)− E(Y | X1 = 0, X2 = 0)︸ ︷︷ ︸
increase in other city over time

.

(9.31)

actual︷ ︸︸ ︷
m(1, 1)−

counterfactual︷ ︸︸ ︷
{m(1, 0) + [m(0, 1)−m(0, 0)]} =

β3 in (9.13)︷ ︸︸ ︷
[m(1, 1)−m(1, 0)]− [m(0, 1)−m(0, 0)] .

Figure 9.1 visualizes this effect. We can think of constructing the counterfactual
outcome, and then subtracting it from the actual outcome m(1, 1), or we can think of
taking the before/after difference for our city, m(1, 1) −m(1, 0), and subtracting off the
before/after difference in the other city, m(0, 1)−m(0, 0).

m(0,0)

m(0,1)

before after

other city
m(1,0)

actual=m(1,1)

“tr
ea

ted
” c

ity

counterfactual m(1,0)+[m(0,1)-m(0,0)]

Diff-in-diff = 
m(1,1) - 
{m(1,0)+[m(0,1)-m(0,0)]}
= [m(1,1)-m(1,0)]
  -[m(0,1)-m(0,0)]

m(0,1)-m(0,0)

Figure 9.1: Difference-in-differences.

9.7.3 Identification

Population Object of Interest: ATT

Most fundamentally, the difference-in-differences approach only learns the average treat-
ment effect for the group that was actually treated (in our universe). This is called the
average treatment effect on the treated (ATT) (or sometimes ATTE or ATET).
Mathematically, ATE meant E(Y 1−Y 0), where Y 1 and Y 0 are the treated and untreated
potential outcomes, respectively (previously Y T and Y C). ATT is the same, but for the
subpopulation who was actually treated in our universe. Because X1 = 1 if somebody is
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actually treated, the ATT is

ATT ≡ E(Y 1 − Y 0 | X1 = 1). (9.32)

It’s possible but uncommon that ATT = ATE. For example, maybe there are different
demographics in our city than the comparison city, or different levels of unionization,
or different other labor laws, or different industry mix, so the minimum wage effect is
different in our city (X1 = 1) than elsewhere. (This is essentially a question of external
validity; see Chapter 12.) Self-selection is another major reason the ATT may differ from
the ATE. Whether it’s a city choosing which laws to adopt, or an individual choosing
which exercise routine to use, the choice is often made based on the anticipated benefit
of the “treatment,” so often those who get treated are those who most benefit, making
ATT > ATE.

Example 9.5 (Kaplan video). Consider the “treatment” of a small business receiving
a loan, and the outcome of monthly sales revenue. Although there are certainly other
factors, economic theory suggests that the small businesses applying for loans tend to be
the ones that would most benefit from loans. Thus, we’d guess that the ATT (the effect
on small businesses who in reality got a loan) is probably higher than the overall ATE
that includes businesses who did not apply for loans. That is, because small businesses
can (partially) self-select into treatment depending on their benefit from the treatment,
the benefit is probably higher among the actually-treated businesses.

Identification of ATT

Parallel trends is sufficient to identify the counterfactual. In potential outcomes notation,
“parallel trends” is

E(Y 0 | X1 = 1, X2 = 1)− E(Y 0 | X1 = 1, X2 = 0)

= E(Y 0 | X1 = 0, X2 = 1)− E(Y 0 | X1 = 0, X2 = 0).
(9.33)

That is, the mean untreated potential outcome changes over time (X2 = 0 to X2 = 1)
by the same amount in the treated (X1 = 1) and untreated (X1 = 0) groups. The term
E(Y 0 | X1 = 1, X2 = 1) is the counterfactual, like our city’s mean wage in the “after”
period in the parallel universe where minimum wage never increased. In the other three
terms, Y 0 = Y , i.e., the untreated Y 0 is the observed Y . Only when X1 = X2 = 1 is the
treated Y 1 observed, Y = Y 1. Thus, the counterfactual can be written uniquely in terms
of the joint distribution of (Y,X1, X2):

E(Y 0 | X1 = 1, X2 = 1)

= E(Y 0 | X1 = 1, X2 = 0) + [E(Y 0 | X1 = 0, X2 = 1)− E(Y 0 | X1 = 0, X2 = 0)]

= E(Y | X1 = 1, X2 = 0) + [E(Y | X1 = 0, X2 = 1)− E(Y | X1 = 0, X2 = 0)]

= m(1, 0) + [m(0, 1)−m(0, 0)]. (9.34)

https://youtu.be/OnBMkg3xmkM
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Because the counterfactual is identified, so is the ATT. Specifically, the ATT equals β3
in the fully saturated CMF model (9.13),

ATT = E(Y 1 − Y 0 | X1 = 1, X2 = 1)

=

Y 1=Y since X1=1,X2=1︷ ︸︸ ︷
E(Y 1 | X1 = 1, X2 = 1)−

use counterfactual from (9.34)︷ ︸︸ ︷
E(Y 0 | X1 = 1, X2 = 1)

= E(Y | X1 = 1, X2 = 1)−
counterfactual︷ ︸︸ ︷

{m(1, 0) + [m(0, 1)−m(0, 0)]}
= m(1, 1)− {m(1, 0) + [m(0, 1)−m(0, 0)]}
= [m(1, 1)−m(1, 0)]− [m(0, 1)−m(0, 0)]

= β3.

Skepticism About Parallel Trends

In practice, the parallel trends condition may not hold for various reasons. For example,
maybe our city was experiencing fast wage growth, whereas the comparison city was
declining (maybe due to reliance on different industries). Maybe our city passed the
minimum wage law partly because everybody’s wages were increasing anyway. In that
case, we can’t tell whether our city’s wages grew more than the other city’s wages because
of the minimum wage, or because of other factors (our industries were growing, theirs were
declining, etc.).

Parallel trends is also a bit fragile because nonlinear functions of Y change whether
it’s true or not. For example, if there are parallel trends when Y is wage, then there are
not parallel trends for log-wage ln(Y ). Similarly, if there are parallel log-wage trends,
then the wage trends cannot be parallel.

In the data, you can try to see if parallel trends seems plausible, but it is not directly
testable. Specifically, “pre-trend analysis” compares trends for a few periods before the
treatment takes place. But even if the trends were parallel before, it does not mean for
sure that the trends would have remained parallel after the treatment year. We can never
know because the “trend” refers to the treated group’s untreated potential outcomes,
which by definition are not observed. So, there is no empirical test that can replace
careful critical thought.

Discussion Question 9.5 (parallel trends skepticism). Consider U.S. state traffic fatal-
ity (i.e., car accident death) rates (Y ), where the year 1980 is “before” (X2 = 0) and 1990
is “after” (X2 = 1). Consider states that adopt a 0.08 blood alcohol content (BAC) limit
law sometime between 1980 and 1990 (X1 = 1) and states that never have such a law
(X1 = 0). Explain why you might doubt the parallel trends assumption. Hint #1: is a
BAC law the only way states try to reduce fatal accidents? Hint #2: this is more difficult
than simply thinking of an omitted variable that would cause OVB in a cross-sectional
regression, because parallel trends allows certain types of such omitted variables.
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9.7.4 Extensions

There are many interesting extensions of the basic diff-in-diff idea, although all are beyond
our scope. For example, there are related models that allow additional regressors, or more
time periods, or quantile treatment effects.

9.8 Estimation and Inference

=⇒ Kaplan video: Difference-in-Differences Example

Because (9.13) is just a special case of a regression model, standard regression tech-
niques and R functions can be used. For estimation, OLS consistently estimates each
βj under fairly general conditions; remember to use sample/survey weights if they are
available in the data. The same heteroskedasticity-robust methods from earlier (like Sec-
tion 7.7.3) can be used to compute confidence intervals if sampling is iid.

The following code shows different R syntax to get the same coefficient estimates,
with simulated data. The notation X1:X2 is the interaction term (or in the output, its
coefficient). Heteroskedasticity-robust CIs are also reported.

library(sandwich); library(lmtest)
n <- 4*8
set.seed(112358)
m00 <- 10; m10 <- 15; m01 <- 16; m11 <- 25
df <- data.frame(X1=c(rep(0,n/2),rep(1,n/2)),

X2=rep(rep(0:1,each=n/4),times=2))
df$Y <- c(rep(m00,n/4),rep(m01,n/4),

rep(m10,n/4),rep(m11,n/4) ) + rnorm(n)
# Three equivalent estimates
ret1 <- lm(Y~X1*X2, data=df)
ret2 <- lm(Y~X1+X2+X1:X2, data=df)
df$Xint <- df$X1*df$X2
ret3 <- lm(Y~X1+X2+Xint, data=df)
TrueBetas <- c(m00,m10-m00,m01-m00,(m11-m01)-(m10-m00))
retmat <- rbind(coef(ret1),coef(ret2),coef(ret3),TrueBetas)
rownames(retmat) <- c('est1','est2','est3','true')
print(round(retmat, digits=2))

## (Intercept) X1 X2 X1:X2
## est1 10 5.17 6.12 3.73
## est2 10 5.17 6.12 3.73
## est3 10 5.17 6.12 3.73
## true 10 5.00 6.00 4.00

https://youtu.be/fgHpy_FXhJI
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round(coefci(ret1, vcov.=vcovHC(ret1,type='HC1')),digits=2)

## 2.5 % 97.5 %
## (Intercept) 9.30 10.77
## X1 4.31 6.04
## X2 4.97 7.27
## X1:X2 2.20 5.27

Optional Resources

Optional resources for this chapter

• ATT (Masten video)

• Potential outcomes and CATE (Masten video)

• OVB/confounders (Masten video)

• conditional independence/unconfoundedness (Masten video)

• ATE/conditional independence example (Masten video)

• Difference-in-differences (Masten video)

• Parallel trends (Masten video)

• Diff-in-diff example: immigration and unemployment (Masten videos)

• Parallel trends example: immigration and unemployment (Masten videos)

• Diff-in-diff example: minimum wage (Masten video)

• Diff-in-diff example: posting calorie counts (Masten video)

• OVB example: test score and class size (Lambert video)

• OVB example: wages and education (Lambert video)

• Sections 3.3 (“Ceteris Paribus Interpretation and Omitted Variable Bias”) and 6.1.5
(“Interaction Terms”) in Heiss (2016)

• Section 13.2 (“Difference-in-Differences”) in Heiss (2016)

• Collider bias examples: https://doi.org/10.1093/ije/dyp334

• Collider bias review (very detailed): https://doi.org/10.1146/annurev-soc-
071913-043455

• Sections 6.1 (“Omitted Variable Bias”) and 8.3 (“Interactions Between Independent
Variables”) in Hanck et al. (2018)

https://www.youtube.com/watch?v=O4EjBeKDE2o
https://www.youtube.com/watch?v=2CSSwKFE7iQ
https://www.youtube.com/watch?v=NGeXsFHeTh8
https://www.youtube.com/watch?v=zZtL7cWN-3c
https://www.youtube.com/watch?v=oXyGaOQ5PCs
https://www.youtube.com/watch?v=tO99T1GQ6SY
https://www.youtube.com/watch?v=6d64Vy2-peY
https://www.youtube.com/watch?v=xniasePiSd8
https://www.youtube.com/watch?v=jJoMEqVRk2I
https://www.youtube.com/watch?v=L-wgpJ-OnZo
https://www.youtube.com/watch?v=fPXrMSkGR84
https://www.youtube.com/watch?v=6I1tUM0RB6I
https://www.youtube.com/watch?v=_Ka_PAvdDjk
https://doi.org/10.1093/ije/dyp334
https://doi.org/10.1146/annurev-soc-071913-043455
https://doi.org/10.1146/annurev-soc-071913-043455
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Empirical Exercises

Empirical Exercise EE9.1. You will analyze data on driving laws and fatal accident
rates, originally from Freeman (2007). In particular, you’ll compare weekend driving
fatality (death) rates for states that adopted a 0.08 blood alcohol content (BAC) law and
states that didn’t, comparing rates before and after the law adoption. Standard errors
can be smaller if the full dataset is used, but such methods are beyond our scope. Either
way, the difference-in-differences approach is probably not identifying a treatment effect:
probably states that adopted such laws also adopted other ways to discourage drunk
driving, whether official laws or just changing cultural norms. This violates the parallel
trends assumption.

a. R only: load the needed packages (and install them before that if necessary) and
look at a description of the dataset:
library(wooldridge); library(sandwich); library(lmtest)
?driving

b. Stata only: load the data with
use https://raw.githubusercontent.com/kaplandm/stata/main/data/
driving.dta , clear

c. Keep only years 1980 and 1990.

R: df <- driving[driving$year==1980 | driving$year==1990 , ]

Stata: keep if year==1980 | year==1990

d. Create a dummy variable for the “after” period (year 1990).

R: df$after <- (df$year==1990)

Stata: generate after = (year==1990)

e. Create variable bac equal to 1 (or TRUE) if there’s any BAC law that year.

R: df$bac <- (df$bac08+df$bac10>=1)

Stata: generate bac = (bac08 + bac10 >= 1)

f. Drop states that already had a BAC law in the “before” period (1980), leaving only
states that never had the law or adopted it between 1980 and 1990.

R: dropst <- unique(df$state[(!df$after) & df$bac]) to get a list of the
states to drop, and then remove them with df <- df[!(df$state %in% dropst)
, ]

Stata:
generate dropflag = ((!after) & bac)
bysort state : egen dropst = max(dropflag)
drop if dropst
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g. Create a treatment dummy equal to 1 for states that adopted a BAC law by 1990.

R: treatst <- unique(df$state[df$bac]) followed by df$treat <- (df$state
%in% treatst)

Stata: bysort state : egen treat = max(bac)

h. Run a difference-in-differences regression with the intercept, “after” dummy, treat-
ment dummy, and interaction term. Below, the * in R and the ## in Stata auto-
matically generate the desired interaction term.

R:
ret <- lm(wkndfatrte~treat*after, data=df)
coeftest(ret, vcov.=vcovHC(ret, type='HC1'))
coefci( ret, vcov.=vcovHC(ret, type='HC1'))

Stata: regress wkndfatrte treat##after , vce(robust)

i. To see how the OLS coefficient estimates relate to the conditional means (CMF
estimates), compute the sample mean weekend driving fatality rate within each of
the four groups defined by the time period and “treatment” status.

R: (agg <- aggregate(wkndfatrte~treat*after, data=df, FUN=mean))

Stata: tabulate treat after , summarize(wkndfatrte) means missing

j. Display the CMF-based replication of the OLS estimates.

R: c(agg[1,3], agg[2,3]-agg[1,3], agg[3,3]-agg[1,3]) for the first three
coefficient estimates and c((agg[4,3]-agg[3,3])-(agg[2,3]-agg[1,3]), (agg
[4,3]-agg[2,3])-(agg[3,3]-agg[1,3])) to show both (equivalent) ways to com-
pute the interaction coefficient estimate.

Stata:
collapse (mean) wkndfatrte , by(treat after)
display wkndfatrte[1]
display wkndfatrte[3]-wkndfatrte[1]
display wkndfatrte[2]-wkndfatrte[1]
display (wkndfatrte[4]-wkndfatrte[3])-(wkndfatrte[2]-wkndfatrte[1])

k. Optional: repeat part (h) but with a different outcome variable to replace
wkndfatrte, like the weekend fatalities per 100 million miles driven (instead of
population), or the total fatality rate (not just weekends), etc.

l. Optional: repeat parts (e)–(h) but replacing your bac treatment variable created
in part (e) with a treatment dummy equal to 1 if perse (a different driving law)
equals 1 (and equal to 0 otherwise).

Empirical Exercise EE9.2. You will analyze wage data for different types of individ-
uals from the 1976 Current Population Survey (conducted by the U.S. Census Bureau).
Specifically, you’ll look at dummy variables for nonwhite (race) and female, as well
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as their interaction. The results are clearly not causal, but the interaction term shows
(descriptively) the difference in the white/nonwhite wage gap for females compared to
non-females, or (equivalently) the difference in the female/non-female wage gap for non-
whites compared to whites.

a. R only: load the needed packages (and install them before that if necessary) and
look at a description of the dataset:
library(wooldridge); library(sandwich); library(lmtest)
?wage1

b. Stata only: load the data with bcuse wage1 , nodesc clear (assuming bcuse is
already installed)

c. Display the group mean wage for the four groups defined by the nonwhite and
female dummy variables.

R: (agg <- aggregate(wage~nonwhite*female, data=wage1, FUN=mean))

Stata: tabulate female nonwhite , summarize(wage) means missing

d. Run a “difference-in-differences” type of regression with the intercept, non-white
dummy, female dummy, and interaction term.

R:
ret <- lm(wage~nonwhite*female, data=wage1)
coeftest(ret, vcov.=vcovHC(ret, type='HC1'))
coefci( ret, vcov.=vcovHC(ret, type='HC1'))

Stata: regress wage female##nonwhite , vce(robust)

e. Compute the OLS coefficient estimates manually from the four conditional means.

R: store the conditional means with m00 <- agg$wage[1]; m10 <- agg$wage[2];
m01 <- agg$wage[3]; m11 <- agg$wage[4] and show that you can replicate the

OLS estimates with rbind(coef(ret), c(m00, m10-m00, m01-m00, (m11-m01)
-(m10-m00)) ) and also note that c( (m11-m01) - (m10-m00) , (m11-m10) -
(m01-m00) ) shows the equivalence of the two interpretations of the interaction
term coefficient.

Stata: collapse the dataset to just the four conditional means with collapse (
mean) wage , by(female nonwhite) and then display the manually calculated
coefficient estimates with
display wage[1]
display wage[3]-wage[1]
display wage[2]-wage[1]
display (wage[4]-wage[3])-(wage[2]-wage[1])
display (wage[4]-wage[2])-(wage[3]-wage[1])

f. Optional: repeat part (d) but using south instead of female
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g. Optional: repeat part (d) again with any two dummy variables of your choice; you
may use one from a previous analysis as long as it is combined with a different
dummy. The dataset comes with many dummy variables already, like nonwhite,
female, south (and other regions), servocc (and other occupational fields and in-
dustries), and married, or you can create your own. For example, you can generate
a “more than high school education” dummy with R code wage1$gtHS <- (wage1
$educ>12) or Stata command generate gtHS = (educ>12)



Chapter 10

Regression with Multiple Regressors

=⇒ Kaplan video: Chapter Introduction

Allowing multiple regressors opens a multitude of combinations, especially when com-
bined with nonlinear functions like in Chapter 8. Most of Chapter 10 focuses on the
different functional forms themselves, with the different types of flexibility they do (and
don’t) allow. These discussions apply equally to descriptive, predictive, and causal mod-
els.

Unit learning objectives for this chapter

10.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

10.2. Assess in a real-world example whether there is bias from omitted variables and
whether a linear model seems realistic [TLOs 2 and 6]

10.3. Describe and interpret models with multiple regressors, including those in which
two variables interact [TLO 3]

10.4. Judge which assumptions seem true and which interpretation seems most appropri-
ate for real-world regressions [TLOs 2 and 6]

10.5. In R (or Stata): estimate a regression with multiple variables, along with measures
of uncertainty, and judge economic and statistical significance [TLO 7]

10.1 Causality: Omitted Variable Bias

One motivation for this chapter is that omitted variable bias (OVB, Section 9.1) can still
be a problem even if we include two regressors. We may need to include three, or even
10 or 100 regressors to avoid OVB. But even with 100 regressors, OVB can still be a big
problem.

183

https://youtu.be/BuyEdarYOrU
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Consider OVB with the linear structural model

Y = β0 + β1X1 + β2X2 + β3X3 + V. (10.1)

For OLS to consistently estimate βj for j = 1, 2, 3 (the slope coefficients) requires
Cov(Xj , V ) = 0 for j = 1, 2, 3. Imagine this is true, but X3 is omitted, so

Y = β0 + β1X1 + β2X2 + U, U ≡ β3X3 + V. (10.2)

In (10.2), OLS consistency for β1 and β2 requires Cov(X1, U) = Cov(X2, U) = 0. Because

Cov(Xj , U) = β3Cov(Xj , X3) + Cov(Xj , V ), (10.3)

this requires either β3 = 0 (i.e., X3 is not a causal determinant of Y ) or else Cov(X1, X3) =
Cov(X2, X3) = 0.

There are other mathematical formulations, but they all make the point that even
including 100 regressors is not sufficient to avoid OVB if there is still an important omitted
variable. That is, even if (10.2) becomes

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + · · ·+ U, U ≡ γQ+ V, (10.4)

then we still have OVB if γ ̸= 0 and any Cov(Xj , Q) ̸= 0.
That is, there is OVB if both of the following conditions hold.

OVB.1′ The omitted variable is correlated with an included regressor; in (10.4), Corr(Xj , Q) ̸=
0 for some j.

OVB.2′ The omitted variable Q is a causal determinant of Y ; in (10.4), γ ̸= 0.

Discussion Question 10.1 (OVB with multiple regressors). Consider the example of
California schools where Y is a school’s average standardized math test score for 5th-
graders, X1 is the 5th-grade student-teacher ratio, and X2 is the percentage of 5th-graders
who are English learners (non-native speakers). Judge whether a school’s total expendi-
tures per student satisfies each of Conditions OVB.1′ and OVB.2′ for OVB, explaining
why you came to that conclusions.

10.2 Linear-in-Variables Model

=⇒ Kaplan video: Wage Regression Example

https://youtu.be/ULVrXEVREj4
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10.2.1 Model and Coefficient Interpretation

The linear-in-variables model and discussion from Section 9.2 naturally generalize to non-
binary and/or more than two regressors. With J regressors X1, X2, . . . , XJ ,

Y = β0 + β1X1 + · · ·+ βJXJ + U = β0 +
J∑

j=1

βjXj + U ≡ g(X1, . . . , XJ) + U. (10.5)

If U is a CMF error, then g(·) represents the CMF. However, the following discussion is
essentially the same if U is a linear projection error and g(·) is the linear projection, or if
the βj have a causal interpretation.

Regardless of interpretation, the coefficient βj shows how the function g(·) changes
when Xj increases by one unit. This is true whether Xj is binary, discrete, or continuous.
For example, X1 only appears in the β1X1 term, so if we change from X1 = x1 to
X1 = x1 + 1 (unit increase), that term changes from β1x1 to β1(x1 + 1) = β1x1 + β1, a
change of β1. That is, for any starting values X1 = x1, X2 = x2, etc., a unit increase in
X1 changes the function by

g(x1 + 1, x2, . . . , xJ)− g(x1, x2, . . . , xJ)

= [β0 + β1(x1 + 1) +
J∑

j=2

βjxj ]− [β0 + β1x1 +
J∑

j=2

βjxj ] = β1(x1 + 1− x1) = β1. (10.6)

Example 10.1 (Kaplan video). Given a linear-in-variables model, if Y is wage in $/hr,
and X1 is years of education, and β1 = ($5/hr)/yr, then each additional year of education
is associated with a ($5/hr)/yr change, regardless of the initial education level or other
variables like experience.

More generally, if X1 changes by ∆1 units, then the function’s value changes by β1∆1.
Regardless of the starting values, if X1 changes from x1 to x1+∆1, then similar to (10.6),

g(x1 +∆1, x2, . . . , xJ)− g(x1, x2, . . . , xJ) (10.7)

= [β0 + β1(x1 +∆1) +

J∑
j=2

βjxj ]− [β0 + β1x1 +
J∑

j=2

βjxj ] = β1(x1 +∆1 − x1) = β1∆1.

10.2.2 Limitations

While pleasingly simple, these formulas may not be realistic. That is, the change in Y
may depend on not only ∆1, but the starting value x1, or other xj .

Example 10.2 (Kaplan video). Let Y be wage, X1 years of experience, and X2 years
of education. Due to diminishing marginal benefits, perhaps the first years of experience
are associated with bigger increases in mean wage than later years of experience. The
wage increase associated with the change from X1 = 0 to X1 = 1 is probably larger than

https://youtu.be/zMkqO1ikvxA
https://youtu.be/sJCUjphtKdc
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the increase from X1 = 40 to X1 = 41, even though ∆1 = 1 in both cases. Further, the
change from X1 = 0 to X1 = 1 may be associated with a larger wage increase for highly
educated individuals (large X2) than for less-educated individuals. Mathematically, the
change depending on the starting value of X1 implies some nonlinearity in X1, and the
dependence on the value of X2 implies some sort of interaction term(s).

Nonlinear and nonparametric functions of a single variable are discussed in Sections 8.2
and 8.3; interactions are discussed in Sections 9.3 and 10.3. Nonparametric models with
multiple regressors are beyond our scope.

10.2.3 Code

The following code shows a simple linear-in-variables regression with real data. It should
be interpreted as estimating the linear projection (or BLA/BLP), not anything causal
(nor even the CMF). The outcome variable is log wage, and the three regressors are years
of work experience, years of education, and a dummy for living in a “city” (metropolitan
area). In the output, the row labeled exper is for the coefficient on experience, showing
the OLS estimate (Estimate) and corresponding heteroskedasticity-robust 95% confi-
dence interval (lower endpoint under 2.5 %, upper endpoint under 97.5 %). Similarly
for the (Intercept) and the other regressors’ coefficients. Because this is a log-linear re-
gression, the coefficients can be interpreted as approximate percentages. Approximately:
a one-year increase in experience is associated with a 1.6% increase in wage; a one-
year increase in education is associated with a 10.7% increase in wage; and living in a
metropolitan area is associated with having a 6% higher wage than living in a more rural
area. The confidence intervals show there is some statistical uncertainty about each of
these estimates, especially for city.

library(sandwich); library(lmtest); library(wooldridge)
ret <- lm(log(wage)~exper+educ+city, data=mroz)
retVC1 <- vcovHC(ret, type="HC1")
round(cbind(Estimate=coef(ret), coefci(ret, vcov. = retVC1)), digits=3)

## Estimate 2.5 % 97.5 %
## (Intercept) -0.412 -0.776 -0.048
## exper 0.016 0.008 0.024
## educ 0.107 0.082 0.133
## city 0.060 -0.068 0.188

10.3 Interaction Terms

=⇒ Kaplan video: Interaction Model

https://youtu.be/Zwr-eDY261w
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=⇒ Kaplan video: Wage Regression Example (again)

To start, imagine there are two regressors, one of which is binary. To help us remember
which is which, let D (for “dummy”) be the binary regressor (D = 1 or D = 0) and X
the other regressor. Assume X is the regressor of interest.

10.3.1 Limitation of Linear-in-Variables Model

With a linear-in-variables model,

Y = g(X,D) + U, g(X,D) = β0 + β1X + β2D. (10.8)

A unit increase in X always changes the function g(X,D) by β1 units, regardless of the
starting value of X or the value of D. As discussed in Section 10.2, this is often unrealistic.

Because D has only two possible values, we can plug them each into g(X,D):

g(X, 0) = β0 + β1X, (10.9)

g(X, 1) = β0 + β1X + (β2)(1) =

intercept︷ ︸︸ ︷
(β0 + β2)+β1X. (10.10)

These are two functions of X: one when D = 0, one when D = 1. They have the same
slope (β1) but different intercepts (β0 and β0 + β2).

10.3.2 Interpretation of Interaction Term

To allow both the intercept and slope to differ between g(X, 0) and g(X, 1), an interac-
tion term can be used, specifically the product DX. Mathematically, adding this term
to (10.8),

g(X,D) = β0 + β1X + β2D + β3DX. (10.11)

The function in (10.11) is more general because setting β3 = 0 yields (10.8). Given
(10.11), instead of (10.9) and (10.10),

g(X, 0) = β0 + β1X +

=0︷ ︸︸ ︷
(β2)(0) + (β3)(0)(X) = β0 + β1X, (10.12)

g(X, 1) = β0 + β1X + (β2)(1) + (β3)(1)(X) =

intercept︷ ︸︸ ︷
(β0 + β2)+

slope︷ ︸︸ ︷
(β1 + β3)X. (10.13)

Now, the slope differs (by β3), too. Just as β2 > 0, β2 < 0, and β2 = 0 are all possible,
so are β3 > 0, β3 < 0, and β3 = 0.

Figure 10.1 illustrates the interpretation of the function from (10.11). In the figure’s
example, β2 > 0 and β3 > 0. Omitting the interaction term is equivalent to assuming
β3 = 0, in which case the two lines would be parallel (same slope).

https://youtu.be/ULVrXEVREj4
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0
β 0

β 0
+

β 2

slope = β1

slope = β1 + β3

X

D=0
D=1

Figure 10.1: Visualization of β0 + β1X + β2D + β3DX.

If you’re interested in D, don’t only look at β2. Rearranging (10.11),

g(X,D) = (β0 + β1X) +D(β2 + β3X), (10.14)

so the slope coefficient on D is β2+β3X. For example, even if β2 = −2, the slope β2+β3X
is positive if β3X > 2. The opposite is also possible, e.g., if β2 = 5, β3 = −1, and X > 5:
then β2 > 0, but the slope is negative, β2 + β3X < 0.

Example 10.3 (Kaplan video). Let Y be commute time in minutes, D = 1 if somebody
walks to work (and D = 0 if drive), and X the distance in kilometers from the person’s
home to their work. Consider a linear projection with the form of (10.11). Imagine
a suburban setting (not crazy traffic). For the slope: if X (distance) increases by one
unit (1 km), then Y (commute time) increases more when walking (D = 1) than driving
(D = 0). Thus, the slope β1 + β3 should be higher than the slope β1, and both are
positive (more distance X, more time Y ), so β1 > 0 and β3 > 0. For the intercept:
walking is always slower than driving, so we might think the D = 1 line is shifted up
from the D = 0 line, meaning β2 > 0; however, if X = 0 (work at home), then Y = 0
regardless of walking or driving, so it also seems that both intercepts should be zero
(β0 = 0, β0 + β2 = 0). For the CMF, certainly the intercept is zero. However, the
linear projection is only an approximation of the CMF, which is probably nonlinear for
the D = 0 (driving) subpopulation: driving longer distances (X) usually allows you to
drive on more major roads/freeways with higher speeds, so the CMF for D = 0 should
be steeper near X = 0 and flatter at larger X. This could make the linear projection
intercept β0 > 0, even if the walking linear projection intercept is zero. Or if walking
farther distances means slower average speed, then the D = 1 CMF is increasing and
convex, and its linear projection intercept would actually be negative.

Discussion Question 10.2 (sleep and interactions). Let Y be a person’s hours of sleep
per night, X the person’s age, and D = 1 if the person lives in the same house as children
under 8 years old (and D = 0 if not). Consider a linear projection with the form of
(10.11). Answer any two of the following parts.

https://youtu.be/vBkwd7VpsUo
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a) What would you guess for the sign (+, −, or zero) of β1? Explain why.
b) What would you guess for the sign (+, −, or zero) of β2? Explain why.
c) What would you guess for the sign (+, −, or zero) of β3? Explain why.
d) Given the same set of regressors (X,D), describe another nonlinear term (i.e., an-

other function of X and/or D, besides X, D, and DX) that would improve the
CMF estimate, and why you think that term would help.

10.3.3 Non-Binary Interaction

Discussion Question 10.3 (linear-in-variables?). Let Y be log wage, X1 years of ed-
ucation, and X2 years of experience. Consider possible linear-in-variables CMF model
E(Y | X1 = x1, X2 = x2) = β0 + β1x1 + β2x2.

a) Explain one reason you think this CMF model is misspecified (wrong).
b) How do you think the true CMF (not the misspecified linear-in-variables CMF) slope

with respect to experience might differ for different values of education? (Hint: draw
a graph with different lines like E(Y | X1 = 12, X2 = x2), where you fix the X1

value and then graph the CMF as a function of only x2.)

Even if neither regressor were binary, an interaction term allows the slopes to depend
on the other regressor’s value. Replacing X = X1 and D = X2 in (10.11),

g(X1, X2) = β0 + β1X1 + β2X2 + β3X1X2. (10.15)

Consider the slope of g(X1, X2) with respect to X1, at different values of X2. Generally,
rearranging (10.15) as a function of X1,

g(X1, X2) =

intercept︷ ︸︸ ︷
(β0 + β2X2)+

slope︷ ︸︸ ︷
(β1 +X2β3)X1. (10.16)

Plugging values X2 = a and X2 = b into (10.16), similar to (10.12) and (10.13),

g(X1, a) =

intercept︷ ︸︸ ︷
(β0 + aβ2)+

slope︷ ︸︸ ︷
(β1 + aβ3)X1, (10.17)

g(X1, b) =

intercept︷ ︸︸ ︷
(β0 + bβ2)+

slope︷ ︸︸ ︷
(β1 + bβ3)X1. (10.18)

Changing X2 from a to b changes the intercept from β0 + aβ2 to β0 + bβ2, and it changes
the slope from β1 + aβ3 to β1 + bβ3. Alternatively, we could plug in X1 = a and X1 = b
and consider g(a,X2) and g(b,X2) as functions of X2, where again both the intercept and
slope may change.

As in Example 8.17 for the quadratic model, we cannot learn anything from β1 alone.

Example 10.4 (Kaplan video). Imagine X1 is experience and X2 is years of education,
and Y is wage ($/hr). Imagine

Ŷ = ĝ(X1, X2) = 5− 15X1 + 2X2 + 2X1X2, (10.19)

https://youtu.be/ukw18mcTWkM
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i.e., β̂0 = 5, β̂1 = −15, β̂2 = 2, and β̂3 = 2. Superficially, β̂1 = −15 seems like a negative
relationship between experience (X1) and wage: it looks like more experience is associated
with much lower wage. However, the interaction term affects the slope with respect to
X1. Using (10.16), that slope is β1 + β3X2 = 2X2 − 15. If everyone in the data has at
least 10 years of education, then X2 ≥ 10, so 2X2−15 ≥ (2)(10)−15 = 5: the slope with
respect to X1 is always positive. Even though β̂1 < 0, ĝ(X1, X2) is always increasing in
X1, for any possible X2 ≥ 10.

This interaction model is more general than the linear-in-variables model, but not
fully general. For example, imagine Y is wage, X1 is education, and X2 is experience.
Maybe the slope with respect to X2 should be increasing a lot with X1 when X1 is around
12 or 16, but less so around X1 = 20 (or maybe more so?). This type of nonlinearity
in the interaction is not allowed by simply including X1X2. There are nonlinear and
nonparametric models to address such situations, but details are beyond our scope.

10.3.4 Code

The following code illustrates estimation, heteroskedasticity-robust inference, and predic-
tion with a model including an interaction term, using real data. The outcome variable
is total minutes worked per week. The regressor like D is a dummy for male, and the
regressor like X is hourly wage (in 1975 U.S. dollars). The model includes an interaction
term, like DX. In R formula syntax, the term D:X is the same as including the interaction
term DX like in (10.11). Alternatively, D*X includes both linear and interaction terms,
equivalent to D+X+D:X. So, both estimation models below are identical.

library(sandwich); library(lmtest); library(wooldridge)
# Equivalent estimates (ret = ret2)
ret <- lm(formula=totwrk~male*hrwage, data=sleep75)
ret2 <- lm(formula=totwrk~male+hrwage+male:hrwage, data=sleep75)
retVC <- vcovHC(ret, type="HC1")
round(cbind(Estimate=coef(ret), coefci(ret, vcov. = retVC)), digits=0)

## Estimate 2.5 % 97.5 %
## (Intercept) 1536 1215 1856
## male 1023 655 1391
## hrwage 58 -29 145
## male:hrwage -67 -157 22

# Predict totwrk for (male,hrwage)=(1,4), (1,6), and (0,4)
predict(ret, newdata=data.frame(male=c(1,1,0),hrwage=c(4,6,4)))

## 1 2 3
## 2521 2503 1767
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The results can be interpreted as follows. The rows correspond to the coefficients in
(10.11): (Intercept) is for β0, hrwage for β1, male for β2, and male:hrwage for β3.
The intercept does not have a useful interpretation because X = 0 means zero wage. The
estimate β̂1 = 58 say a one-unit ($1/hr) increase in wage is associated with working 58
minutes (around one hour) more per week for females; however, for males, β̂1 + β̂3 = −9
says that a $1/hr increase in wage is associated with working 9 minutes less per week. The
linear coefficient β2 cannot be interpreted by itself. Instead, we could consider somebody
with median wage X = 4.3 (it was 1975): being male is associated with β2 + 4.3β3 more
minutes worked per week, which is estimated to be β̂2+4.3β̂3 = 1023+(4.3)(−67) = 735
(around 12 hours). The CIs show much statistical uncertainty. For example, the 95%
CIs for both hrwage and the interaction term include both positive and negative values,
and the CI for the male coefficient is around 12 hours wide. The predictions show how
predicted minutes worked is not sensitive to hrwage for males, but changing male changes
the predicted value a lot.

Even just for the linear projection interpretation, there are still issues to think about
like the fact that non-employed individuals do not have an hourly wage (and thus by
default are quietly dropped by R); see Section 12.3.5.

10.4 Other Examples

=⇒ Kaplan video: Wage Regression Example (again again)

Models can get very complex with multiple regressors. We could have more than 2
regressors; we could have many nonlinear functions of each regressor by itself; and we
could have many interactions. For example, even if we only have 5 regressors, there are
10 pairs of regressors (like X1 and X4, X2 and X3, etc.), and each pair may have multiple
interaction terms (i.e., not just X1X4, but also X1X

2
4 or something). With each regressor

by itself, we may have multiple nonlinear terms. There could be 40 or 50 terms in our
regression just from 5 original regressors. Even if all 5 are binary, the fully saturated
model requires 25 = 32 parameters.

With such complicated models, it is better to look at predicted changes using the full
model instead of looking at individual coefficients. This is done in R with the predict()
function.

10.5 Assumptions for Linear Projection

Below are formal assumptions sufficient for good performance (with enough data) of the
OLS estimator and heteroskedasticity-robust CIs. These are relatively weak assumptions.
As usual, stronger assumptions are required to interpret the linear projection as a CMF
or structural model.

The assumptions are basically the same as in Section 7.7.2, with one exception (perfect

https://youtu.be/ULVrXEVREj4
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multicollinearity). Like before, iid sampling is sufficient but not necessary; the same OLS
estimator can work well even with non-iid data, and there are alternative CIs that can
work well in such settings, too.

10.5.1 Multicollinearity (Two Types)

The one new assumption is that there cannot be perfect multicollinearity. This essen-
tially says redundant regressors are not allowed. Remember that the intercept term can
be seen as the coefficient on regressor X0 = 1. More formally, perfect multicollinearity
means that one regressor is a linear combination (see Section 8.2.1) of other regressors.

Example 10.5 (Kaplan video). If X1 is distance in km and X2 = 1.6X1 is distance in
miles, then there is perfect multicollinearity. Once we have X1, X2 is redundant (has the
exact same information). (Formally, 1.6X1 is a linear “combination” of X1.)

Example 10.6 (Kaplan video). If X3 = X1 + X2, then X3 is a linear combination of
other regressors X1 and X2, so there is perfect multicollinearity. If we include X1 and
X2, then we cannot include X3.

Example 10.7 (Kaplan video). If X1 = 1 for females and X2 = 1 for non-females, then
X1 + X2 = 1 = 1 = X0 (the secret constant regressor). That is, the regressor X0 is a
linear combination of regressors X1 and X2, which means perfect multicollinearity. (Or
if we omit the intercept, then there is no X0, so no perfect multicollinearity.)

Something nice about perfect multicollinearity is that computers can check it for us.
If you try to run a regression with perfect multicollinearity, R will simply report NA for
coefficients of the “redundant” regressors (without warning or error). Other statistical
packages may give you a warning or error.

For prediction, redundant variables don’t help, so dropping them is fine.
For causality, we are unable to distinguish the separate effects among redundant vari-

ables. But if they are merely “control variables,” then we do not care.
A related concept is imperfect multicollinearity. This refers to regressors being

strongly correlated, but not perfectly correlated (i.e., not completely redundant).
This makes it more difficult to learn about the slope coefficients on the highly cor-

related regressors, but it does not invalidate any results on identification, estimation, or
inference. “More difficult” means confidence intervals can be large. This makes sense: if
regressors X1 and X2 are highly correlated, and we observe that Y is high when X1 and
X2 are high, it’s unclear whether Y is high because X1 is high or because X2 is high.
Because they are highly correlated, there are few observations where only X1 or X2 (not
both) is high to help distinguish the effect of X1 from that of X2. This is similar to the
logic behind omitted variable bias, except we can see the ghost. With prediction, it may
be best to include only X1 or X2 (not both), but standard model selection procedures
can handle this without any special consideration. (But: if you have a job interview and
sense that your interviewer thinks imperfect multicollinearity is really important for some
reason, just go with it.)

https://youtu.be/FWAnROah6mg
https://youtu.be/FWAnROah6mg
https://youtu.be/FWAnROah6mg
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Example 10.8. The following example shows with real data how imperfect multicollinear-
ity can lead to wide CIs for the coefficients of correlated regressors, but does not cause
any other problems. The outcome is a binary variable equal to 1 if the individual reports
being in good health. The two regressors are total sleep (adjusted to hours per day)
and sleep at night (excluding naps). They have a very high correlation (0.89) because
naps are a small fraction of total sleep for most individuals. The estimated coefficients
have different signs (one positive, one negative) but very wide 95% CIs that contain both
positive and negative values; note the CI when only slpnaps is a regressor is less than
half as wide as after sleep is added as a second regressor. (Recall the interpretation that,
for example, a coefficient of 0.01 means a one-hour increase in sleep is associated with a
one percentage point higher probability of good health.) The predictions do not change
much when using only slpnaps instead of both sleep variables; this is reflected by the
extremely similar R2 values.

library(sandwich); library(lmtest); library(wooldridge)
c(corr=cor(sleep75$sleep, sleep75$slpnaps))

## corr
## 0.893

ret <- lm(formula=gdhlth~I(slpnaps/60/7), data=sleep75)
retVC <- vcovHC(ret, type="HC1")
round(cbind(Estimate=coef(ret), coefci(ret, vcov. = retVC)), digits=3)

## Estimate 2.5 % 97.5 %
## (Intercept) 1.149 0.975 1.32
## I(slpnaps/60/7) -0.032 -0.054 -0.01

ret <- lm(formula=gdhlth~I(slpnaps/60/7)+I(sleep/60/7), data=sleep75)
retVC <- vcovHC(ret, type="HC1")
round(cbind(Estimate=coef(ret), coefci(ret, vcov. = retVC)), digits=3)

## Estimate 2.5 % 97.5 %
## (Intercept) 1.137 0.951 1.322
## I(slpnaps/60/7) -0.039 -0.092 0.014
## I(sleep/60/7) 0.009 -0.049 0.067

c(R2a=summary(lm(formula=gdhlth~slpnaps, data=sleep75))$r.squared,
R2b=summary(lm(formula=gdhlth~slpnaps+sleep, data=sleep75))$r.squared)

## R2a R2b
## 0.0148 0.0150
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10.5.2 Formal Assumptions and Results

The assumptions and results refer to the linear projection model

LP(Y | X1, . . . , XJ) = β0 + β1X1 + · · ·+ βJXJ . (10.20)

The Xj may include nonlinear functions of an original set of regressors. For example,
if X and D are observed regressors, then the model could have X1 = D, X2 = X, and
X3 = DX. It could also include X4 = X2, etc.

Assumption A10.1. Sampling of (Yi, X1i, . . . , XJi) is iid from the population joint dis-
tribution of (Y,X1, . . . , XJ).

Assumption A10.2. There is no perfect multicollinearity.

Assumption A10.3. The variances of Y and all Xj are finite: Var(Y ) < ∞, Var(Xj) <
∞ for j = 1, . . . , J .

Assumption A10.4. The fourth moments are finite: E(Y 4) < ∞, E(X4
j ) < ∞ for

j = 1, . . . , J .

The following theorems extend Theorems 7.1 and 7.2 to multiple regressors.

Theorem 10.1 (OLS consistency). If A10.1–A10.3 are true, then the OLS intercept and
slope estimators are consistent for the population linear projection intercept and slope in
(10.20).

Theorem 10.2 (coverage probability, multiple regressors). If A10.1, A10.2, and A10.4
are true, then heteroskedasticity-robust confidence intervals are asymptotically correct.
That is, with a large enough sample size, the coverage probability is approximately equal
to the desired confidence level.

10.6 Causality: Identification

There are many identification results in which there is a causal interpretation for some-
thing OLS can estimate. Here are a couple.

10.6.1 Linear Structural Model

Consider the structural model

Y = β0 +

J∑
j=1

βjXj + U. (10.21)

Some of the Xj are allowed to be nonlinear functions of regressors, including interaction
terms. If Cov(U,Xj) = 0 for all j = 1, . . . , J , then the structural βj are also linear
projection coefficients (which OLS can estimate).
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10.6.2 Conditional ATE

As alluded to in Section 9.5, a conditional average treatment effect (CATE) can
be identified under conditional independence (A9.1). Here, X1 is the binary treatment
variable. Given Assumption A9.1 (and SUTVA and overlap), the CATE equals a CMF
difference:

E[Y T − Y U | X2 = x2, . . . , XJ = xJ ] (10.22)
= E[Y | X1 = 1, X2 = x2, . . . , XJ = xJ ]− E[Y | X1 = 0, X2 = x2, . . . , XJ = xJ ].

Intuitively, conditional independence says that within any subpopulation defined by hav-
ing the same (X2, . . . , XJ) values, treatment is “as good as random,” so comparing mean
treated and untreated observed outcomes (within the subpopulation) has a causal inter-
pretation.

For estimation, we either need to know the CMF’s functional form (and use OLS) or
use nonparametric estimation techniques.

Optional Resources

Optional resources for this chapter

• James et al. (2013, §3.2)

• Hastie, Tibshirani, and Friedman (2009, §§2.3.1,2.4,3.1–3.2)

• Linear projection (theory): Hansen (2020, §7)

• Average structural effects and their identification: Hansen (2020, §2.30)

• Regression example (Masten video)

• Perfect multicollinearity (Lambert video)

• Imperfect multicollinearity example (Lambert video)

• Dummy coefficients (Lambert video)

• Dummy interactions (Lambert video)

• Continuous interactions (Lambert video)

• Sections 3.1 (“Multiple Regression in Practice”) and 6.1.5 (“Interaction Terms”) in
Heiss (2016)

• Section 4.4 (“Reporting Regression Results”) in Heiss (2016)

• Section 8.3 (“Interactions Between Independent Variables”) in Hanck et al. (2018)

https://www.youtube.com/watch?v=fDCgagw2CAI
https://www.youtube.com/watch?v=DDRQYKVFoP0
https://www.youtube.com/watch?v=O4jDva9B3fw
https://www.youtube.com/watch?v=s7EyQwJahgw
https://www.youtube.com/watch?v=ScKL40dp8M4
https://www.youtube.com/watch?v=HyA_Vgbc0t4
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Empirical Exercises

Empirical Exercise EE10.1. You will analyze data collected from Botswana’s 1988
Demographic and Health Survey by James Heakins for an economics term project. In
particular, you’ll see how the number of living children a woman (in Botswana) has relates
to various other variables, with particular interest in the woman’s years of education.
You’ll start with a simple regression of children on educ that shows an economically
significant negative coefficient. Then, you’ll see how this coefficient changes (generally
moving toward zero) as you add other regressors as control variables, like the husband’s
education (heduc) and the woman’s age (age). These changes in the estimated coefficient
suggest omitted variable bias in the original simple regression. But, even with a large
number of control variable regressors, there is probably still omitted variable bias.

a. R only: load the needed packages (and install them before that if necessary) and
look at a description of the dataset:
library(wooldridge); library(sandwich); library(lmtest)
?fertil2

b. Stata only: load the data with bcuse fertil2 , nodesc clear (assuming bcuse
is already installed)

c. Run a simple regression of children on educ.

R: ret1 <- lm(children~educ, data=fertil2)

Stata: regress children educ , vce(robust)

d. Repeat but adding heduc as a control variable regressor.

R: ret2 <- lm(children~educ+heduc, data=fertil2)

Stata: regress children educ heduc , vce(robust)

e. Repeat but adding yet another regressor (woman’s age).

R: ret3 <- lm(children~educ+heduc+age, data=fertil2)

Stata: regress children educ heduc age , vce(robust)

f. Repeat but add even more regressors (in addition to educ, heduc, and age): agesq,
knowmeth, usemeth, electric, urban, and catholic, as well as interactions be-
tween age and knowmeth and between age and usemeth.

R: store the result as ret4, and you can simply write knowmeth:age and usemeth
:age in the regression formula to generate the interactions.

Stata: first create the two interaction variables like with generate know_age =
knowmeth*age and then run another regression with your two new variables added
to your list of regressors.

g. R only (because already displayed by Stata): output the four sets of estimated
regression coefficients with
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coef(ret1)
coef(ret2)
coef(ret3)
coef(ret4)

h. Optional: repeat one more time, with whichever regressors (in addition to educ) you
think appropriate; feel free to create additional interaction terms and/or nonlinear
terms (like age^3, etc.).

Empirical Exercise EE10.2. You will analyze data originally from Harrison and Ru-
binfeld (1978), including housing prices and pollution measures. The data are not for
individual houses, but instead small areas (census tracts, I’d guess), within which the me-
dian housing price is computed along with other characteristics that may affect housing
prices, including pollution. You’ll start with a simple regression of log price on log nox
(the pollution measure). The coefficient is around −1, meaning a 1% increase in pollu-
tion is associated with (approximately) a 1% decrease in price. Then, you’ll add other
regressors to try to reduce omitted variable bias. By adding just a couple variables, the
pollution coefficient estimate’s magnitude is cut in half, suggesting that there was indeed
much OVB. However, even with a large number of regressors, serious OVB may remain.

a. R only: load the needed packages (and install them before that if necessary) and
look at a description of the dataset:
library(wooldridge); library(sandwich); library(lmtest)
?hprice2

b. Stata only: load the data with bcuse hprice2 , nodesc clear (assuming bcuse
is already installed)

c. Run a simple log-log regression of price on nox.

R: ret1 <- lm(log(price)~log(nox), data=hprice2)

Stata: regress lprice lnox , vce(robust)

d. Repeat but adding rooms as a control variable regressor.

R: ret2 <- lm(log(price)~log(nox)+rooms, data=hprice2)

Stata: regress lprice lnox rooms , vce(robust)

e. Repeat but adding yet another regressor (crime rate per capita).

R: ret3 <- lm(log(price)~log(nox)+rooms+crime, data=hprice2)

Stata: regress lprice lnox rooms crime , vce(robust)

f. Repeat but add even more regressors: dist, radial, stratio, and lowstat. Store
the result as ret4 in R.

g. R only (because already displayed by Stata): output the four sets of estimated
regression coefficients with
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coef(ret1)
coef(ret2)
coef(ret3)
coef(ret4)

h. Optional: repeat one more time, with whichever regressors you think appropriate;
try to use interaction terms and/or nonlinear terms (like rooms^2, etc.).



Chapter 11

Midterm Exam #2

=⇒ Kaplan video: Chapter Introduction

When I teach this class, the second midterm exam is this week. This “chapter” makes
the chapter numbers match the week of the semester. This midterm covers all chapters
between the first midterm and now. It does not explicitly include questions about the
material before the first midterm exam, but of course that materials was foundational for
the material covered on the new exam, so it may (or may not) still help to review it.
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https://youtu.be/eKV_TTzlpAk
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Chapter 12

Internal and External Validity

=⇒ Kaplan video: Chapter Introduction

This chapter discusses many reasons to worry about the validity of econometric results
and their application to decisions. Like statistical and economic significance, “validity”
is better thought of as a continuum rather than a yes/no property. To tweak Box’s
aphorism, “All results are invalid, but some are useful.”

Unit learning objectives for this chapter

12.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

12.2. Assess possible problems with regression results and their application to real-world
questions (of description, prediction, and causality), and the likely direction of bias
[TLOs 5 and 6]

12.3. In R (or Stata): check datasets for possible issues like missing data [TLO 7]

12.1 Terminology

An econometric study has internal validity if the methods are appropriate for the study’s
setting and sample, i.e., if all identifying assumptions and other assumptions hold.

An econometric study has external validity for a different setting if the results can
be used to learn something about the new setting. This does not necessarily mean the
values or overall effects are identical, but that at least the prediction model or structural
model is the same.

The population studied refers to the population from which the data was sampled,
whereas the population of interest is the one that you (as the researcher, policy maker,
or decision maker) want to learn about.
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https://youtu.be/tyYnH18mpxc
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Example 12.1. Imagine you see an econometric study of the causal effect of a minimum
wage change from $4.25/hr to $5.05/hr in New Jersey in 1992, but your job is to advise
Missouri about a possible minimum wage increase next year. The study is internally valid
if it properly estimates the causal effect of the New Jersey minimum wage increase on
people in New Jersey in 1992, i.e., for the population studied. It is externally valid if
the estimates can be used to learn about the (potential) policy effects in Missouri, your
population of interest. Again, this doesn’t necessarily mean the effect itself next year in
Missouri must be identical to the effect in 1992 New Jersey, but that the model estimated
with the 1992 New Jersey data can be applied to current Missouri data to learn the
potential policy effect.

This chapter briefly discusses many threats to validity, i.e., reasons an analysis may
not be internally or externally valid.

12.2 Threats to External Validity

Threats to external validity are generally more obvious than threats to internal validity,
but they harm evidence-based decisions just as much. For example, consider the descrip-
tive task of estimating the median house price in Missouri. Obviously, a sample of house
prices from California (which is much more expensive) does not help. Even with the price
of every house in California, we learn little about Missouri. We can try to learn about
relationships between price and house features (size, land area, etc.) in California, but
probably even such relationships themselves differ in Missouri. This problem is a lack of
external validity.

The Lucas critique (Lucas, 1976, also Section 4.3.3) can also be interpreted in terms of
external validity. When macroeconomic policy changes, that fundamentally changes the
setting. Even if our estimates from historical data have internal validity, they might not
be accurate in the new setting under the new policy, i.e., they might not have external
validity.

A few common threats to external validity are now discussed. Although these don’t
automatically imply lack of validity, they are reasons for skepticism.

12.2.1 Different Place

Different places have different legal, political, cultural, and economic settings. The house
price example highlights just one of many important differences between California and
Missouri. Ideally, you can always find an empirical study from the same place you’re
interested in. If not, you have to decide whether you think the other place is similar
enough to still help you make a good decision.

Example 12.2. Imagine you need to quantify costs and benefits of expanding public bus
systems in Missouri. The neighboring states of Oklahoma and Illinois recently collected
data during their (hypothetical) bus system expansions, with different results. Although
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both states are very close geographically to Missouri, other characteristics matter, too.
Illinois has almost double the state gas tax of Missouri, and its urban population share
is over 15 percentage points greater than Missouri’s; both of these may be important for
both people’s decision to ride the bus (versus drive) and the cost of bus operation. In
contrast, Oklahoma’s gas tax and urban population share are very similar to Missouri’s, so
there is probably greater external validity. Still, there may be other important differences
between Missouri and Oklahoma, some of which may be difficult to measure accurately
or quantify, like cultural attitudes.

12.2.2 Different Time

Even in the same place, there may be important changes over time in the legal, political,
cultural, and economic setting. If you are making a decision today based on analysis of
historical data, then external validity depends on how much has changed between then
and now. In certain places for certain variables, maybe not much has changed in the
past five years. But for other places or variables, maybe there are important changes
every year, or even every day; or just coincidentally, a new law went into effect yesterday.
Assessing external validity requires critical thinking about how much has changed between
the time of the dataset and now. Alternatively, sometimes we can model how variables
change over time, in order to predict how they have changed since the data sample was
collected; see Chapters 14 and 15.

Example 12.3. Consider again the median house price in Missouri. Having learned
not to use California data, we get Missouri data—from the year 1975. This is also bad
because house prices were much lower in 1975 than today. Adjusting for inflation would
help some, but the housing market supply and demand have both changed substantially,
even basics like how many people live in Missouri and houses’ size, age, and quality. We
could try to use all these variables in a model, but some may not have data available, and
the model itself may have changed since 1975, due to changes in factors like consumer
preferences, regulations, and materials costs. If we instead had historical data from last
month, then our analysis should have high external validity, barring any sudden dramatic
change in the past month (like a pandemic).

12.2.3 Different Population

Even in the same place, at the same time, the population studied may differ from your
population of interest. There is a threat to external validity if the variables and their
relationship differ between these two populations. That is, even if we correctly learn
about the population studied, it may not help us learn about the population of interest.

Example 12.4. To guide tax incentives for first-time homebuyers in Missouri this year,
you want to estimate the median first-year mortgage payment for first-time homebuyers.
If you find a study estimating the median mortgage payment among all home owners in
Missouri this year, then your number will be much too big because the studied population
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(all owners) differs greatly from the population of interest (first-time owners), even though
they’re in the same place (Missouri) at the same time (this year).

Example 12.5 (Kaplan video). Imagine you’re estimating the benefits of expanding
government subsidies for college in the U.S. You (amazingly) find an internally valid
estimate of the mean wage increase from college, in the same place (U.S.), from just a
few months ago. However, the estimate is for the whole U.S. population (the population
studied), including individuals who already got college degrees even without the additional
subsidy. Instead, your population of interest is individuals who currently do not (or
cannot) choose to graduate from college, but who would with the additional subsidy.
Such individuals may not have the same causal effect of college on their wages.

Discussion Question 12.1 (external validity: minimum wage). You’re deciding whether
to vote for a minimum wage increase in your state or country (yes, you! wherever you live
or vote right now), from $10/hr to $15/hr (or an equivalent increase in your country’s
currency). You find a study (Card and Krueger, 1994) of effects of a minimum wage
increase from $4.25/hr to $5.05/hr in New Jersey in 1992. Explain your specific concerns
about external validity. (Note: this is only a question about external validity; arguments
about whether minimum wage should be lower or higher are completely irrelevant.)

12.3 Threats to Internal Validity

For description and prediction, see Items 1–5 in the list below.
For causality, the following common threats to internal validity are described below.
1. Functional form misspecification (Section 12.3.1)
2. Measurement error (Sections 12.3.2 and 12.3.3)
3. Non-iid sampling and weights (Section 12.3.4)
4. Missing data (Section 12.3.5)
5. Sample selection (Section 12.3.6)
6. Omitted variables (Section 12.3.7)
7. Simultaneity and reverse causality (Section 12.3.8)

Additionally, violation of SUTVA (as discussed earlier) is another threat to internal va-
lidity for treatment effect analysis.

12.3.1 Functional Form Misspecification

Misspecifying the functional form leads to inconsistent estimates of the CMF. This is bad
for description, prediction, and causality alike. Details are in Chapters 7–10, including
reasons for misspecification, ways to address it, and interpretations of what OLS estimates
when it’s not a CMF.

12.3.2 Measurement Error in the Outcome Variable

=⇒ Kaplan video: Measurement Error

https://youtu.be/6doLAvDPG0s
https://youtu.be/4XZMQ7OCnXI
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Without good data, it’s hard to get valid econometric results. As they say, “Garbage
in, garbage out.” But, it is not as simple as “good” and “bad” data. Certain data problems
can safely be ignored; others can’t be ignored, but they can be fixed; and yet other
problems cannot be fixed by any amount of econometrics magic.

Sometimes the true value of a variable is not the value seen in the data. This is
especially true in survey data, where individuals (or firms, schools, etc.) report their
own information (“self-reported”), and with macroeconomic variables that are difficult to
measure accurately. With survey data, people may simply forget the exact value, or they
may intentionally lie in some cases.

Notation and Terminology

To define some notation and terms, consider the example of exercise. In a survey, people
are asked how many minutes of exercise they did last week, and their responses Y are
recorded in the data. Let Y ∗ be how much exercise somebody truly did last week. This
Y ∗ is the latent (unobserved) true value. In contrast, the observed value is Y = Y ∗+M ,
where M is the measurement error. That is, M = Y − Y ∗ is the difference between
the observed and true values.

All of (Y ∗, Y,M) are uppercase to show they’re random variables. For example, one
individual could have true Y ∗ = 98.52 and report Y = 100, so M = 100 − 98.52 =
1.48, whereas another individual could have Y ∗ = 271, report Y = 250, and have M =
250 − 271 = −21, where all values are in units of “exercise minutes per week.” There
are different values of (Y ∗, Y,M) for different individuals; the population distribution
describes the probabilities of these different possible values.

Discussion Question 12.2 (exercise error). Consider the example where Y ∗ is true
exercise minutes last week and Y is the value somebody reports. Explain one reason
(each) why an individual could have a) M = 0, b) M < 0, or c) M > 0. Overall, would
you guess E(M) = 0, E(M) < 0, or E(M) > 0? Why? (Hint: you’ll probably need to
make additional assumptions and definitions; e.g., what does “exercise” mean?)

Regression

Imagine the true linear projection in error form is

Y ∗ = β0 + β1X + V, E(V ) = Cov(X,V ) = 0. (12.1)

We want to learn β1. Substituting in Y ∗ = Y −M ,

Y −M = β0 + β1X + V,

Y = β0 + β1X +

U︷ ︸︸ ︷
(V +M) = β0 + β1X + U. (12.2)

https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
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The OLS estimator β̂1 may be asymptotically biased if X and M are related because
then X and U are related. From (9.4), the asymptotic bias is

AsyBias(β̂1) =
Cov(X,U)

Var(X)
=

Cov(X,V +M)

Var(X)
=

=0︷ ︸︸ ︷
Cov(X,V )+Cov(X,M)

Var(X)
. (12.3)

This is the slope coefficient in LP(M | 1, X), the linear projection of the measurement
error onto the regressor (and an intercept). That is, writing LP(M | 1, X) = γ0 + γ1X,
then the asymptotic bias is AsyBias(β̂1) = γ1.

With binary X, γ1 is a mean difference as in (6.21), so (12.3) is equivalent to

AsyBias(β̂1) = E(M | X = 1)− E(M | X = 0). (12.4)

This helps us think about both the sign (direction) and magnitude of asymptotic bias.
For example, if there tends to be more positive measurement error when X = 1 than when
X = 0, then γ1 > 0, so the OLS estimator β̂1 has positive asymptotic bias.

In Sum: Measurement Error in the Outcome

Y observed; Y ∗ latent/true; M measurement error
Y = Y ∗ +M ⇐⇒ M = Y − Y ∗

Binary X: β̂1 asymptotic bias is E(M | X = 1)− E(M | X = 0); see (12.4)
General X: β̂1 asymptotic bias is γ1 in LP(M | 1, X) = γ0 + γ1X; see (12.3).

Example

Continuing with Y ∗ as weekly exercise, let X = 1 if somebody has a gym membership
and X = 0 otherwise. The goal is to learn β1 in LP(Y ∗ | 1, X) = β0 + β1X. Because
X is binary, β1 is also the mean difference E(Y ∗ | X = 1) − E(Y ∗ | X = 0). Also due
to binary X, the slope in LP(M | 1, X) = γ0 + γ1X is the same as the mean difference,
γ1 = E(M | X = 1)− E(M | X = 0).

There’s no asymptotic bias in a few cases. Obviously, if M = 0 for everybody, then
Y = Y ∗, so regressing Y on X is identical to regressing Y ∗ on X. Even if everyone
overreports (E(M) > 0) or underreports (E(M) < 0), as long as it’s the same for both
gym members and non-members, then γ1 = 0, so there is no asymptotic bias. It’s also
fine if E(M | X = 0) = E(M | X = 1) = 0 but Var(M | X = 1) < Var(M | X = 0), i.e.,
the gym members report more accurately (smaller variance of M ; in the extreme, even
M = 0), but both groups are accurate on average.

However, there is asymptotic bias if there’s systematic overreporting by only gym
members. Maybe gym members are more likely to feel guilty about not exercising and
not using their membership, which may cause them to report going to the gym and
exercising more than they actually do. Or, conversely, perhaps individuals who think
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they exercise more than they do (and thus have large M) are more likely to become gym
members because they think it’ll be worth it. Either way, more positive M (overreporting)
is associated with X = 1 compared to X = 0, i.e., γ1 > 0. This leads to positive (upward)
asymptotic bias of β̂1.

X (gym membership)

E
xe

rc
is

e

0 1

Y*

Y

Figure 12.1: Bias from measurement error in Y .

Figure 12.1 illustrates the upward bias of β̂1 in the gym/exercise example. The X = 0
group does not report perfectly, but there is no systematic reporting bias. The X =
1 group systematically overreports exercise. Consequently, the red line’s slope (using
observed Y ) is much larger than the black line’s slope (using true but unobserved Y ∗).
That is, if we could observe Y ∗, we would estimate the black line; but we can’t, and using
the observed Y yields a very different (biased) estimate of the slope β1.

Alternatively, maybe non-gym members tend to have larger M . Maybe gym members
only report gym time, whereas non-members include walking the dog, lifting groceries,
etc. In that case, E(M | X = 0) > E(M | X = 1), so γ1 < 0 and there’s negative
asymptotic bias.

Discussion Question 12.3 (measurement error: scrap rate). Imagine the government
wants to help increase the efficiency of chalk manufacturing firms. Specifically, Y ∗ is a
firm’s “scrap rate”: what proportion of their output has to be “scrapped” (trashed/not
sold) due to manufacturing defects? For example, Y ∗ = 0.04 means 4% scrap rate.
The government randomly assigns firms to a control group and treatment group, to run
an experiment. On January 1, the treated firms receive grant money, which they are
supposed to use to improve efficiency. All firms self-report their scrap rates on December
31; this is Y .

a) Describe a reason why treated firms might systematically overreport (M > 0) or
underreport (M < 0) their scrap rates.

b) In that case, and assuming untreated firms report accurately (M = 0), would we
overestimate or underestimate the treatment effect of a grant? Why?

c) If the government uses these incorrect estimates to decide whether or not to continue
the program, what incorrect decision might they make? Why?
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Methods to Address Measurement Error

In some cases, there are methods to reduce or eliminate the bias from measurement error.
However, such methods often have additional requirements, like a second measurement
of the same variable, and they are beyond our scope.

12.3.3 Measurement Error in the Regressors

There are similarities between measurement error in X and measurement error in Y .
Much of the math is similar. The causes of measurement error are the same, because a
variable may be the Y variable in one model but the X variable in another.

To see how measurement error might cause asymptotic bias, equations like (12.1)
and (12.2) can be derived. The true LP with latent X∗ is

Y = β0 + β1X
∗ +R, E(R) = Cov(X∗, R) = 0. (12.5)

Because the observed X is X = X∗ +M , substituting in X∗ = X −M ,

Y = β0 + β1(X −M) +R = β0 + β1X + (R− β1M). (12.6)

Like (12.3), the asymptotic bias is

AsyBias(β̂1) =
Cov(X,R− β1M)

Var(X)
,

so the asymptotic bias is zero if and only if Cov(X,R−β1M) = 0, i.e., if the observed X
is uncorrelated with the unobserved “error term” R− β1M . Using (12.5) and linearity,

Cov(X,R− β1M) = Cov(X,R)− Cov(X,β1M)

= Cov(X∗ +M,R)− β1Cov(X,M)

=

=0︷ ︸︸ ︷
Cov(X∗, R)+Cov(M,R)− β1Cov(X,M).

If M is uncorrelated with the LP error R = Y −β0−β1X
∗, and if β1 = 0 (which means Y

and the true X∗ are not correlated), then this is zero. Otherwise, there is almost certainly
asymptotic bias, in particular when Cov(X,M) ̸= 0.

Attenuation Bias: Assumptions and Result

Unfortunately, Cov(X,M) = 0 is very unlikely. Consider what seems to be the best-case
scenario: M is just random noise unrelated to the true value X∗, so Cov(X∗,M) = 0.
Unfortunately, using Cov(X∗,M) = 0,

Cov(X,M) = Cov(X∗ +M,M) =

=0︷ ︸︸ ︷
Cov(X∗,M)+

=Var(M)︷ ︸︸ ︷
Cov(M,M) = Var(M). (12.7)
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Assuming not everybody has M = 0, then Var(M) > 0, so Cov(X,M) > 0. Thus, even
if Cov(M,R) = 0, the asymptotic bias is not zero, −β1Cov(X,M) ̸= 0.

In this case with Cov(X,M) > 0 and Cov(M,R) = 0, the resulting bias is called
attenuation bias. This means that the estimates β̂1 tend to be in between 0 and β1:
0 < plim β̂1/β1 < 1, implying |plim β̂1| < |β1|. That is, the estimates are systematically
pushed closer to zero by the measurement error. This is different than positive (upward)
bias, which tends to make β̂1 > β1, or negative (downward) bias, which tends to make
β̂1 < β1. With attenuation bias, if β1 > 0, then generally 0 < β̂1 < β1, whereas if β1 < 0,
then generally 0 > β̂1 > β1.

Even if we cannot fix the attenuation bias, it is helpful to know the direction of the
bias. For example, if we estimated β̂1 = 7, and we suspect attenuation bias, then we may
think β1 might be even larger, but probably not smaller.

Attenuation Bias: Example

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

X or X*

Y

With X*
With X

Figure 12.2: Bias from measurement error in X.

Figure 12.2 illustrates attenuation bias. It shows a simple example where P(X∗ =
1) = P(X∗ = 2) = 0.5, and Y = X∗ (no error term). The linear projection is just the line
through (X∗, Y ) = (1, 1) and (2, 2), which has β0 = 0 and β1 = 1 (intercept zero, slope
one). Then, imagine adding error: P(M = −1) = P(M = 1) = 0.5, regardless of X∗ or
Y . Then the X∗ = 1 values become X = X∗+M : either X = 1−1 = 0 or X = 1+1 = 2.
Similarly, the X∗ = 2 values become either X = 2 − 1 = 1 or X = 2 + 1 = 3. Now we
have four possible values of (X,Y ), each with equal 0.25 probability: (0, 1), (2, 1), (1, 2),
and (3, 2), forming a parallelogram. The result is LP(Y | 1, X) = 1 +X/3 (slope is 1/3),
very different than LP(Y | 1, X∗) = X∗ (slope is 1). That is, when we add horizontal
noise (errors in X), the slope of the linear projection LP(Y | 1, X) is flatter (closer to
zero) than the slope of LP(Y | 1, X∗).
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General Bias

Unfortunately, outside this very special case, the type of bias may differ. It is not neces-
sarily attenuation bias.

In particular, if Cov(M,R) ̸= 0 and |Cov(M,R)| > |β1Cov(X,M)|, then the sign of
the bias is the sign of Cov(M,R), i.e., positive bias if Cov(M,R) > 0 or negative bias if
Cov(M,R) < 0. So, generally, any type of asymptotic bias is possible, depending how
the measurement error is related to other variables.

There are methods that address measurement error in X, but these are beyond our
scope.

12.3.4 Non-iid Sampling and Survey Weights

As advised in Section 3.4.3, if your dataset has survey weights (a.k.a. sampling weights),
then you should probably use them. Most statistical estimation functions in R allow such
weights. It’s true that in some cases you don’t actually need to use weights, but it’s safer
to just always use them.

Section 3.5 discussed how sampling may be non-iid for other reasons like clustered
and/or stratified sampling. Time series data also usually lack iid sampling; see Part III.
Generally, with these types of non-iid sampling, estimators are consistent but confidence
intervals require different formulas to be accurate. For now, just be aware that you need
something besides a heteroskedasticity-robust CI.

12.3.5 Missing Data

=⇒ Kaplan video: Bias from Non-Ignorable Missing Data

Like with measurement error in Y (Section 12.3.2), the reason why there is missing
data determines whether or not it’s a problem. As we saw with measurement error in Y , if
the error is completely random (independent of X), then it will not bias linear projection
slope estimates. Similarly, if data is missing completely at random (like, a cat walked
across your computer keyboard or something), then it’s fine to just drop observations
with missing data and proceed as usual. This is called complete case analysis, where
a complete case is an observation in which no values are missing (i.e., all values are
observed). For example, if the dataset is (Yi, Xi) for i = 1, . . . , n, then the complete cases
are the i for which both Yi and Xi are observed (not missing).

In other cases, we can’t ignore the missing data problem, but there are methods that
can fix the problem and avoid asymptotic bias.

In yet other cases, it is very difficult to address the missing data problem. In particular,
when the value of Y affects whether or not data are missing, it is very difficult. For
example, if Y is income and people with high (or low) income tend not to report their
income on a survey, then regression estimates will be biased.

https://youtu.be/kL91KOtl1RU
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Figure 12.3: Non-ignorable missing data: bias of both OLS and sample mean.

Example 12.6 (Kaplan video). Figure 12.3 shows an example of missingness related to
Y . Here, Y is income and X = 1 if an individual has a college degree, X = 0 if not. In
the example, the highest-income individuals do not report Yi but everyone else does. This
mostly affects Xi = 1 individuals, but also the very highest Yi in the no-college group. If
we just run OLS on observations with both Yi and Xi observed, then both the OLS slope
and sample mean are biased downward. The OLS intercept is very slightly downward
biased, too, because the top Yi when Xi = 0 are missing.

Practice 12.1 (program attrition). Consider a job training program like the federally
funded Job Training Partnership Act (JTPA) of 1982. Each eligible individual was ran-
domly assigned to either take the job training or not. You want to estimate the average
treatment effect on annual income (Y ) of being assigned to the training (the “intention-
to-treat” effect from Section 4.6.3). However, some individuals’ data is missing because
they moved to a different state to take a high-paying job. Explain why this could be a
threat to internal validity, and in which direction you think the resulting bias might be.

Discussion Question 12.4 (missing salary data). You get data on a sample of professors
from research universities in the U.S., which is the population of interest. However, you
only find salary data for public universities, not private.

a) How/does this bias your estimate of the population mean salary? Why?
b) How/does this bias your regression of salary on a dummy for being a professor in a

STEM field? Why? (Hint: consider the intercept and slope separately.)

Caution: by default, most commands in Stata and functions in R drop all observations
(rows in your dataset) with any missing variable(s) automatically, without any error or

https://youtu.be/3TischccyCA
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warning message. That is, they assume you want complete case analysis. You can still
figure out whether or not any observations were dropped. You can also tell R to behave
differently if it encounters NA values. You can either do this through options() to change
the default, or for a specific lm (or whatever function) call through the na.omit argument.
See the code below.

n <- 5; set.seed(112358); options(digits=3)
Y <- rnorm(n); X <- rnorm(n)
Y[2] <- X[3] <- NA #missing values
r <- lm(Y~X) #no hint of missing/dropped obs
coef(r) #still no hint:
## (Intercept) X
## 0.591 0.704

nrow(r$model) #aha: not n rows!
## [1] 3

#summary(r) #"(2 observations deleted due to missingness)"
options("na.action") #print current default (usually na.omit)
## $na.action
## [1] "na.omit"

predict(lm(Y~X, na.action=na.omit)) # complete case
## 1 4 5
## -0.7037 -0.0139 1.1147

predict(lm(Y~X, na.action=na.exclude)) #fill in NA
## 1 2 3 4 5
## -0.7037 NA NA -0.0139 1.1147

lm(Y~X, na.action=na.fail) # give an error if NAs in data
## Error in na.fail.default(list(Y = c(-0.471, NA, 0.530, :
## missing values in object

options(na.action=na.fail) #set default to na.fail
lm(Y~X) #now gives error as default (if NA values)
## Error in na.fail.default(list(Y = c(-0.471, NA, 0.530, :
## missing values in object

12.3.6 Sample Selection

=⇒ Kaplan video: Sample Selection Bias

https://youtu.be/KkYard8OOUI
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Whereas missing data means some values are missing in the dataset, sample selec-
tion means entire individuals (observations) are missing. Whereas missing values are
indicated by NA in R, there may be no indication that entire individuals are missing. The
number of missing individuals may be unknown.

Terminology caveat: sometimes people use the phrase “sample selection” to refer to
missing data, especially missing Y data. In that context, there are methods to try to
reduce “sample selection bias” by using the observed regressor values for individuals with
missing Y . If instead those individuals are missing completely from the data, then it is
generally not possible to correct for sample selection bias, although knowing how many
individuals are missing can sometimes help us calculate an upper bound for the bias.

As with missing data, the reason behind the sample selection is crucial for whether it
results in sample selection bias. For example, if individuals are “selected” into the sample
at random (unrelated to their Yi or Xi), then it’s just like we’re taking a random sample of
a random sample, so we can just proceed as normal. However, if individuals are selected
into the sample based on their Yi, then OLS (and other estimators) can be very biased. A
common problem for surveys is non-response bias: people who respond to the survey
(the population studied) are not representative of the population of interest, differing in
important ways compared to people who do not respond to the survey.

Example 12.7. Similar to Figure 12.3, imagine Y is wage, and individuals with high
wage are less likely to take a survey at all. If our dataset only shows individuals who did
take the survey, then sample selection bias is likely. The picture is basically the same as
Figure 12.3, just that the “missing” data points are now entirely unobserved (those i are
not even in our sample).

Example 12.8 (Kaplan video). Perhaps the most famous (Nobel Prize-winning) eco-
nomic example of “sample selection” is from Heckman (1979), although it is actually the
“missing Y ” meaning: wages are only observed for currently employed individuals, but
our data usually includes unemployed individuals, too. Imagine we want to learn what
determines the wage that an individual is offered by a firm. However, if the wage a firm
is willing to pay is below the individual’s reservation wage or a legal minimum wage, then
the individual won’t or can’t take the offer. But if they don’t work, then we can’t observe
that hypothetical wage. Further, the population of individuals who are working (and thus
have an observable wage) is clearly not just a random sample from the full population of
interest that includes non-employed individuals.

Methods to address sample selection bias are beyond our scope, but you can at least
try to think critically about whether sample selection bias might be an issue in real-world
examples.

12.3.7 Omitted Variable Bias and Collider Bias

Omitted variable bias is discussed in Sections 9.1 and 10.1. It is very common with
observational economic data: many variables are (cor)related in economics, and many

https://youtu.be/DjC-pTSsDKA
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important ones are difficult to measure (human capital, technology, marginal cost, etc.).
If they are actually observed in the data, then they can just be included, although recall
that including colliders actually makes bias worse (Section 9.6). If not, then other meth-
ods can be used under certain specific conditions. For example, difference-in-differences
(Section 9.7) allows certain types of omitted variables. Other estimators with panel data
(observations for the same unit i over multiple time periods) also allow certain types of
omitted variables, like those that do not change over time. However, these and yet other
estimators that address omitted variable bias are beyond our scope.

12.3.8 Simultaneity and Reverse Causality

When we regress Y on X, we often (perhaps subconsciously) assume that X may have
a causal effect on Y , but that Y does not have an effect on X. However, sometimes in
reality Y affects X, too. This is called reverse causality or simultaneous causality.

The issue of simultaneity is basically the same (and often synonymous), but empha-
sizes that it is not necessarily a direct causal effect of Y on X, just that X and Y are
determined by the same system at the same time (simultaneously). Economic systems are
often complex, where conditions “determine” the values of multiple variables at the same
time. For example, supply and demand curves simultaneously determine the equilibrium
market price and quantity. Rather than trying to say price affects quantity and quantity
affects price (simultaneous causality), it’s more precise to say that price and quantity are
determined simultaneously by the same economic system (simultaneity).

Because economists often study systems with complex interactions among many vari-
ables, and with observational data, simultaneity and reverse causality are common.

Example 12.9 (Kaplan video). One question economists have studied is the effect of
police officers per capita X on crime rate Y in a city. (Note: as with other examples
like minimum wage and right-to-work laws, this has nothing to do with “good” or “bad,”
but only how simplistic econometric analysis can fail to have a causal interpretation.) Of
course, it is possible that the density of police has a causal effect on crime rate. But
it is also possible that crime rate Y has a causal effect on X, through policy decisions.
That is, all else equal, cities with very low crime rate tend to decide to hire fewer police
officers (per capita) than cities with higher crime rates. The decision about X (officers
per capita) is determined partly by Y (crime rate). Even if X has zero effect on Y , we
would see a positive correlation in the data if higher Y tends to cause cities to choose
higher X.

With simultaneity or reverse causality, OLS regression of Y on X does not consistently
estimate structural or treatment effects. In the police example, even if there were zero
effect of X on Y , the response of X to Y would cause positive correlation between X and
Y (cities with more crime would have more police), i.e., OLS estimates a positive slope
that falsely suggests a positive effect.

There are methods like instrumental variables that can (sometimes) solve the problem
of simultaneity or reverse causality, but they are beyond our scope. For now, you can just

https://youtu.be/6Ln92T9tdso
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try to think critically about whether or not simultaneity or reverse causality is a problem
in real-world examples.

Discussion Question 12.5 (health and medical expenditure). You want to learn the
causal effect of how much an individual spends on medical insurance and care (X, dollars
per year) on health (Y , higher value means healthier).

a) Explain why a regression of Y on X would not estimate this causal effect.
b) Would the regression slope be higher or lower than the causal effect? Why?

Optional Resources

Optional resources for this chapter

• Sample selection from survey non-response (Masten video)

• External validity (Masten video)

• Missing data approaches (Masten video)

• Reverse causality and simultaneity (Masten video)

• Reverse causality example: violence (Lambert video)

• Reverse causality example: HDI (Lambert video)

• Greater external validity for “structural” results (Masten video)

• Sections 9.2 (“Measurement Error”) and 9.3 (“Missing Data and Nonrandom Sam-
ples”) in Heiss (2016)

• Chapter 22 (“Missing Data”) in Kaplan (2020)

• Chapter 9 (“Assessing Studies Based on Multiple Regression”) and Section 13.2
(“Threats to Validity of Experiments”) in Hanck et al. (2018)

https://www.youtube.com/watch?v=qEyrtBnJKo8
https://www.youtube.com/watch?v=XiVk8uwptCw
https://www.youtube.com/watch?v=aI3TBySF024
https://www.youtube.com/watch?v=ROLeLaR-17U
https://www.youtube.com/watch?v=yBipwlHXxJc
https://www.youtube.com/watch?v=1VWevzuw4TI
https://www.youtube.com/watch?v=nlsR4lxYBRo
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Empirical Exercises

Empirical Exercise EE12.1. You will analyze data from Rouse (1998) on a “school
voucher” program in Milwaukee, Wisconsin. As Rouse (1998) explains, “In 1990 Wisconsin
began providing vouchers to a small number of low-income students to attend nonsectarian
private schools.” Wooldridge notes that many observations with missing data have already
been dropped, so there is sample selection. He also notes you can use variable mnce90 to
try to control for this, but mnce90 is missing for 2/3 students, so then there’s a missing
data problem, too. If everything were perfect, the estimated ATE of eligibility (binary
variable select) shouldn’t depend too much on the control variables or the subsample of
individuals; but clearly it does.

a. Load and see a description of the data.

R: library(wooldridge) and ?voucher

Stata:
use https://raw.githubusercontent.com/kaplandm/stata/main/data/
voucher.dta , clear

describe

b. R only: copy the dataset into data frame df with df <- voucher

c. Display the total number of observations (rows) in the dataset.

R: nrow(df)

Stata: count

d. Display summary statistics of mnce90 and mnce, including the number of missing
observations.

R: summary(df[,c('mnce','mnce90')])

Stata: count if missing(mnce90) and summarize mnce mnce90

e. Run a simple regression of mnce (the 1994 math test score) on select (the dummy
variable for whether a child was ever allowed to use a voucher).

R: (ret1 <- lm(mnce~select, data=df))

Stata: regress mnce select , vce(robust)

f. Repeat but adding the 1990 math test score mnce90 as a regressor. Also, compare
the number of observations used in the regression to the total number of observations
in the dataset.

R: (ret2 <- lm(mnce~select+mnce90, data=df)) and then length(ret2$
residuals) or summary(ret2) to see the number of observations actually used.

Stata: regress mnce select mnce90 , vce(robust) noting that observations
with missing mnce90 are automatically (and silently) omitted from the regression,
but the output shows the number of observations actually used, which you can
compare to the number in the full dataset.
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g. To try to see how much of the estimate’s change is due to controlling for mnce90
versus sample selection bias, re-run your first simple regression but with only the
observations used in the second regression, i.e., only observations with non-missing
mnce90.

R: (ret2b <- lm(mnce~select, data=df[!is.na(df$mnce90),]))

Stata: regress mnce select if !missing(mnce90) , vce(robust)

h. Optional: repeat the above three regressions but with selectyrs (number of years
eligible for voucher program) instead of the binary select

i. Optional: repeat the first three regressions but with additional regressors like
female to see if they further change the coefficient on select

Empirical Exercise EE12.2. You will analyze data from Card (1995), first seen in
EE3.1, with individual-level observations of wages, years of education, and other variables.
You’ll focus on the relationship between wage and education. The variable IQ seems like
a helpful control variable, but it is not observed for all individuals, which may cause bias
depending on why it is missing. You’ll estimate the coefficient on education with different
sets of regressors and different subsets of data. You’ll also look at the difference it makes
using the sampling weights (as you should).

a. Load and see a description of the data.

R: library(wooldridge) and ?card

Stata: bcuse card , clear

b. R only: copy the dataset into data frame df with df <- card

c. Display the total number of observations (rows) in the dataset.

R: nrow(df)

Stata: count

d. Show how many observations are missing IQ.

R: table(is.na(df$IQ))

Stata: count if missing(IQ)

e. Run a simple regression of log wage on years of education.

R: (ret1u <- lm(log(wage)~educ, data=df))

Stata: regress lwage educ , vce(robust)

f. Run the same regression but with the provided weights.

R: (ret1w <- lm(log(wage)~educ, data=df, weights=weight))

Stata: regress lwage educ [pweight=weight] , vce(robust)
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g. Run the same simple weighted regression but with the subset of observations for
which IQ is observed.

R: replace df with df[!is.na(df$IQ),]

Stata: add if !missing(IQ) after educ (with a space on either side)

h. Regress log wage on education and IQ (which automatically uses only observations
where IQ is non-missing).

R: (ret2w <- lm(log(wage)~educ+IQ, data=df, weights=weight))

Stata: regress lwage educ IQ [pweight=weight] , vce(robust)

i. Optional: repeat parts (f)–(h) but with additional regressors of your choice.
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Time Series
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Introduction

Part III concerns time series data and models. The focus is on forecasting: predic-
tion of future values or events. Also, foundational concepts like (non)stationarity and
autocorrelation are introduced.

Related (free) material is from Diebold (2018b) and Hanck et al. (2018, Ch. 14).
Chapter 1 in the DataCamp intro time series course is also free.
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https://campus.datacamp.com/courses/introduction-to-time-series-analysis
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Chapter 13

Time Series: One Variable

=⇒ Kaplan video: Chapter Introduction

Chapter 13 extends Chapter 2 to the time series setting. New concepts like station-
arity and autocorrelation are introduced. There are even new complications just with
estimating a variable’s mean and computing a confidence interval.

Unit learning objectives for this chapter

13.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

13.2. Identify and describe different components and properties of a time series [TLOs 2
and 3]

13.3. Interpret transformed and decomposed time series [TLOs 2 and 3]

13.4. In R (or Stata): estimate basic descriptions of a time series [TLO 7]

13.5. In R (or Stata): decompose a time series into different components [TLO 7]

13.1 Terms and Notation

A time series of a single variable is written as Yt for time periods t = 1, . . . , T . For
example, Y could be annual GDP of the U.S., with t = 1 indicating the year 2001 and
T = 10 indicating a total of ten years of data (here 2001, 2002, . . . , 2010). Or, Y could
be quarterly GDP from 2001Q1 (year 2001, quarter 1) through 2010Q4, a total of T = 40
periods where t = 1 is 2001Q1, t = 2 is 2001Q2, t = 9 is 2003Q1, etc. Or, Y could be the
weekly return on a certain stock observed over a single calendar year, t = 1, . . . , 52.

In practice, there are many possible complications with timing and measurement,
although details are beyond our scope. First, instead of “discrete time” periods t =
1, . . . , T , “continuous time” models let t be any real (decimal) number, not just integers.
Second, even with discrete time, the periods may be of different lengths. Third, even
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https://youtu.be/a_l6h91vTHI
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with equal discrete periods, it is important to know precisely when and how the “time t”
observation is measured. For example, imagine annual data, where t represents an entire
year. Is Yt measured on January 1 of year t? Or December 31? Or is Yt the average value
across the entire year? Such timing is particularly important when analyzing multiple
time series. For example, if Yt is measured on January 1 of year t, but Xt is measured on
December 31, then Xt is measured 364 days after Yt but only 1 day before Yt+1.

Similar to physics, the sampling frequency is the inverse of the length of each time
period. For example, if each period is one year, then there is one observation per year,
so the sampling frequency is yearly (or “annual”). If each period is one quarter, then the
sampling frequency is quarterly. Similarly, time series can be monthly, weekly, daily, or
even hourly or higher frequency (like for stock prices, website traffic, energy use, etc.).

The following terms describe relationships among observations. Relative to Yt, the
first lag (or first lagged value) is Yt−1, i.e., the value from the immediately prior period.
Similarly, the second lag is Yt−2, and generally the jth lag is Yt−j . The first difference
is

∆Yt ≡ Yt − Yt−1. (13.1)

(But “second difference” does not refer to Yt − Yt−2.) Looking to the future, Yt+1 is the
first lead (of Yt), and Yt+j is the jth lead. In many cases, modeling the relationship
between Yt+1 and Yt is equivalent to modeling Yt and Yt−1, for example. If we use
observations Y1, . . . , YT for estimation, then anything in the period t = 1, . . . , T is called
in-sample, as opposed to t = T+1, T+2, . . ., which is out-of-sample. Sometimes, fewer
than T observations are used for estimation, and the definitions are adjusted accordingly
(Section 15.2).

Example 13.1 (Kaplan video). You have data on the daily electricity consumption of
one household for one year. Specifically, period t = 1 is January 1, 2021; t = 2 is January
2, 2021; up to t = 365 is December 31, 2021, so the sample size is T = 365 observations.
Thus, the full sample is Yt for t = 1, . . . , 365; Y1 is the household’s electricity consumption
on January 1, 2021, and generally Yt is the household’s electricity consumption on day
t. Observations Yt and Yt+7 are the same day of the week (like Wednesday), one week
apart. The out-of-sample value YT+1 is for January 1, 2022. The first difference is the
change in electricity consumption from day t − 1 to day t, ∆Yt = Yt − Yt−1; a positive
value indicates an increase in electricity consumption, whereas a negative value indicates
a decrease.

13.2 Populations, Randomness, and Sampling

=⇒ Kaplan video: Time Series Populations

We continue the perspective of Yt as a random variable, just as Yi was earlier (Sec-
tions 2.1 and 2.3). Earlier, Yi was “random” because we could have sampled a different
value from the population. But, what is the “population” for a time series?

https://youtu.be/a3AEwsk3Isg
https://youtu.be/79u0l8FeKgI
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One view is like the superpopulation from Section 2.2. That is, we can imagine many
(infinite) possible universes. In each, there are the same mechanisms underlying how the
time series values are generated, but the actual numerical values differ across universes.
Like before, E(Yt) is the average of the Yt values across all the different universes. Simi-
larly, Var(Yt) is the variance across universes. Measures like Corr(Yt, Yt+1) show whether
Yt and Yt+1 tend to both be high (or low), or opposite, or unrelated. For example, maybe
GDP growth is high in both 2018 and 2019 in many universes, and low in both in other
universes, but very few universes have high growth in 2018 and low in 2019, or low and
then high. Then, in the (super)population, Corr(Y2018, Y2019) > 0.

Another view is that we observe a sequence of T values within an infinitely long
sequence of Yt. We could think about what the sample average would be if we had a very
long sequence, or other “asymptotic” properties.

13.3 Stationarity

=⇒ Kaplan video: Stationarity

Will the future be like the past? This question arose in Section 12.2, on external
validity. Here, “be like” is formalized in terms of probability distributions.

A time series Yt is stationary if its future is like its past, probabilistically. A necessary
(but not sufficient) aspect of this is E(Yt) = E(Ys) for any time periods t and s: the mean
never changes. Likewise, the median never changes, nor the standard deviation; the entire
distribution of Yt is identical to that of Ys. Further, the relationship between this time
period and next period must be stable over time, i.e., the joint distribution of (Yt, Yt+1)
is identical for all t. Similarly, the joint distribution of the previous, current, and next
periods’ values, (Yt−1, Yt, Yt+1), never changes. In full, stationarity is defined as the joint
distribution of (Yt−J , . . . , Yt) not depending on t, for any J .

The foregoing describes strict stationarity (also called strong stationarity); a
“weaker” concept called covariance stationarity (also called wide-sense stationarity
or weak-sense stationarity) requires only the means and autocovariances (Section 13.4)
to be the same at all t, not the full joint distributions. Technically, it is not “weaker” in
the logical sense (Section 6.1.1) because of weird distributions whose mean is undefined
(e.g., Cauchy), but if you assume Yt has finite variance, then strict (strong) stationarity
implies covariance (weak) stationarity. That is, given finite variance, all strictly stationary
series are also covariance stationary, but some covariance stationary series are not strictly
stationary.

Example 13.2 (Kaplan video). In every minute t = 1, 2, 3, . . ., a coin is flipped to
generate Yt = 1 if heads and Yt = 0 if tails, with P(Yt = 1) = 0.5. This series is strictly
stationary: (Yt−J , . . . , Yt) consists of independent binary random variables all with the
same probability of equaling 1, regardless of t, for any J .

https://youtu.be/KN9H68_7ZZY
https://youtu.be/dowgn_jck5o
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Example 13.3 (Kaplan video). Consider independent coin flips Yt with P(Yt = 1) = 0.5,
and then define the time series Zt = Yt + Yt−1. For any t, using the fact that the coin
flips are independent and have the same 0.5 probability of Yt = 1: P(Zt = 2) = P(Yt =
Yt−1 = 1) = (0.5)(0.5) = 0.25 and P(Zt = 0) = P(Yt = Yt−1 = 0) = (0.5)(0.5) = 0.25,
so P(Zt = 1) = 1 − P(Zt = 2) − P(Zt = 0) = 1 − 0.25 − 0.25 = 0.5. That is, the
distribution of Zt is the same for any t. The joint distribution of (Zt, Zt−1) is also the
same for any t, as is the joint distribution of (Zt, . . . , Zt−J) for any J ; for example,
P(Zt = Zt−1 = 2) = P(Yt−2 = Yt−1 = Yt = 1) = (0.5)(0.5)(0.5) = 0.125, regardless of t,
and other calculations follow similarly.

With either type of stationarity, an estimate of E(Yt) from historical data can be inter-
preted as an estimate of the future E(YT+1), which is the (unconditional) best prediction
of YT+1 under quadratic loss. Stationarity essentially assumes external validity over time,
allowing us to extrapolate the past into the future. In Chapters 14 and 15, we’ll improve
upon the unconditional forecast by incorporating other information, but stationarity (and
its variations) remain important considerations for external validity.

In practice, you should not blindly assume stationarity, but examine it empirically
and economically. That is, you can look at the data to see if it appears stationary, and
you can also think about what is happening in the world now that may change the future
behavior. A previously stationary time series may no longer be stationary if there is a
sudden law change or other event with permanent effect.

Section 13.6 contains more on data that’s nonstationary, i.e., not stationary.

13.4 Autocovariance and Autocorrelation

=⇒ Kaplan video: Autocorrelation

An important feature of a time series is the correlation between this period’s value
and last period’s value, i.e., between Yt and Yt−1. This correlation is called the first
autocorrelation or serial correlation.

The first autocorrelation can be positive, negative, or zero. For example, if today’s
price change is not systematically related to yesterday’s price change, then the time se-
ries of price changes has zero autocorrelation. If high quarterly GDP growth follows
high growth, and low follows low, rather than jumping around randomly each quarter,
then GDP growth has a positive autocorrelation. Conversely, negative first autocorre-
lation implies high values are followed by low values, and low by high, more often than
high following high or low following low. In economics, positive autocorrelation is most
common.

The sampling frequency affects the first autocorrelation. Usually, especially after ad-
justing for seasonality (Section 13.6.2), first autocorrelations are closer to positive one
with high frequency and closer to zero with low frequency. For example, today’s U.S.
unemployment rate will be extremely close to yesterday’s rate, so the first autocorrela-

https://youtu.be/dowgn_jck5o
https://youtu.be/nClORD6VGMU
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tion is near one with daily data. However, with yearly data (lower frequency), the first
autocorrelation is lower. If each period is one decade (even lower frequency), then the
first autocorrelation may be near zero.

Generally, for a stationary series, the jth autocorrelation (or jth autocorrelation
coefficient) ρj describes the relationship between Yt and Yt−j , as does the related jth
autocovariance γj . Stationarity implies these values do not vary with t, only j (the lag).
Consequently, it is the same (statistically) if we look j periods in the past or j periods
in the future, because period t− j is j periods before t just as t is j periods before t+ j,
and Cov(W,Z) = Cov(Z,W ). Mathematically,

γj ≡ Cov(Yt, Yt−j) = Cov(Yt+j , Yt) = γ−j , (13.2)
ρj ≡ Corr(Yt, Yt−j) = Corr(Yt+j , Yt) = ρ−j , (13.3)

σ2
Y ≡ Var(Yt), (13.4)

γ0 ≡ Cov(Yt, Yt) = Var(Yt) = σ2
Y , ρ0 = Corr(Yt, Yt) = 1, (13.5)

ρj ≡ Corr(Yt, Yt−j) =
Cov(Yt, Yt−j)√
Var(Yt)Var(Yt−j)

=
γj
σ2
Y

=
γj
γ0

. (13.6)

In (13.6), the denominator simplifies because stationarity implies Var(Yt−j) = Var(Yt) =
σ2
Y , and σ2

Y = γ0 from (13.5):√
Var(Yt)Var(Yt−j) =

√
σ2
Y σ

2
Y = σ2

Y = γ0.

Although sometimes autocovariances are more convenient mathematically, autocorre-
lations are easier to interpret. The units of autocovariance are the square of the units of
Yt (like “squared dollars”), which is difficult to interpret. The autocorrelation does not
depend on the units of Yt and has the same interpretation as a correlation, where possible
values are between −1 (perfect negative linear correlation) and +1 (perfect positive lin-
ear correlation). The usual caveats about interpreting correlation (nonlinearity, causality,
magnitude of change, etc.) apply equally to autocorrelation.1

Discussion Question 13.1 (autocorrelation). For each of the following, explain why
you think ρ1 > 0, ρ1 ≈ 0, or ρ1 < 0.

a) An individual’s employment status (Yt = 1 if employed at time t, otherwise Yt = 0),
observed weekly.

b) GDP growth, annual.
c) GDP growth, quarterly.
d) Seasonally-adjusted GDP growth, quarterly.

13.5 Estimation

In R, you can estimate the mean with mean() and estimate autocorrelations with acf
(). There are certain conditions required for these to be good estimators, but the most

1E.g., https://en.wikipedia.org/wiki/Correlation_and_dependence

https://en.wikipedia.org/wiki/Correlation_and_dependence
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important is that the series is indeed stationary. Otherwise, if E(Yt) changes with t,
then we cannot hope to estimate “the” mean; or if Corr(Yt, Yt−1) changes with t, then we
cannot estimate “the” first autocorrelation; etc.

Example 13.4. The following code estimates autocorrelations for monthly international
airline passenger data. The result ρ̂12 > ρ̂6 seems surprising at first: Yt is more strongly
correlated with Yt−12 than Yt−6, even though Yt−6 is closer in time. However, these are
monthly data with strong seasonality (Section 13.6.2), so the fact that t− 12 is the same
calendar month as t causes stronger correlation than with t− 6, which is a very different
season; for example, t − 6 is summer if t is winter. (Because of the seasonality, clearly
E(Yt) changes with t; do the autocorrelations also change with t? It might be better to
remove the seasonality first, but that’s later in Section 13.7.) To see a graph, run the
code yourself with plot=TRUE instead of FALSE.

retcorr <- acf(AirPassengers, lag.max=12, type='correlation',
plot=FALSE, ci.type='ma')

retcov <- acf(AirPassengers, lag.max=12, type='covariance',
plot=FALSE, ci.type='ma')

print(data.frame(lagmonth=0:12, rho.j=round(retcorr$acf,digits=2),
gamma.j=round(retcov$acf,digits=0)), row.names=F)

## lagmonth rho.j gamma.j
## 0 1.00 14292
## 1 0.95 13549
## 2 0.88 12514
## 3 0.81 11529
## 4 0.75 10757
## 5 0.71 10201
## 6 0.68 9743
## 7 0.66 9474
## 8 0.66 9370
## 9 0.67 9589
## 10 0.70 10043
## 11 0.74 10622
## 12 0.76 10868

There are limits to what we can learn from data. For an extreme example, consider ρj
for j = T : because we do not observe any two observations T periods apart (the earliest
observation is Y1, but we don’t observe Y1+T ), we cannot learn anything about ρT . More
generally, it is difficult to learn about γj for large j (near T ).
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13.6 Nonstationarity

=⇒ Kaplan video: Nonstationarity

This section describes the most common reasons a time series is nonstationary, i.e.,
not stationary.

In Sum: Reasons for Nonstationarity

Stochastic trend (unit root; e.g., random walk): variance increasing over time
Deterministic trend: mean changing over time
Seasonality: mean changing over time (repeating up-and-down pattern)
Cycles: up-and-down patterns without fixed frequency
Breaks: permanent changes

13.6.1 Trends

Stochastic Trends

A random walk as in (13.7) generates nonstationary Yt. This is a special case of a more
general unit root process, which all share qualitatively similar properties (including
nonstationarity). It is also sometimes called a stochastic trend. Let Y0 be the initial
value. Let

Yt = Yt−1 + ϵt, (13.7)

where the increments ϵt are iid, mean zero, and independent of all past values Ys for
s ≤ t− 1; i.e., the ϵt are independent white noise (Section 14.1).

One way to see the nonstationarity is that

Var(Yt) = Var(Yt−1 + ϵt) = Var(Yt−1) +

>0︷ ︸︸ ︷
Var(ϵt)+2

=0 since Yt−1⊥⊥ϵt︷ ︸︸ ︷
Cov(Yt−1, ϵt) > Var(Yt−1), (13.8)

violating the property of stationarity that the variance is the same at all t. Logically,
stationarity implies same variance at all t, so by the contrapositive, different variance at
difference t implies nonstationarity.

For prediction, given (13.7), the “best” guess (under quadratic loss) of next period’s
Yt+1 is the current period’s Yt. Here, Yt contains all the relevant historical information
about the future Yt+1; additionally knowing Yt−1 or other past values does not help.

Although nonstationary, the random walk can be transformed into a stationary process
by taking a first difference (Section 13.1). Subtracting Yt−1 from both sides of (13.7),

Yt − Yt−1 = Yt−1 + ϵt − Yt−1 = ϵt, (13.9)

and ϵt is iid, which implies stationarity. Because the first difference is stationary, the
original time series Yt is called difference stationary.

https://youtu.be/vg47pQ21YM4
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Deterministic Trends

With a deterministic trend, the time series goes up (or down, or up and down, etc.)
in a non-random pattern. Analogous to difference stationarity, a time series is trend
stationary if removing its deterministic trend produces a stationary series.

Example 13.5 (Kaplan video). If Yt = t+ ϵt with E(ϵt) = 0, then

E(Yt) = E(t+ ϵt) = t+ E(ϵt) = t+ 0 = t,

which changes with t, violating stationarity. The detrended series is Yt − t = ϵt, so Yt is
trend stationary if ϵt is stationary.

Distinguishing Trend Types

Despite their seeming so different, in practice it can be difficult to distinguish a stochastic
trend from a deterministic trend. For example, in climate econometrics,2 there is ongo-
ing debate about whether the earth’s temperature currently has a stochastic trend or a
deterministic trend that changed at some point in the past; e.g., see Kaufmann, Kauppi,
and Stock (2010), Chang, Kaufmann, Kim, Miller, Park, and Park (2020), and references
therein.

However difficult, it is important to distinguish stochastic and deterministic trends
because they affect forecasts. Roughly, a trend stationary time series is expected to
return to its deterministic trend line relatively quickly, whereas the stochastic trend makes
deviations more persistent.

Further details of optimal forecasting with trends, unit root testing, and other topics
are interesting but beyond our scope.

13.6.2 Seasonality

A time series with seasonality tends to have higher values in certain time periods (“sea-
sons”) than in others. The seasons could be certain months during a calendar year, days
of the week, hours of the day, or other periods within a repeating cycle. Seasonality can
be due to human-imposed seasons (holidays, school schedules, elections, etc.) or natural
seasons (weather, crops, sunlight, etc.).

Example 13.6. Here are a few brief examples.
• Retail sales are highest near the Christmas holiday season.
• Some agricultural crops are only harvested in one season of the year.
• Restaurant dinner sales are higher on Friday and Saturday than other days.
• Crime rates fluctuate with the day of the week and with the hour of the day.

2Although not exactly climate econometrics, half the 2018 Nobel Prize was awarded to William
Nordhaus “for integrating climate change into long-run macroeconomic analysis”; see https://www.
nobelprize.org/prizes/economic-sciences/2018/press-release/

https://youtu.be/nv0veUWUAC8
https://www.nobelprize.org/prizes/economic-sciences/2018/press-release/
https://www.nobelprize.org/prizes/economic-sciences/2018/press-release/
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The presence of seasonality depends on the length of time period for each time series
observation. If each observation aggregates all seasons within a cycle, then the time series
will not show seasonality.

Example 13.7 (Kaplan video). Let Yt be retail sales in time period t. If Yt is quarterly
(each t is one quarter of the year), then seasonality appears: Yt always jumps up during
the fourth quarter (October, November, December). That is, if Y1 is the first quarter
of some year, then we expect generally higher retail sales for Y4, Y8, Y12, etc., than for
Y1, Y2, Y3, Y5, Y6, etc. However, if we aggregate over each year, then we do not expect
Y1 + Y2 + Y3 + Y4 to be any higher or lower than Y5 + Y6 + Y7 + Y8 due to seasonality:
both sums contain one “Christmas season” along with one of every other type of season.
Thus, if instead we observe annual Yt (each t is one full year), then there is no seasonality.
If instead t is divided into periods shorter than a quarter, then seasonality is still seen:
with monthly data, Yt jumps up in November and especially December, or with weekly
data, Yt jumps up for several weeks leading up to Christmas.

Some “seasons” are not actually seasons with a fixed frequency, so they must be
handled differently. For example, the calendar date of Easter differs from year to year.
For forecasting regression models, you can add dummy variables for such events. For
Easter specifically, the function easter() in the forecast package is helpful.

Example 13.8. Figure 13.1 illustrates how seasonality can be seen in plots of Yt over
t that show an up-and-down pattern that repeats every year (or other period). The
left graph is from plot(AirPassengers) and shows monthly numbers of international
airline passengers (in thousands). There is a clear up-and-down seasonal pattern that
repeats every year. You can also try using seasonplot(AirPassengers), a function in
the forecast package (Hyndman et al., 2020; Hyndman and Khandakar, 2008). The
right graph of Figure 13.1 is from plot(log(AirPassengers)) and shows ln(Yt) against
t. Although both show seasonality, the peak-to-trough magnitude (height) of the seasonal
variation is more constant every year for ln(Yt); see Section 13.7.

13.6.3 Cycles

What about up-and-down patterns caused by macroeconomic business cycles, or El Niño–
Southern Oscillation cycles? Cycles are often important but more difficult to understand.
One added difficulty is the unknown and changing length of cycles; e.g., El Niño does
not come precisely every five years, nor is there a recession every five years. Here, like in
Hyndman and Athanasopoulos (2019, §6), the “trend” is actually a trend–cycle compo-
nent that includes cycles, too. Though beyond our scope, it can be helpful to explicitly
split out cycles; for more on cycles, see for example Diebold (2018b, §§6–7).

13.6.4 Structural Breaks

Sometimes there are big, permanent changes in the world, and the properties of a time
series also change permanently. This is often called a structural break. For example,

https://youtu.be/HcCBs8G89FE
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Figure 13.1: Seasonality in international air travel.

in the U.S., many macroeconomic time series look very different before and after 1985; in
particular, the reduction in volatility led to the term “Great Moderation.”3 Dealing with
breaks is beyond our scope, but they are important to be aware of; see also Section 14.7.

13.7 Decomposition

=⇒ Kaplan video: Decomposition

The observed time series Yt can be written in terms of unobserved components of
“trend” (really trend–cycle), seasonality, and a remainder (Diebold, 2018b, §2.10). The
remainder, also called the random or irregular or residual or noise component, is what
remains of Yt after removing the trend and seasonality.

Notationally, following Hyndman and Athanasopoulos (2019, §6), let Tt denote trend,
St seasonality, and Rt remainder. Then,

Rt ≡ Yt − Tt − St =⇒ Yt = Tt + St +Rt. (13.10)

This is an additive decomposition: Yt is “decomposed” into additive trend, seasonality,
and remainder components, which all have the same units as Yt.

Alternatively, a multiplicative decomposition is

Yt = Tt × St ×Rt. (13.11)

Now, Tt still has the same units as Yt, but St and Rt represent percentage deviations
from the trend. For example, St = 1.05 means 5% higher, or Rt = 0.85 means 15% lower.
(Often a percentage seasonal component makes more sense.) Actually, taking the log of
both sides of (13.11) yields an additive model:

ln(Yt) = ln(Tt) + ln(St) + ln(Rt). (13.12)
3See https://en.wikipedia.org/wiki/Great_Moderation

https://youtu.be/xwHvnoKhpX4
https://en.wikipedia.org/wiki/Great_Moderation
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Finally, sometimes the decomposition is a mix: Yt = Tt × St +Rt.
There are R functions to decompose time series into trend, seasonal, and remainder

components. To choose the right method, you must decide whether the seasonality is ad-
ditive or multiplicative. For example, compared to sales on July 1, are sales on December
1 usually higher by $500 (additive), or by 30% (multiplicative)? In other words, is (13.10)
or (13.11) more sensible?

For intuition, the following roughly describes a classical additive decomposition
(Hyndman and Athanasopoulos, 2019, §6.3). First, the trend is estimated, usually by
some nonparametric smoother, yielding the estimated trend T̂t. Second, the “seasonal”
averages of Yt−T̂t (the detrended data) are computed. For example, with monthly data,
all January values of Yt − T̂t are averaged to estimate Ŝt when t is in January, and then
all February values are averaged to get Ŝt for February t, etc. Third, R̂t = Yt − T̂t − Ŝt.
There are many variations, with different estimators of T̂t, or allowing Ŝt to change over
time. For multiplicative decomposition, either apply the above to ln(Yt), or replace
subtraction with division: use Yt/T̂t in the second step, and Yt/(T̂tŜt) in the third step.

Example 13.9. Figure 13.2 shows an additive decomposition produced by the following
R code that uses decompose() (in the built-in stats package).

par(family='serif', mgp=c(2.1,0.8,0))
ret <- decompose(co2, type='additive')
plot(ret)

Example 13.10. Figure 13.3 shows a multiplicative decomposition generated by the
following R code. When seasonality is multiplicative instead of additive, specify type='
multiplicative' as below.

par(family='serif', mgp=c(2.1,0.8,0))
ret <- decompose(AirPassengers, type='multiplicative')
plot(ret)

Other R decomposition functions to try (or Google) include stl(), HoltWinters(),
and the forecast package’s mstl() (multiple seasonal).

Discussion Question 13.2 (nonstationarity). For each of the following time series, ex-
plain specifically why you doubt its strict stationarity: a) GDP, annual; b) stock market
index, annual; c) world population, annual; and d) U.S. residential water usage, monthly
(hint for non-US students: it’s much hotter in summer, and many houses have yards/-
gardens that require watering).
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Figure 13.3: Multiplicative decomposition, monthly airline passengers (1000s).
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13.8 Transformations

To improve interpretation or statistical properties, it may help to transform a time series
before analyzing it. Three common transformations are now briefly discussed.

First, the first difference looks at changes in Yt, defined in (13.1) as ∆Yt ≡ Yt − Yt−1.
One motivation is Section 13.6: some nonstationary Yt are difference stationary, so ∆Yt
is stationary. For example, if Yt = Yt−1 + Ut, where Ut is iid, then Yt is a random walk
and thus nonstationary. However, ∆Yt = Ut is iid, which is stationary. Methods that
only work with stationary data could be applied to ∆Yt but not Yt.

Second, log transformations sometimes help, like in (13.12) where a multiplicative
model becomes additive. That is, instead of Yt, we analyze Zt = ln(Yt).

Third, taking a log difference ln(Yt) − ln(Yt−1) yields the compound growth rate.
This is the first difference of the log-transformed series: letting Zt = ln(Yt), then ∆Zt =
Zt − Zt−1 = ln(Yt)− ln(Yt−1) = ln(Yt/Yt−1). For example, the formula for the final level
A after continuously compounded growth at effective annual rate r for t years, starting
at initial level P , is A = Pert, the “Pert” formula you may have learned in high-school
for computing compound interest rates. For a single year (t = 1 in the formula), the rate
r is then solved by A = Per implying er = A/P and thus r = ln(A/P ) = ln(A)− ln(P ),
using a log property (from Section 8.1.1) for the last equality. Thus, with annual data,
the log difference ln(Yt)− ln(Yt−1) represents the effective annual rate.

Optional Resources

Optional resources for this chapter

• Deterministic and stochastic trends (Lambert video)

• Chapter 14 (“Time Series”) in Hansen (2020)

• Transformations: Section 3.2 (“Transformations and adjustments”) in Hyndman and
Athanasopoulos (2019)

• Seasonality and holidays: Section 5.4 (“Some useful predictors”) in Hyndman and
Athanasopoulos (2019)

• Trends, seasonality, and/or decomposition: Sections 8.1 (“Random Walks. . . ”) and
8.2 (“Stochastic vs. Deterministic Trend”) in Diebold (2018c), Section 9.4 (“Stochas-
tic and deterministic trends”) in Hyndman and Athanasopoulos (2019), Section 14.7
(“Nonstationarity I: Trends”) in Hanck et al. (2018), Chapter 5 (“Trend and Season-
ality”) in Diebold (2018b), Chapter 12 (“Trend and Seasonality”) in Diebold (2018a),
Chapter 6 (“Time series decomposition”) in Hyndman and Athanasopoulos (2019),
Section 3.6 (“Classical decomposition”) in Holmes, Scheuerell, and Ward (2019),
Sections 10.3.3–10.3.4 (“Trends” and “Seasonality”) in Heiss (2016)

• Stationarity and random walk: Section 8.1 (“Stationarity and differencing”) in Hyn-
dman and Athanasopoulos (2019), Section 11.2 (“The Nature of Highly Persistent

https://en.wikipedia.org/wiki/Compound_interest#Annual_equivalent_rate
https://en.wikipedia.org/wiki/Compound_interest#Continuous_compounding
https://en.wikipedia.org/wiki/Compound_interest#Annual_equivalent_rate
https://www.youtube.com/watch?v=yCM6N8sRtPY
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Time Series,” i.e., random walks) in Heiss (2016)

• Estimation of mean and autocovariances: Section 13.3 (“Estimation and Inference
for the Mean, Autocorrelation and Partial Autocorrelation Functions”) in Diebold
(2018a)

• HAC standard errors: Section 15.4 (“HAC Standard Errors”) in Hanck et al. (2018)

• Section 10.2 (“Time Series Data Types in R”) in Heiss (2016)
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Empirical Exercises

Empirical Exercise EE13.1. You will analyze monthly U.S. unemployment data.
You’ll notice that the unemployment rate is not very seasonal (by month), but it is
very persistent (positively autocorrelated). Note that urate is in percent units, so 5.2
means 5.2%, etc.

a. Load and see a description of the data.

R: library(wooldridge) and ?beveridge

Stata: bcuse beveridge , clear

b. Tell your software that you have monthly time series data.

R: tsdat <- ts(data=beveridge$urate, frequency=12, start=c(2000,12))
creates a time series variable named tsdat that’s a time series (ts) with the

unemployment rate data (urate) starting in year 2000 month 12 (the first value
of beveridge$month). Argument frequency=12 says there are 12 “seasons” before
getting back to the first one; in this case, 12 different months per year. (Daily data
could use frequency=7 to allow day-of-week “seasonality.”)

Stata: tsset ym , monthly

c. R only: decompose (additively) the unemployment rate time series into trend, sea-
sonal, and remainder components with tsdec <- decompose(tsdat) to compute
and plot(tsdec) to plot. You can also see that the magnitude of the seasonal
component is relatively small with max(abs(tsdec$seasonal))

d. Stata only: to additively decompose the time series, first estimate the trend com-
ponent with a nonparametric “moving average smoother” with command
tssmooth ma furate=urate , weights(1 2 2 2 2 2 <2> 2 2 2 2 2 1)

and plot this smoothed trend against the raw time series with
tsline urate furate , name(furate) ylabel(#3)

e. Stata only: compute the seasonal effects by averaging the difference between the
data and the trend within each month (e.g., average among all January values,
then separately among all February values, etc.). Generate the month variable
with generate month = month(dofm(ym)) and compute the within-month aver-
ages with bysort month : egen seasadd = mean(urate-furate)

f. Stata only: normalize the seasonal effects to average to zero. Compute the average
of the raw seasonal effects, and then subtract that value from the seasonal effects
(to make them average to zero) with commands (note: the broken-up “line” scalar
normadd ... should all be on the same line of code)
sort ym
scalar normadd = (seasadd[1]+seasadd[2]+seasadd[3]+seasadd[4]+
seasadd[5]+seasadd[6]+seasadd[7]+seasadd[8]+seasadd[9]+
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seasadd[10]+seasadd[11]+seasadd[12])/12
replace seasadd = seasadd - normadd

g. Stata only: see how big (or small) the seasonal effects are with commands
list month seasadd if year(dofm(ym))==year(dofm(ym[1]))+1
summarize seas , detail

h. Stata only: generate the remainder term as the raw data minus trend minus sea-
sonality, with command generate remadd = urate - furate - seasadd

i. Stata only: plot the seasonal and remainder series, and then make a combined graph
with everything (similar to what R shows):
tsline seasadd , name(seasadd) ylabel(#3)
tsline remadd , name(remadd) ylabel(#3)
graph combine furate seasadd remadd , cols(1) name(decompurateadd)

j. Plot the autocorrelation function (ACF) up to 48 months lag.

R: acf(tsdat, lag.max=48, ci=0)

Stata: ac urate , level(95) lags(48)

k. Display the autocorrelation values up to 24 months.

R: acf(tsdat, lag.max=24, type='correlation', plot=FALSE)

Stata: corrgram urate , lags(24) noplot

l. Optional: repeat the decomposition plot and ACF plot for the vacancy rate variable
vrate

Empirical Exercise EE13.2. You will analyze monthly data on industrial cement pro-
duction from Shea (1993). If you’re curious, you can view and download more recent
cement data from the Federal Reserve Bank of St. Louis.4 You’ll notice that seasonality
is very important. You’ll also notice that the autocorrelations of the raw data reflect the
up-and-down seasonality, whereas the autocorrelations of the seasonally-adjusted data
show more consistently positive autocorrelation (up to two years lag or so).

a. Load and see a description of the data.

R: library(wooldridge) and ?cement

Stata: bcuse cement , clear

b. Tell your software that you have monthly time series data.

R: use
tsdat <- ts(data=cement$ipcem, frequency=12,

start=c(cement$year[1],cement$month[1]))

4https://fred.stlouisfed.org/series/IPG3273N

https://fred.stlouisfed.org/series/IPG3273N
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to create a time series variable named tsdat that’s a time series (ts) with the
industrial cement production index data (ipcem).

Stata:
generate yrmo = ym(year, month)
format yrmo %tm
tsset yrmo

c. R only: compute, store, and plot a multiplicative decomposition, to see how impor-
tant seasonality is for industrial cement production:
tsdec <- decompose(tsdat, type='mult')
plot(tsdec)
window(tsdec$seasonal, start=c(1964,1), end=c(1964,12))

The last line above prints the numerical values for the seasonality plot (which are
the same for each year; e.g., 1964 could be replaced by 1971).

d. Stata only: estimate the trend and plot it against the raw data:
tssmooth ma fipcem1=ipcem , weights(1 2 2 2 2 2 <2> 2 2 2 2 2 1)
tsline ipcem fipcem1 , name(fipcem1) ylabel(#3)

e. Stata only: compute multiplicative seasonal effects with
bysort month : egen seasmult = mean(ipcem/fipcem1)

(but don’t worry about normalizing these to average to 1 like is sometimes done)

f. Stata only: compute the multiplicative remainder as the observed value divided by
the trend value, divided yet again by the seasonal effect:
generate rem1mult = ipcem/fipcem1/seasmult

g. Stata only: plot the seasonal and remainder series, and then all series together
(similar to the R plot):
tsline seasmult , name(seasmult) ylabel(#3)
tsline rem1mult , name(rem1mult) ylabel(#3)
graph combine fipcem1 seasmult rem1mult , cols(1) name(decompmult)

h. Plot the autocorrelation function (ACF) of the raw data up to 48 months lag.

R: acf(tsdat, lag.max=48, ci=0, na.action=na.omit)

Stata: ac ipcem , level(95) lags(48)

i. Plot the ACF of the seasonally-adjusted data.

R: acf(tsdat/tsdec$seasonal, lag.max=48, ci=0, na.action=na.omit)

Stata:
generate saipcem = ipcem / seasmult
ac saipcem , level(95) lags(48)

j. Optional: repeat the decomposition plot and ACF plots for a different variable in
the dataset.
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First-Order Autoregression

=⇒ Kaplan video: Chapter Introduction

Decent forecasts are often achieved by simply regressing Yt on Yt−1 (perhaps after
detrending and/or seasonal adjustment). Chapter 14 explores this model, which is also
useful for description (if not causal inference). Some extensions are discussed, with addi-
tional extensions in Chapter 15.

Unit learning objectives for this chapter

14.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

14.2. Describe the first-order autoregressive model and its features, including interpreta-
tion for description and prediction [TLOs 2 and 3]

14.3. Interpret and evaluate forecasts, including multi-step and interval forecasts [TLOs 2
and 3]

14.4. In R (or Stata): estimate the parameters of a first-order autoregression [TLO 7]

14.5. In R (or Stata): generate interval and multi-step forecasts [TLO 7]

14.1 Model

The first-order autoregressive model, or AR(1) model, is essentially a simple linear
regression in which the regressor is the first lag of the outcome variable:

Yt = ϕ0 + ϕ1Yt−1 + ϵt, (14.1)

where ϕ0 and ϕ1 are constant coefficients, with ϕ1 called the autoregressive parameter
(or autoregressive coefficient), and the unobserved ϵt is something called white noise.

241

https://youtu.be/G6WdkzDR_Io
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A special case called independent white noise is if the ϵt are iid, with mean zero and
finite variance, and independent of all past Ys values for s < t:

ϵt ∼ iid, E(ϵt) = 0, σ2
ϵ ≡ Var(ϵt) < ∞, ϵt ⊥⊥ Yt−1, Yt−2, . . . , for all t. (14.2)

Diebold (2018a, §13.6) and Diebold (2018b, §6.2) have many more details on white noise
that are beyond our scope. Vocabulary terms for the unobserved ϵt include error term,
shock, and innovation.

Given (14.1) and (14.2), stationarity (either type) of Yt depends on the parameter
values. Specifically,

Yt is stationary ⇐⇒ |ϕ1| < 1. (14.3)

If instead |ϕ1|, then Yt has a unit root (Section 13.6.1). For example, with ϕ0 = 0 and
ϕ1 = 1, (14.1) becomes the random walk in (13.7). Nonstationary “explosive processes”
with |ϕ1| > 1 are sometimes considered to model stock market bubbles (or other bubbles)
but are beyond our scope.

Assuming stationarity (either type), the mean of Yt can be solved for in terms of
parameters ϕ0 and ϕ1. Let µ ≡ E(Yt), which is the same for all t if Yt is stationary. Using
(14.1),

µ = E(Yt) =

use linearity of E(·)︷ ︸︸ ︷
E(ϕ0 + ϕ1Yt−1 + ϵt) = ϕ0 + ϕ1

=µ︷ ︸︸ ︷
E(Yt−1)+

=0︷ ︸︸ ︷
E(ϵt) = ϕ0 + ϕ1µ. (14.4)

Solving µ = ϕ0 + ϕ1µ for ϕ0 and then µ,

ϕ0 = µ(1− ϕ1), µ =
ϕ0

1− ϕ1
. (14.5)

The AR(1) model in (14.1) can be written equivalently in terms of demeaned values.
Generally, a demeaned random variable has had its mean subtracted (like a “deboned”
fish has had its bones removed), so it has mean zero, like the population mean model’s
error term in Section 6.2.1. Here, Yt − µ is demeaned because E(Yt) = µ, so

E(Yt − µ) = E(Yt)− µ = 0.

Similarly, because µ = E(Yt−1), then E(Yt−1 − µ) = E(Yt−1) − µ = 0, and similarly
E(Yt−j − µ) = 0 for all j because all E(Yt−j) = µ due to stationarity.

The demeaned AR(1) model is

Yt − µ = ϕ1(Yt−1 − µ) + ϵt. (14.6)

This is equivalent to (14.1). After adding µ to both sides of (14.6),

Yt = µ+ ϕ1(Yt−1 − µ) + ϵt = µ+ ϕ1Yt−1 − ϕ1µ+ ϵt =

=ϕ0 by (14.5)︷ ︸︸ ︷
µ(1− ϕ1) +ϕ1Yt−1 + ϵt. (14.7)

https://en.wikipedia.org/wiki/Stock_market_bubble
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In Sum: AR(1), Two Equivalent Models

The AR(1) model (14.1) is Yt = ϕ0 + ϕ1Yt−1 + ϵt, like a regression of Yt on Yt−1

Given stationarity (|ϕ1| < 1),
(14.6): demeaned AR(1) model, Yt − µ = ϕ1(Yt−1 − µ) + ϵt, with µ ≡ E(Yt)

(14.5): translate between models with µ =
ϕ0

1− ϕ1
or ϕ0 = µ(1− ϕ1)

14.2 Description

Certain properties of Yt are implied by (14.1) and (14.2). Here, we look at the mean,
variance, autocovariances, and autocorrelations of Yt in terms of the model parameters.
You are not expected to understand the derivations, but they are provided in case it helps
your understanding of the formulas.

The mean is µ = ϕ0/(1− ϕ1) given covariance stationarity, as shown in (14.5).
The variance is derived by taking the variance of each side of (14.1). Assuming

covariance stationarity, let σ2
Y ≡ Var(Yt) = Var(Yt−1). Using variance identities and

Cov(Yt−1, ϵt) = 0 (because ϵt ⊥⊥ Yt−1),

=σ2
Y︷ ︸︸ ︷

Var(Yt) =

can remove constant ϕ0︷ ︸︸ ︷
Var(ϕ0 + ϕ1Yt−1 + ϵt) =

use Var(V+W )=Var(V )+Var(W )+2Cov(V,W )︷ ︸︸ ︷
Var(ϕ1Yt−1 + ϵt)

=

use Var(aW )=a2 Var(W )︷ ︸︸ ︷
Var(ϕ1Yt−1) +

σ2
ϵ in (14.2)︷ ︸︸ ︷
Var(ϵt) +2

use linearity︷ ︸︸ ︷
Cov(ϕ1Yt−1, ϵt)

= ϕ2
1

σ2
Y︷ ︸︸ ︷

Var(Yt−1)+σ2
ϵ + 2ϕ1

=0 since ϵt⊥⊥Yt−1︷ ︸︸ ︷
Cov(Yt−1, ϵt)

= ϕ2
1σ

2
Y + σ2

ϵ .

Rearranging to solve for σ2
Y ,

σ2
Y = ϕ2

1σ
2
Y + σ2

ϵ =⇒ σ2
Y (1− ϕ2

1) = σ2
ϵ =⇒ σ2

Y =
σ2
ϵ

1− ϕ2
1

. (14.8)

The autocovariances can also be calculated given covariance stationarity. Substituting
for Yt using (14.1), and using the same properties from above,

γ1 ≡ Cov(Yt, Yt−1) = Cov(ϕ0 + ϕ1Yt−1 + ϵt, Yt−1)

=

=0 since ϕ0 =const︷ ︸︸ ︷
Cov(ϕ0, Yt−1) +Cov(ϕ1Yt−1, Yt−1) +

=0 by ϵt⊥⊥Yt−1︷ ︸︸ ︷
Cov(ϵt, Yt−1) = ϕ1

=Var(Yt−1)︷ ︸︸ ︷
Cov(Yt−1, Yt−1)

= ϕ1σ
2
Y . (14.9)
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Using (14.9) recursively,

γ2 ≡ Cov(Yt, Yt−2) = Cov(ϕ0 + ϕ1Yt−1 + ϵt, Yt−2)

=

=0 since ϕ0=const︷ ︸︸ ︷
Cov(ϕ0, Yt−2) +ϕ1Cov(Yt−1, Yt−2) +

=0 by ϵt⊥⊥Yt−2︷ ︸︸ ︷
Cov(ϵt, Yt−2)

= ϕ1γ1 = ϕ1

(14.9)︷ ︸︸ ︷
ϕ1σ

2
Y

= ϕ2
1σ

2
Y . (14.10)

More generally, by induction, if γj−1 = ϕj−1σ2
Y , then

γj ≡ Cov(Yt, Yt−j) = Cov(ϕ0 + ϕ1Yt−1 + ϵt, Yt−j)

=

=0︷ ︸︸ ︷
Cov(ϕ0, Yt−j)+ϕ1

=γj−1︷ ︸︸ ︷
Cov(Yt−1, Yt−j)+

=0︷ ︸︸ ︷
Cov(ϵt, Yt−j)

= ϕ1ϕ
j−1
1 σ2

Y

= ϕj
1σ

2
Y , (14.11)

which holds for all j ≥ 0.
The autocorrelations combine (14.11) with (13.6):

ρj ≡ Corr(Yt, Yt−j) = γj/σ
2
Y = (ϕj

1σ
2
Y )/σ

2
Y = ϕj

1. (14.12)

With j = 1, the first autocorrelation is ρ1 = ϕ1, the autoregressive coefficient in (14.1).

In Sum: AR(1) for Description

Given (14.1) and (14.2) with |ϕ1| < 1 ( =⇒ stationary),
mean: µ = E(Yt) = ϕ0/(1− ϕ1)
variance: σ2

Y = Var(Yt) = σ2
ϵ /(1− ϕ2

1)

jth autocovariance: γj = ϕj
1σ

2
Y

jth autocorrelation: ρj = ϕj
1

14.3 Prediction (Forecasting)

For time series, “prediction” usually means forecasting future values of Yt given the
current and past values. As in Section 2.5, given a loss function, the optimal forecast
(prediction) minimizes mean loss. This optimal forecast is defined in the population
(without data) and can be estimated with data. In practice, given the observed Yt for
t = 1, . . . , T , the goal is to forecast YT+1, or to forecast YT+h for another h ≥ 1.
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As in Part II, the focus here is on the CMF, the best forecast given quadratic loss.
Given (14.2), (14.1) is a CMF model, so ϕ0+ϕ1Yt−1 is the “best” forecast of Yt given Yt−1.
Thus, given sample Y1, . . . , YT and corresponding OLS estimates ϕ̂0 and ϕ̂1, a reasonable
forecast of YT+1 is

ŶT+1 = ϕ̂0 + ϕ̂1YT . (14.13)

Even if the AR(1) model is wrong (but Yt is covariance stationary), OLS still estimates
the best linear predictor (Section 7.5) of Yt given Yt−1.

However, “best” does not mean “good” (Section 7.4.2); forecast accuracy may be im-
proved by using additional lags, other variables, and/or nonlinearity (Chapter 15).

Discussion Question 14.1 (forecast and reality). Given sample Y1, . . . , YT , you con-
struct forecast ŶT+1 = ϕ̂0 + ϕ̂1YT . Then you wait one period and observe the actual
YT+1.

a) Will you be surprised if YT+1 > ŶT+1? Or if YT+1 < ŶT+1? Why/not?
b) How often do you expect to see YT+1 = ŶT+1? Why?
c) Is it usually true that YT+1 = ϕ0+ϕ1YT ? Why/not? Hint: for any random variable

W , how often does W = E(W ), i.e., what’s P(W = E(W ))?

14.4 Estimation

In the AR(1), skipping technical details, the OLS estimators ϕ̂0 and ϕ̂1 are consistent in
many cases. If |ϕ1| < 1, then OLS is consistent. Technical details for a more general
version of this result may be found in Case 4 on pages 215–217 of Hamilton (1994, §8.2).
In fact, the slope estimator is consistent even if ϕ1 = 1 (Hamilton, 1994, §17.4).

There are other consistent estimators, too, and some research has tried to compare
the small-sample properties of these, but such comparison is beyond our scope.

Using the estimated coefficients, a point forecast (our single, best guess) ŶT+1 is
computed as in (14.13). For the demeaned model in (14.6),

ŶT+1 = µ̂+ ϕ̂1(YT − µ̂). (14.14)

14.4.1 Code

The following code shows an example. The data Y are simulated from an AR(1) model
with ϕ0 = 0 (so µ = 0) and ϕ1 = 0.25, using arima.sim(). The argument n.ahead tells
predict() how many time periods past the end of the sample to make predictions for.
In R, ar() by default estimates the demeaned model. In the code, µ̂ is ret$x.mean, ϕ̂1 is
ret$ar, and ϕ̂0 is ret$x.mean*(1-ret$ar). The predicted value in pr$pred[1] is shown
to be equivalent to (14.13) and (14.14). (Alternatively, with argument method='ols',
you can estimate ϕ0 and ϕ1 directly, by OLS.) The 95% CI for ϕ1 is computed using a
formula based on asymptotic normality.
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set.seed(112358)
RHO <- 0.25; n <- 100
Y <- arima.sim(n=n, model=list(ar=RHO), sd=1)
ret <- ar(x=Y, aic=FALSE, order.max=1)
cat(sprintf("PhiHat0=%5.3f, PhiHat1=%5.3f\n",

ret$x.mean*(1-ret$ar), ret$ar))

## PhiHat0=0.024, PhiHat1=0.143

# 95% CI for slope PhiHat1
c(CI.low =ret$ar-1.96*sqrt(ret$asy.var.coef),
CI.high=ret$ar+1.96*sqrt(ret$asy.var.coef) )

## CI.low CI.high
## -0.0529 0.3390

pr <- predict(ret, n.ahead=1)
# Point forecast
round(pr$pred[1], digits=3)

## [1] 0.196

# Sanity check: same as from formulas:
c(ret$x.mean + ret$ar*(Y[n]-ret$x.mean),
ret$x.mean*(1-ret$ar) + Y[n]*ret$ar )

## [1] 0.196 0.196

14.5 Multi-Step Forecast

Instead of forecasting Yt+1 given Yt, you may need to forecast Yt+h given Yt for a particular
h > 1. This is called the h-step-ahead forecast.

Example 14.1. Imagine you must make a decision that affects your business or govern-
ment policy for the next year. You have monthly data. Specifically, you want to predict
Yt+12 given Yt, i.e., predict the value 12 months in the future. In fact, you want to predict
Yt+h for all h = 1, . . . , 12, i.e., predict each of the next 12 months.

There are two common approaches to h-step-ahead forecasting. One approach uses
the AR(1) model to derive the best forecast of YT+h given YT , in terms of the model’s
parameters. A second approach is simply to regress Yt+h on Yt (and an intercept). Given
covariance stationarity, such a regression estimates the best linear predictor of Yt+h given
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Yt. This regression estimates the parameters in

Yt+h = ϕ0 + ϕ1Yt + ϵt+h. (14.15)

The forecast of YT+h is then
ŶT+h = ϕ̂0 + ϕ̂1YT . (14.16)

The forecast in (14.13) showed the special case with h = 1.

Example 14.2 (Kaplan video). If Yt is quarterly GDP growth, and we want to predict
GDP growth four quarters (i.e., one year) in the future, then h = 4. We regress Yt+4 on
an intercept and Yt in our quarterly data, predicting ŶT+4 = ϕ̂0 + ϕ̂1YT .

There are functions in R that do multi-step forecasts automatically, like the forecast
function in the forecast package (Hyndman et al., 2020; Hyndman and Khandakar,

2008), which also does multi-step interval forecasts; see Section 14.8.

14.6 Interval Forecasts

Like a confidence interval, an interval forecast (or forecast interval) incorporates
uncertainty and tries to contain the true value with high probability (like 95%). Unlike a
confidence interval, the true value is a random variable (like YT+1 or YT+h) rather than
a non-random parameter (like β).

Example 14.3 (Kaplan video). Imagine your job is to create 95% interval forecasts, and
you make one every day for 1000 days. That is, on each day t, you make an interval
forecast for the next day’s value Yt+1; then the next day you check whether or not the
true value was inside your interval. If you’re doing your job well, then you should find
that approximately 950 days out of 1000 (95% of the days) your interval contained the
true value, and the other 50 days it didn’t.

There are two sources of uncertainty in forecasting. The first source of uncertainty
is the same as in a confidence interval: parameter uncertainty. That is, we only have
estimated parameter values ϕ̂0 and ϕ̂1; we do not know the true population parameters
ϕ0 and ϕ1. The second (and usually larger) source of uncertainty is the error term ϵT+1.
Even if we knew ϕ0 and ϕ1, we’d still have uncertainty about YT+1 = ϕ0 + ϕ1YT + ϵT+1.

There are different ways to construct forecast intervals, but details are beyond our
scope. The main differences are in how to capture uncertainty about ϵT+1. For example,
we could assume ϵT+1 has a normal distribution (e.g., Diebold, 2018b, §7.3.3), but the
corresponding interval may be bad if the true distribution is far from normal.

14.6.1 Code

The following code shows basic interval forecasts using the forecast package (which also
shows the point forecasts). The argument h=12 specifies forecasting values for the next

https://youtu.be/tCv6FLvfoks
https://youtu.be/Ef0ltxCFpjY
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12 time periods, so the results include multi-step interval forecasts. Argument level=c
(80,95) specifies both 80% and 95% prediction intervals. Although the code is easy to
run, an AR(1) is not always appropriate, so critical thought is required; see DQ 14.2.

library(forecast)
ret <- ar(AirPassengers, aic=FALSE, order.max=1)
forecast(ret, h=12)

## Period Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95
## Jan-1961 424 375 473 349 499
## Feb-1961 417 349 484 313 520
## Mar-1961 410 329 490 286 533
## Apr-1961 403 312 494 264 542
## May-1961 396 297 496 245 548
## Jun-1961 390 284 496 228 553
## Jul-1961 385 273 497 214 556
## Aug-1961 379 262 496 200 558
## Sep-1961 374 253 495 189 560
## Oct-1961 369 244 494 178 560
## Nov-1961 365 236 493 168 561
## Dec-1961 360 229 491 160 561

Discussion Question 14.2 (forecast sanity check). Do the point forecasts shown above
pass a sanity check? That is, they show steadily decreasing values from January to
December 1961; does this seem reasonable given Figure 13.1? Why/not?

14.7 Parameter Stability

Parameter stability pertains to external validity, as in Section 12.2: is ϕ1 truly a constant,
or has it changed over time, and might it change in the future? This is also related to
structural breaks (Section 13.6.4). With enough data, we could form multiple historical
datasets and see if the estimates ϕ̂1 change much over time. But either way, this does
not tell us what will happen in the future. Historical data cannot predict a future black
swan, something new not seen in the past. As usual, purely statistical analysis may fall
short; a combination of your statistical and economic expertise (and critical thinking)
yields better results.

Parameter instability relates to the Lucas critique (Lucas, 1976): if there is a new
macroeconomic policy with general equilibrium effects (Section 4.3.3), then the time se-
ries model’s parameters may change, so it is not accurate for description or prediction
(forecasting).

To address this, there are models allowing time-varying coefficients, and methods to
estimate when a parameter changes, but all are beyond our scope.
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Discussion Question 14.3 (recession-affected coefficient). Name a variable you think
might have different ϕ1 during an extended recession (than not during a recession), not
including the switch from non-recession to recession. For example, if there is a recession
from t = 11 to t = 20, then consider the ϕ1 for Yt for t = 1, . . . , 10 compared to the ϕ1

for t = 11, . . . , 20. As usual, most importantly, explain why you think so. Hint: this is
not simply asking which variables are higher or lower in a recession, because that’s not
what ϕ1 describes; e.g., the time series Zt = Yt + 10 would have the exact same ϕ1 as Yt,
just a different ϕ0 or µ.

14.8 More R Examples

14.8.1 AR(1) Multi-Step Forecast Intervals

The following code simulates data from an AR(1) model, and then computes (and outputs
and plots) various estimates and forecasts. Note that T = 100 (n <- 100), ϕ1 = 0.8
(RHO), µ = E(Yt) = 5, and σϵ = 1 (from the sd=1 option). The estimated ϕ̂1 is not
particularly good, although the true value is within two standard errors (there is just a
lot of uncertainty).

t
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Figure 14.1: Point and interval forecasts.

set.seed(112358)
RHO <- 0.80; n <- 100
Y <- 5 + arima.sim(n=n, model=list(ar=RHO), sd=1)
ret <- ar(x=Y, aic=FALSE, order.max=1)
cat( sprintf("PhiHat1=%5.3f\n", ret$ar) )

## PhiHat1=0.685

# 95% CI for slope PhiHat1
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c(CI.low =ret$ar-1.96*sqrt(ret$asy.var.coef),
CI.high=ret$ar+1.96*sqrt(ret$asy.var.coef) )

## CI.low CI.high
## 0.541 0.830

(fc <- forecast(ret, h=15, level=c(80,95)))
plot(fc)

## Period Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95
## 101 3.10 1.83 4.37 1.15 5.04
## 102 3.59 2.05 5.13 1.23 5.95
## 103 3.93 2.27 5.58 1.40 6.46
## 104 4.16 2.45 5.86 1.55 6.76
## 105 4.32 2.59 6.04 1.68 6.96
## 106 4.42 2.69 6.16 1.77 7.08
## 107 4.50 2.76 6.24 1.83 7.16
## 108 4.55 2.81 6.29 1.88 7.22
## 109 4.58 2.84 6.33 1.92 7.25
## 110 4.61 2.86 6.35 1.94 7.28
## 111 4.63 2.88 6.37 1.95 7.30
## 112 4.64 2.89 6.38 1.97 7.31
## 113 4.64 2.90 6.39 1.97 7.32
## 114 4.65 2.90 6.40 1.98 7.32
## 115 4.65 2.91 6.40 1.98 7.32

Figure 14.1 was generated by the above code and shows some patterns. The graph
essentially plots the table of results (point and interval forecasts) after plotting the original
time series. First, in the data itself, we can see some persistence (high values tend to be
followed by high values, and low by low), but the values never get too far from the mean
E(Yt) = 5. Second, the point forecasts Ŷt+h get closer and closer to the sample average
Ȳ = 1

T

∑T
t=1 Yt as h increases. This is because we chose an AR(1) forecasting model; even

if the data were not generated by an AR(1), the forecasts would show the same pattern
(so as in Section 8.1.5, beware model-driven forecasts). Third, the forecast intervals get
wider and wider as h increases. This makes intuitive sense: the farther in the future, the
less certainty we have.

14.8.2 General R Forecast Allowing Seasonality and Trend

=⇒ Kaplan video: Forecasting in R

https://youtu.be/DEMVbkAU79U
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Figure 14.2: Air travel forecasts from stlf (left) and auto.arima (right).

Figure 14.2 uses the stlf() and auto.arima() functions from the forecast package
to compute point forecasts and interval forecasts of log passengers from the monthly
air travel data. They do much better than the earlier forecast in Section 14.6.1 that
ignored seasonality and trend. This general application of stlf() or auto.arima() can
sometimes be improved by more carefully considering the type of trend, the properties of
the remainder, the type of seasonality, etc., but clearly for series where the trend and/or
seasonality is important, it is much better to use these functions that incorporate trend
and seasonality than a model that does not allow for trend and seasonality, like the basic
AR(1). But, AR models are still very useful: they (or more general ARIMA models) are
used by stlf() and auto.arima() to fit the detrended, seasonally-adjusted data.

Either way, it is always good to “sanity check” your forecasts visually. In this case,
the point forecasts in Figure 14.2 look reasonable, unlike the earlier basic AR(1). It
is also reasonable that the interval forecasts get longer (taller) farther into the future,
appropriately reflecting greater uncertainty. However, the stlf() interval forecasts seem
too narrow; even multiple years in the future, the interval is relatively short. Reading
the ?stlf help file suggests one reason why: it says, “Note that the prediction intervals
ignore the uncertainty associated with the seasonal component.” That is, it assumes
the estimated seasonality is actually the true seasonality, with no uncertainty. Even the
auto.arima() intervals may be “too short” because (as usual) they do not account for
uncertainty about the true model itself changing over time (i.e., structural breaks), only
uncertainty about the parameter values.

Figure 14.2 was generated by the following code.

library(forecast)
par(family='serif', mar=c(1.8,1.8,0.3,0.6), mgp=c(2.1,0.8,0))
ret1 <- stlf(y=log(AirPassengers), h=48)
plot(ret1)
ret2 <- auto.arima(y=log(AirPassengers))
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plot(forecast(ret2, h=48))

Optional Resources

Optional resources for this chapter

• AR(1) (Lambert video)

• AR(1) series with different autocorrelations (Lambert video)

• Chapter 12 (“Serial Correlation”) in Diebold (2018a)

• Parameter stability: Hanck et al. (2018, §14.8), Diebold (2018a, §12.4–5)

• AR(1) model and properties: Hamilton (1994, §3.4)

• AR(1): Hyndman and Athanasopoulos (2019, §8.3), Hanck et al. (2018, §14.3)

• Asymptotic theory: Hamilton (1994, §§8.2,17.4)

• Forecast/prediction interval: Hyndman and Athanasopoulos (2019, §3.5), Diebold
(2018b, §§7.3.3,7.4.3)

• Multi-step forecasting: Diebold (2018b, §6.7.3)

• R package forecast: Hyndman and Athanasopoulos (2019, 3.6), Hyndman et al.
(2020), Hyndman and Khandakar (2008)

https://www.youtube.com/watch?v=AN0a58F6cxA
https://www.youtube.com/watch?v=v70-kLB3BLM
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Empirical Exercises

Empirical Exercise EE14.1. You will analyze the New York Stock Exchange (NYSE)
value-weighted price index, specifically the weekly close prices every Wednesday. (Unfor-
tunately, the dataset does not note the dates or data source.) You’ll consider forecasting
price as well as the price change, using an AR(1) model, with both point and interval
forecasts. In practice, if you could reliably predict the price change, then you could make
a lot of money; so you should be (very) skeptical that you can forecast the price change.
(This is related to the “efficient market hypothesis.”) Related: if stock prices are a random
walk, then the optimal forecast should just be the most recently observed value; you can
see if this matches your code’s forecasts.

Mathematically, assume the price change Ut = Yt−Yt−1 is indeed unrelated to Yt and
Yt−1 (and other past values), and let ϕ0 = E(Ut) and Vt = Ut − E(Ut), so E(Vt) = 0.
Then Yt = Yt−1 + Ut = ϕ0 + Yt−1 + Vt is an AR(1) with ϕ1 = 1, in which case YT + ϕ0 is
the best forecast of YT+1. You will check if ϕ̂1 ≈ 1 and estimate the value of ϕ0, among
other computations.

a. R only: load the needed packages (and install them before that if necessary) and
look at a description of the dataset:
library(wooldridge); library(forecast)
?nyse

b. Stata only: load the data with bcuse nyse , nodesc clear (assuming bcuse is
already installed)

c. Tell your software that you have weekly time series data.

R: tsdat <- ts(data=nyse$price, frequency=52.18)

Stata: tsset t , weekly

d. Define a variable holdout for how many time periods at the end of the sample to
“hold out” when fitting your model.

R: holdout <- 20

Stata: scalar holdout = 20

e. R only: using holdout, define the time period at the end of the “training” data
(just before the “testing” data) as midpt <- length(tsdat)-holdout and use it
to define the training and testing data respectively:
tsdattrain <- subset(tsdat, start=1, end=midpt)
tsdattest <- subset(tsdat, start=midpt+1, end=length(tsdat))

f. Estimate an AR(1) model to produce “dynamic” forecasts, i.e., what would be fore-
cast if we were living at the end of the training data.

R: ret <- ar(x=tsdattrain, aic=FALSE, order.max=1, method='yw')

Stata: arima price if _n<=_N-holdout , arima(1,0,0)
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g. Pretend you travel back in time to the very end of the training data, and produce
dynamic forecasts for the next 20 periods (weeks).

R: (fc <- forecast(ret, h=holdout, level=c(80,95)))

Stata: predict fmulti , y dyn(t[_N-holdout+1]) where fmulti is the name
for a newly created variable and dyn tells it to make dynamic forecasts

h. Plot the forecasts against the actual historical data.

R: plot(fc) and lines(window(tsdattest), col=1)

Stata:
twoway tsline price || tsline fmulti if _n>_N-holdout , lcolor(red)

i. Optional: repeat your analysis, but with an AR(1) model of the first-differenced
price (∆Yt = Yt −Yt−1), which is already in the dataset as the variable cprice (“c”
for “change”).

R: when you create tsdat, use data=nyse$cprice[-1] to exclude the first value
of cprice (which is missing); otherwise the code should be the same; you may also
like to draw a line with abline(h=0) at the very end for reference.

Stata: just use cprice and make sure to name a different new variable in your
predict command, which you’ll reference in your graphing command. Note also
that instead of arima cprice, you could use OLS estimation with regress cprice
cprice_1, or equivalently regress D.price L.D.price where D.price means

“take the first difference of the variable price” and L.D.price means “lag of first
difference of price”



Chapter 15

Higher-Order Autoregression and Au-
toregressive Distributed Lag Regres-
sion

=⇒ Kaplan video: Chapter Introduction

Sometimes, accuracy improves by forecasting Yt+1 using not only Yt but also Yt−1. And
why stop at Yt−1? Maybe Yt−2 contains additional information not found in Yt and Yt−1;
or maybe Yt−3 does, or even longer lags of Yt. Additionally, other variables and possibly
their lags may further improve forecasting accuracy. However, as in Section 8.3, too many
regressors can worsen performance, so model selection is crucial to good performance.

Note: this chapter is intentionally short, to allow students more time to start preparing
for the final exam (in this class or other classes).

Unit learning objectives for this chapter

15.1. Define new vocabulary words (in bold), both mathematically and intuitively [TLO 1]

15.2. Explain the problem of choosing the best model both mathematically and intu-
itively, along with possible solutions [TLO 2]

15.3. Implement and compare different ways to select the best forecasting model [TLOs 2
and 6]

15.4. In R (or Stata): estimate more general time series regression models for the purpose
of forecasting future values [TLO 7]

255

https://youtu.be/v3cssW3kJE4
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15.1 The AR(p) Model

The AR(p) model generalizes the AR(1) model in (14.1):

Yt = ϕ0 + ϕ1Yt−1 + · · ·+ ϕpYt−p + ϵt = ϕ0 +

p∑
j=1

ϕjYt−j + ϵt. (15.1)

Again ϵt is white noise, with properties as in (14.2). Coefficient ϕj is called the jth partial
autocorrelation, for j = 1, . . . , p. (This can be confusing because ϕj ̸= Corr(Yt, Yt−j),
the jth autocorrelation.)

Theoretical details and properties are mostly omitted here, but there are concepts
similar to the AR(1). For example, there is the concept of a unit root, which generates
nonstationary Yt, but its mathematical characterization is more complicated than just
ϕ1 = 1. The autocovariances and autocorrelations can be derived from the coefficients
and properties of ϵt, but the derivations and formulas are again more complicated.

Instead, the next sections focus on good forecasts.

15.2 Model Selection: How Many Lags?

=⇒ Kaplan video: Model Selection for Forecasting

In practice, which p should we use? This is a question of model selection (Section 8.3).
Choosing p is equivalent to setting ϕ̂j = 0 for j > p, instead of estimating those ϕj from
data.

15.2.1 Difficulties and Intuition

Recall the intuition from Section 8.3. If p is too small, then the model is not flexible
enough; implicitly, this sets ϕ̂j = 0 for some important ϕj ̸= 0. Even if the ϕj are
estimated perfectly for j = 0, 1, . . . , p, the estimated model may not forecast very well
because ϕ̂j = 0 ̸= ϕj for some j > p. However, if p is too big, then the model can be too
flexible, overfitting the data. This also causes poor forecasts. We want the “just right” p
that balances these two sources of error.

Only looking at in-sample fit leads to overfitting (Section 8.3). For example, mini-
mizing the sum of squared residuals (SSR), or equivalently maximizing the R2, always
picks the largest possible p, regardless of the dataset and which model is actually best.
The “adjusted R2” is better, but still not designed for picking the best forecasting model.
Similarly, hypothesis testing is not designed to pick the best forecasting model.

With time series, large p additionally limits the amount of usable data. For example,
if we observe Yt for t = 1, . . . , T , and we regress Yt on lags up to Yt−50 (p = 50), then we
can only use t for which both Yt and Yt−50 are observed. If t > T , then Yt isn’t observed;
if t ≤ p, then Yt−p isn’t observed. If T = 51, then there is only one usable data point:

https://youtu.be/aabl4n375pE
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regressing Y51 on Y50, Y49, . . . , Y1. Because it’s impossible to estimate 51 parameters from
1 data point, p must be (much) smaller. Even with p = 25, there are p+1 = 26 parameters
and T −p = 26 usable data points; estimates could be computed but certainly suffer from
overfitting. With T total observations, you can only estimate an AR(p) with p < T/2,
and p must be even smaller for reliable estimation.

The most common model selection methods for AR(p) models use information criteria.
Basically, an information criterion tries to quantify how bad a model is for prediction,
so lower values are better (less bad). The two most common are the Akaike information
criterion (AIC), proposed by Akaike (1974), and the Bayesian information criterion
(BIC) (or sometimes SIC, SBC, or SBIC) of Schwarz (1978). There is also a “corrected”
AICc; e.g., see Hyndman and Athanasopoulos (2019, §8.6).

As seen below, both AIC and BIC try to avoid overfitting by adding a penalty to the
in-sample fit. The penalty is larger when the model is larger (more flexible). AIC and BIC
can also be used for model selection with other types of models beyond autoregression.

Instead of picking a single “best” forecasting model, averaging multiple forecasts (“fore-
cast averaging,” or more generally “model averaging”) often performs even better but is
beyond our scope.

In Sum: Model Selection for Forecasting

After you think critically about which variables and lags might help forecast future
values, AIC (and AICc) and BIC can help you pick which model produces the best
forecasts.

15.2.2 AIC and BIC Formulas

There are many different but equivalent formulas for AIC and BIC. This is because the
selected model is the one whose value is lower than any other model’s value, so only the
relative values matter, not the numeric values themselves. Thus, we could add 5 to all
values, or multiply by T , or take the log, etc., because this would not change which value
of p (number of lags) minimizes the AIC or BIC.

The AIC can be written in terms of the sum of squared residuals (SSR) and a penalty
based on p. Specifically,

AIC(p) =

in-sample fit︷ ︸︸ ︷
T ln(SSR)+

penalty︷ ︸︸ ︷
2(p+ 1) . (15.2)

Intuitively, we’d like our models to fit the data well (small SSR), but given the same fit
we prefer less flexible models (small penalty). The penalty prevents overfitting, where a
model fits the data sample “too well” because it fits all the noise, which in turn makes its
out-of-sample forecasts poor.
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The BIC also involves the SSR and a penalty. Specifically,

BIC(p) =

in-sample fit︷ ︸︸ ︷
T ln(SSR)+

penalty︷ ︸︸ ︷
(p+ 1) ln(T ) . (15.3)

When comparing models with different lag lengths, due to the different number of
usable data points, some care is required to ensure a fair comparison. For now, you can
try to use built-in functions and hope that they were implemented carefully; e.g., in the
forecast package, auto.arima() does automatic model selection using the AICc (which
you can change to AIC or BIC with the ic argument).

15.2.3 Comparison of AIC and BIC

Compared to the AIC, the BIC has a larger penalty for large models because ln(T ) > 2
if T > 7. (And if T ≤ 7, you should collect more data.) That is, the BIC is more likely
to pick smaller p, i.e., shorter lag lengths (smaller models).

Related to this difference, whether AIC or BIC is best depends on what you think
about the true model. BIC is better than AIC if the true model is small but worse if the
true model is large (Shao, 1997, p. 235). For example, if the true model is an AR(1), and
you’re selecting among AR(p) models for p = 0, 1, . . . , 24, then BIC is more likely to pick
the true model than AIC. However, if the true model is AR(100) and T = 50 (in which
case picking the true model is impossible), then AIC is more likely than BIC to pick the
best feasible model. Generally, AIC is better if you only consider lag length up to p, but
the true lag length is even larger.

Example 15.1 (Kaplan video). Imagine choosing from either one or two lags. The AR(2)
model always fits the data better (lower SSR) than the AR(1) model. To be concrete,
imagine T ln(SSR) = 11 with p = 1, and T ln(SSR) = 8 with p = 2. With AIC, the
penalty term equals 4 for p = 1 and equals 6 for p = 2; the AIC penalty depends only on
p, not the data or even T . For BIC, the penalty terms for p = 1 and p = 2 are 2 ln(T ) and
3 ln(T ), respectively; e.g., if T = 50, then these are approximately 7.8 and 11.7. Thus,
plugging these values into (15.2) and (15.3),

AIC(1) =

11︷ ︸︸ ︷
T ln(SSR)+

4︷ ︸︸ ︷
2(p+ 1) = 15, BIC(1) =

11︷ ︸︸ ︷
T ln(SSR)+

7.8︷ ︸︸ ︷
(p+ 1) ln(T ) = 18.8,

AIC(2) =

8︷ ︸︸ ︷
T ln(SSR)+

6︷ ︸︸ ︷
2(p+ 1) = 14, BIC(2) =

8︷ ︸︸ ︷
T ln(SSR)+

11.7︷ ︸︸ ︷
(p+ 1) ln(T ) = 19.7.

Because AIC(2) < AIC(1), p = 2 is better according to AIC. However, BIC(1) < BIC(2),
so p = 1 is better according to BIC. If we use AIC, we then fit an AR(2) model and
use its estimates to forecast YT+1. If instead we had used BIC for model selection, we’d
estimate an AR(1) model and use it to forecast YT+1.

Discussion Question 15.1 (lag choice for forecasting). Imagine Yt = 50 + 0.5Yt−1 +
0.00001Yt−2 + ϵt, where the ϵt are independent of past values Yt−1, Yt−2, . . . and are iid

https://youtu.be/k87MjVtOGfU
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and mean-zero. Do you think an estimated AR(0), AR(1), AR(2), or AR(3) would
produce the best forecasts? Explain why you think your estimated model would produce
better forecasts than each of the other three estimated models. Hint #1: if you need to
make assumptions about things like the value of T , please feel free as long as you say so
explicitly. Hint #2: thinking about extreme situations is sometimes helpful; e.g., what if
ϵt = 0 for all t, or what if T = 8, etc. Hint #3: yes, this is a very difficult question.

15.2.4 Code

The following code uses the AIC to choose p, then makes a forecast of YT+1 using an
AR(p) model. The AIC-chosen p is shown along with the p used to generate the data.
Finally, the BIC is computed for the AIC-chosen p and that p − 1; the BIC is lower for
the latter value, so it prefers a smaller model (smaller p) than AIC in this case.

set.seed(112358)
MAXP <- 15 #max lag length for AR(p)
ARCOEFFS <- c(0.6, -0.4, 0.4, 0.1)
TRUEP <- length(ARCOEFFS) #p in true AR(p) DGP
# simulate data
Y <- arima.sim(n=60, model=list(ar=ARCOEFFS), sd=1)
# fit AR(p), using AIC to choose best p
ret <- ar(x=Y, aic=TRUE, order.max=MAXP)
# output optimal p
cat(sprintf("true p=%d; AIC-chosen p=%d\n", TRUEP, ret$order))

## true p=4; AIC-chosen p=7

pr <- predict(ret, n.ahead=1) #compute point forecast
c(round(pr$pred, digits=3)) #output

## [1] -0.434

# check BIC for AIC-chosen p and one smaller
# probably BIC prefers smaller (ret2)
ret1 <- arima(Y, order=c(ret$order,0,0))
ret2 <- arima(Y, order=c(ret$order-1,0,0))
c(BIC(ret1),BIC(ret2))

## [1] 186 185
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15.3 Autoregressive Distributed Lag Regression

The autoregressive distributed lag (ADL) model (or “dynamic distributed lag” model)
adds other variables and their lags to the AR(p) model. That is, instead of forecasting
Yt+1 using only Yt, Yt−1, and other lags of Y , we could also use Xt, Xt−1, etc. Because
Xt+1 is not available at time t, it should not be included as an explanatory variable if
we are interested in forecasting. Equivalently, if we regress Yt on Yt−1, Yt−2, and other
lags, we could add Xt−1, Xt−2, etc., but not Xt. If the goal is not forecasting but rather
understanding the economic relationship between Yt and Xt, then this comment does not
apply.

The same ideas from before apply to the ADL model. For example, it could be used
for multi-step forecasting by replacing Yt+1 with Yt+h, or used for interval forecasts, and
forecasts may be evaluated and compared as in Section 15.2.

To handle seasonality, decomposition or seasonal dummies can be used. The first
option is to “seasonally adjust” your data by removing the seasonal component, and then
fit the ADL model (and add back the seasonality into the forecast ŶT+1). The second
option is to use the raw data but replace the intercept term with dummies for each possible
season. For example, with quarterly data, let D1t = 1 if time period t is in quarter 1 of
some year (and D1t = 0 otherwise), and similarly D2t = 1 if t is in quarter 2, D3t = 1 for
quarter 3, and D4t = 1 for quarter 4. All four dummies can be included as regressors if
the intercept is removed; alternatively, you can keep the intercept and just add D2t, D3t,
and D4t as regressors. So an AR(2) model Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + ϵt (for example)
would change to either

Yt = β1D1t + β2D2t + β3D3t + β4D4t + ϕ1Yt−1 + ϕ2Yt−2 + ϵt (15.4)

or
Yt = ϕ0 + β2D2t + β3D3t + β4D4t + ϕ1Yt−1 + ϕ2Yt−2 + ϵt. (15.5)

As another example, for monthly data, let D2t be the dummy for February, D3t for
March, up to D12t for December. Then, you can either include the intercept along with
D2t, . . . , D12t as regressors, or else remove the intercept and include all D1t, . . . , D12t as
regressors.

The following code uses ADL models to forecast quarterly GDP growth. First, quar-
terly GDP Gt is transformed to Yt = ln(Gt)− ln(Gt−1) and stored in variable GDPgr (“gr”
for “growth”). Second, lags of T-bill rates are generated. Third, various ADL models are
fit and their AIC (actually AICc) calculated. Fourth, the best ADL model is used to
forecast YT+1; the output at the end shows the point forecast along with forecast inter-
vals. Note that auto.arima() automatically chooses the best lag length for Yt, but the
best T-bill lag is determined “manually,” by calling auto.arima() once for each possible
T-bill lag.
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library(AER); library(forecast); data('USMacroSWQ')
GDPgr <- diff(x=log(USMacroSWQ[,'gdp'])) # GDP growth
Tblags <- cbind(Tblag1=lag(USMacroSWQ[,'tbill'],-1),

Tblag2=lag(USMacroSWQ[,'tbill'],-2),
Tblag3=lag(USMacroSWQ[,'tbill'],-3),
Tblag4=lag(USMacroSWQ[,'tbill'],-4))

Tblags <- subset(Tblags,end=NROW(GDPgr))
fit1 <- auto.arima(y=subset(GDPgr,start=4),

xreg=subset(Tblags[,1:1],start=4))
fit2 <- auto.arima(y=subset(GDPgr,start=4),

xreg=subset(Tblags[,1:2],start=4))
fit3 <- auto.arima(y=subset(GDPgr,start=4),

xreg=subset(Tblags[,1:3],start=4))
fit4 <- auto.arima(y=subset(GDPgr,start=4),

xreg=subset(Tblags[,1:4],start=4))
AICcs <- c(fit1[["aicc"]],fit2[["aicc"]], fit3[["aicc"]],fit4[["aicc"]])
best <- which.min(AICcs)
# fit3 has lowest AIC/AICc; fit1 lowest BIC
# Now fit w/ all available data
fit <- auto.arima(y=GDPgr, xreg=Tblags[,1:best])
tnow <- NROW(USMacroSWQ)
xr <- cbind(Tblag1=USMacroSWQ[tnow-0,'tbill'],

Tblag2=USMacroSWQ[tnow-1,'tbill'],
Tblag3=USMacroSWQ[tnow-2,'tbill'],
Tblag4=USMacroSWQ[tnow-3,'tbill'])

xr <- matrix(xr[,1:best], nrow=1)
(fc <- forecast(fit, h=1, xreg=xr))

## Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95
## 2005 Q1 0.0103 -0.0014 0.0219 -0.0076 0.0281

Optional Resources

Optional resources for this chapter

• AIC and BIC: Hanck et al. (2018, §14.6)

• Forecast model evaluation and selection: Hyndman and Athanasopoulos (2019,
§§3.4,5.5) and function forecast::CV()

• Autoregression: Hyndman and Athanasopoulos (2019, §8.3)

• Lagged predictors: Hyndman and Athanasopoulos (2019, §9.6)
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• Example data: fpp2 package in R (Hyndman, 2018)
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Empirical Exercises

Empirical Exercise EE15.1. You will analyze annual U.S. unemployment and inflation
data from the 2004 Economic Report of the President, Tables B-42 and B-64. The goal
is to forecast the unemployment rate. We’ll use the first T − 1 observations to build a
forecast, then compare our forecast to the actual observation in time T .

a. R only: load the needed packages (and install them before that if necessary) and
look at a description of the dataset:
library(wooldridge); library(forecast)
?phillips

b. Stata only: load the data with bcuse phillips , nodesc clear (assuming bcuse
is already installed)

c. R only: define thisyr <- 1995 because the Stata dataset only has through year
1996, so that we can get comparable results. Also define yr1 <- min(phillips$
year)

d. Tell your software that you have annual (yearly) time series data.

R: tsdat <- ts(phillips[phillips$year<=thisyr, ], frequency=1, start=
yr1)

Stata: tsset year , yearly

e. Stata only: define scalar holdout = 1 and scalar endyr = year[_N]

f. Plot the unemployment and inflation time series.

R: plot(tsdat[,c('unem','inf')])

Stata: tsline unem inf

g. Considering AR(p) models with p = 0, 1, 2, 3, 4, use the AIC to choose the best
model, and estimate such a model.

R: ret <- ar(tsdat[,'unem'], aic=TRUE, order.max=4)

Stata: varsoc unem , maxlag(4) and then arima unem if year<=endyr-
holdout , arima(p,0,0) but replacing the p in arima(p,0,0) with whatever lag
length the previous varsoc command said is optimal. (It’s possible to do this
programmatically, but it gets complicated.)

h. R only (because Stata displayed this already): compute the BIC values for
p = 0, 1, 2, 3, 4 with ret$aic+(log(ret$n.used)-2)*1:length(ret$aic) which
adjusts the AIC values to reflect the BIC’s different penalty

i. Using the estimates based on data years up to 1995, compute (dynamic) forecasts
for the next ten years, 1996–2005, and plot them.

R: (fcARp <- forecast(ret, h=10)) and plot(forecast(ret, h=10))

Stata:
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tsappend , add(9)
predict fcARp if year>endyr-holdout , y
order year unem fcARp
list year unem fcARp if year>=endyr-holdout
twoway tsline unem || tsline fcARp

j. Stata only: delete the previously added rows with drop if year>endyr

k. Optional: now consider autoregressive distributed lag (ADL) models with up to 2
lags of unemployment and up to 2 lags of inflation. Compute all the AIC values.

R:
unem <- ts(phillips[, 'unem'], frequency=1, start=yr1)
inf <- ts(phillips[, 'inf'], frequency=1, start=yr1)
dat <- cbind(Y=unem, L1Y=lag(unem,-1),

L2Y=lag(unem,-2), L1X=lag(inf,-1), L2X=lag(inf,-2))
dat1 <- window(dat, start=yr1+2, end=thisyr)
r00 <- lm(Y~1, data=dat1)
r01 <- lm(Y~L1X, data=dat1)
r02 <- lm(Y~L1X+L2X, data=dat1)
r10 <- lm(Y~L1Y, data=dat1)
r11 <- lm(Y~L1Y+L1X, data=dat1)
r12 <- lm(Y~L1Y+L1X+L2X, data=dat1)
r20 <- lm(Y~L1Y+L2Y, data=dat1)
r21 <- lm(Y~L1Y+L2Y+L1X, data=dat1)
r22 <- lm(Y~L1Y+L2Y+L1X+L2X, data=dat1)
AICs <- data.frame(L0.inf=c(AIC(r00),AIC(r10),AIC(r20)),

L1.inf=c(AIC(r01),AIC(r11),AIC(r21)),
L2.inf=c(AIC(r02),AIC(r12),AIC(r22)) )

rownames(AICs) <- c("L0.unem","L1.unem","L2.unem")
print(AICs, digits=4)

Stata:
varsoc unem , maxlag(2) exog()
varsoc unem , maxlag(2) exog(L.inf)
varsoc unem , maxlag(2) exog(L.inf L2.inf)

l. Optional: estimate the ADL model with the smallest AIC. For example, if the AIC
is smallest with one lag of each variable, then use R command (ret <- lm(Y~L1Y
+L1X, data=window(dat,end=thisyr))) or Stata command arima unem L.inf
if year<=endyr-holdout , arima(1,0,0)

m. Optional: compute the ADL forecast for unemployment rate in 1996 and compare
it with the AR(p) forecast and actual 1996 value.

R:
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newdat <- window(dat, start=thisyr+1, end=thisyr+1)
fcADL <- predict(ret, newdata=newdat)
res <- rbind(fcARp$mean[1], fcADL,

window(unem,start=thisyr+1,end=thisyr+1))
rownames(res) <- c('AR(p)','ADL','Actual')
colnames(res) <- thisyr+1
print(res)

Stata:
predict fcADL if year>endyr-holdout , y
order year unem fcARp fcADL
list year unem fcARp fcADL if year>=endyr-holdout
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Chapter 16

Final Exam

=⇒ Kaplan video: Good Luck!

When I teach this class, Week 16 is final exams week. There is no new material this
week (because there are no classes). My final exam is cumulative: questions may be
about any material from any time during the semester. The exception is that there are
no questions about coding in R, although there may be some questions showing statistical
results in R.

267

https://youtu.be/F_fT4wcqetY
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AR(1) model, 241
AR(p) model, 256

ACE, see average causal effect
ADL, see autoregressive distributed lag
after sampling, 16
AIC, see Akaike information criterion
Akaike information criterion, 257
analogy principle, 40
ASE, see average structural effect
associated with, 101, 120
asymptotic bias, 47
ATE, see average treatment effect
ATT, see average treatment effect on the

treated
attenuation bias, 209
attrition, 76
autocorrelation, 226

partial, 256
autocorrelation coefficient, 227
autocovariance, 227
autoregressive coefficient, 241
autoregressive distributed lag, 260
autoregressive parameter, 241
average causal effect, 71
average structural effect, 106
average treatment effect, 70
average treatment effect on the treated,
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base category, 117
Bayesian, 34

Bayesian information criterion, 257
before sampling, 16
Bernoulli random variable, 22
best linear approximation, 121
best linear predictor, 122
bias, 44

attenuation, 45
downward, 45
negative, 45
positive, 45
toward zero, 45
upward, 45

BIC, see Bayesian information criterion
binary variable, 22
BLA, see best linear approximation
black swan, 248
BLP, see best linear predictor

CATE, see conditional average treatment
effect

categorical variable, 25
nominal, 25
ordinal, 25

causal inference, 64
CI, see confidence interval
classical, 34
CMF, see conditional mean function
CMF error term, 102
coefficients, 100
collider, 169
collider bias, 169
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common outcome, 169
complete case, 210
complete case analysis, 210
conditional average treatment effect, 195
conditional distribution, 95
conditional independence, 169
conditional mean, 96
conditional mean function, 99
conditional probability, 95
conditioning variable, 99
confidence interval, 49
confidence level, 50
confounder, 63
consistency

OLS, 124
consistent, 47
continuous variable, 26
contrapositive, 91
converse, 91
correctly specified, 116
counterfactual, 64, 171, 173
covariance stationarity, 225
covariate, 99
coverage probability, 50
credible interval, 34
credible set, 34

data, 33
data-generating process, 18
dataset, 33
decomposition, 232

classical additive, 233
classical multiplicative, 233
remainder, 232

demeaned, 242
dependence, 98
dependent variable, 98
deterministic trend, 230
detrended, 233
DGP, see data-generating process
diff-in-diff, see difference-in-differences
difference stationary, 229
difference-in-differences, 166, 171

discrete variable, 23
dummy variable, 22

economic significance, 54
empirical distribution, 40
endogenous, 107
error form, 94
error term, 94, 242

CMF, 102
structural, 106

estimand, 41
exogenous, 107
expectation, see expected value
expected value, 23
external validity, 201

first difference, 224
first lag, 224
first lead, 224
first-order autoregressive model, 241
fitted value, 42
fitted values, 109
flexible, 146
forecast

h-step-ahead, 246
multi-step, 246

forecast interval, 247
forecasting, 221, 244
fourth moments, 124
frequentist, 34
fully saturated, 118, 165
functional form, 116

GE, see general equilibrium
general equilibrium, 66
general equilibrium effects, 66, 70

hat, 40
heterogeneity, 68
heteroskedasticity, 110
heteroskedasticity-robust, 110
homoskedasticity, 110

identically distributed, 38



INDEX 277

identification, 73, 74
identified, 73
identifying assumptions, 73
if, 90
if and only if, 91
ignorability, 104, 169
iid, see independent and identically dis-

tributed
implied by, 90
implies, 90
in-sample, 224
included regressor, 158
independence, 104
independent, 97
independent and identically distributed,

36
independent variable, 99
indicator function, 22
indicator variable, 22
inference, 48
information criterion, 257
innovation, 242
intention-to-treat, 77
interaction term, 165, 187
internal validity, 201
interval forecast, 247
invariant, 105
inverse, 91

joint distribution, 94
joint probability, 94

latent, 205
least squares, 42
left-hand side variable, 99
linear combination, 139
linear projection, 120
linear projection coefficient, 120
linear-in-parameters, 140
linear-in-variables, 140
linearity, 25
log function, 132
log units, 134

loss function, 27
quadratic, 30

LP, see linear projection
LPC, see linear projection coefficient

machine learning, 146
marginal probability, 95
mean, 21
mean independence, 98
mean squared error, 46
measurement error, 205
misspecification

functional form, 116
misspecified, 116
model, 98

linear, 131
linear-log, 135
log-linear, 134
log-log, 136

model selection, 146
MSE, see mean squared error
multicollinearity

imperfect, 192
perfect, 192

multiple comparisons problem, 53
multiple testing problem, 53

natural experiments, 171
necessary, 90
Neyman–Rubin causal model, 66
no interference, 69, 104
nominal coverage probability, 50
nominal variable, 25
non-interference, 104
non-response bias, 213
nonlinear-in-parameters, 141
nonparametric regression, 145
nonstationary, 229

object of interest, 41
OLS, see ordinary least squares
omitted variable bias, 157
only if, 90
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ordinal variable, 25
ordinary least squares, 108
out-of-sample, 224
outcome variable, 98
OVB, see omitted variable bias
overfitting, 147

parallel trends, 173
parameters, 100
partial equilibrium, 66
PE, see partial equilibrium
plug-in principle, 40
point forecast, 245
population, 18

finite, 18
infinite, 19
super-, 19

population of interest, 201
population studied, 201
posterior, 34
potential outcome

treated, 67
untreated, 67

predicted value, 41
prediction, 27
predictor, 99
prior, 34
projection, 119
properly specified, 116
publication bias, 53

quadratic function, 141
quasi-experiments, 171

random draw, 16
random sample, 16, 36
random variable, 16
random walk, 229
randomized, 64
randomized controlled trial, 74
randomized experiment, 74
RCT, see randomized controlled trial
realization, 16

realized value, 16
reduced form, 64
regressand, 98
regression, 89
regressor, 99
repeated sampling, 35
residual, 42, 109
response variable, 99
reverse causality, 214
right-hand side variable, 99
robust to heteroskedasticity, 110
see also Neyman–Rubin causal model

sample, 33
sample analog, 40
sample average, 41
sample mean, 41
sample selection, 213
sample size, 36
sample values, 33
sampling

independent, 37
sampling bias, 37
sampling distribution, 42
sampling frequency, 224
script, 9
seasonal dummies, 260
seasonality, 230
second moments, 124
selection on observables, 169
self-selection, 76
serial correlation, 226
shock, 242
simultaneity, 214
simultaneous causality, 214
slope coefficient, 100
spillover effects, 69
SSR, see sum of squared residuals
stable unit treatment value assumption,

69
stationarity

strict, 225
strong, 225
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weak-sense, 225
wide-sense, 225

stationary, 225
statistical significance, 52
statistically significant, 52
strong ignorability, 104
stronger, 90
structural approach, 65
structural break, 231
structural model, 105
structural parameter, 106
sufficient, 90
sum of squared residuals, 42
SUTVA, see stable unit treatment value

assumption

threats to validity, 202

time series, 223
treatment, 66
treatment effect, 66, 68
trend

stochastic, 229
trend stationary, 230
trend–cycle component, 231

unbiased, 45
unconditional probability, 95
unconfoundedness, 104, 169
unit root, 229
units, 36
units of measure, 26

weaker, 90
white noise, 241

independent, 229, 242
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