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iii

However, the second time round, she came upon a low curtain she had
not noticed before, and behind it was a little door about fifteen inches
high: she tried the little golden key in the lock, and to her great delight it
fitted! Alice opened the door and found that it led into a small passage,
not much larger than a rat-hole: she knelt down and looked along the
passage into the loveliest garden you ever saw. How she longed to get out
of that dark hall, and wander about among those beds of bright flowers
and those cool fountains, but she could not even get her head through the
doorway. . .

Lewis Carroll, Alice’s Adventures in Wonderland
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Preface

This text was prepared for the 15-week 2nd-semester core PhD econometrics course at
the University of Missouri. The main focus is identification, from perspectives of both
structural models and potential outcomes, using conditional independence, instrumental
variables (IV), or panel data. Additionally, the generalized method of moments (GMM) is
discussed (after the special case of IV), as well as maximum likelihood. Probit/logit mod-
els are also presented, which allows introduction of important concepts for any nonlinear
models.

The assumed background is the first-semester core PhD econometrics at the University
of Missouri, which uses (roughly) the first nine chapters of Hansen (2020a) and related
material from Hansen (2020b).

As with my Introductory Econometrics (Kaplan, 2022a) and Distributional and Non-
parametric Econometrics (Kaplan, 2021), this text’s source files are freely available. In-
structors may modify them as desired, or copy and paste LATEX code into their own
lecture notes, with usage subject to the Creative Commons license linked on the copy-
right page. I wrote the text in Overleaf, an online (free) LATEX environment that includes
knitr support. You may see, copy, and download the entire project from my website.1

Another unusual feature is the prevalence of in-class discussion questions. I find these
very helpful (for more actively engaging students, for gauging how students are tracking,
and for breaking up my lecturing), and students seem to appreciate them, too.

Thanks to everyone for their help and support: my past econometrics instructors, my
colleagues and collaborators, my students, and my family.

David M. Kaplan
Spring, 2023
Columbia, Missouri, USA

1https://kaplandm.github.io/teach.html
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Textbook Learning Objectives

For good reason, it has become standard practice to list learning objectives for a course
as well as each unit within the course. Below are the learning objectives corresponding to
this text overall. In the future, each chapter will additionally list more specific learning
objectives that map to one or more of these overall objectives. I hope you find these
helpful guidance, whether you are a solo learner, a class instructor, or a class student.

The textbook learning objectives (TLOs) are the following.

1. Define terms and concepts, both mathematically and intuitively.

2. Develop intuition for fundamental concepts to enable you to understand economet-
rics papers/books that you need to read later for your own research.

3. Describe various econometric methods both mathematically and intuitively, includ-
ing their objects of interest and assumptions, and the logical relationship between
the assumptions and corresponding theorems and properties.

4. For a given economic question, dataset, and econometric method, judge whether
the method is appropriate and assess the economic significance and statistical sig-
nificance of the results.

5. Use Stata to manipulate and analyze data, interpreting results both economically
and statistically.

xvii



xviii TEXTBOOK LEARNING OBJECTIVES



Notation

Variables

Usually, uppercase denotes random variables, whereas lowercase denotes fixed values. The
primary exception is for certain counting variables, where uppercase indicates the maxi-
mum value and lowercase indicates a general value; e.g., time period t can be 1, 2, 3, . . . , T ,
or regressor k out of K total regressors. Scalar, (column) vector, and matrix variables are
typset differently. For example, an n-by-k random matrix with scalar (random variable)
entries Xij (row i, column j) is

X =


X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...
Xn1 Xn2 · · · Xnk


and a k-dimensional non-random vector is

z =


z1
z2
...
zk


Unless otherwise specified, vectors are column vectors. The transpose of a column vector
is a row vector. For example, using the z defined above,

z′ = (z1, z2, . . . , zk)

Note: displayed math like above should always have appropriate punction (comma, pe-
riod) at the end! . . . unless you are defining notation and worry about confusing people.

Greek letters like β and θ generally denote fixed population parameters.
I sometimes make exceptions to match convention. For example, ϵ is a Greek letter

but is conventionally used for a regression error term or white noise.

1



2 NOTATION

Estimators usually have a “hat” on them. Since estimators are computed from data,
they are random from the frequentist perspective. Thus, even if θ is a non-random
population parameter, θ̂ is a random variable.

I try to put “hats” on other quantities computed from the sample, too. For example,
a t-statistic would be t̂ (a random variable computed from the sample) instead of just t
(which looks like a non-random scalar). Or, a J-statistic would be Ĵ , even though J is
already uppercase, to emphasize that it is computed from data (rather than data itself).

Besides hats, tildes and bars may indicate estimators of parameters, and bars indicate
sample averages. For example, there may be multiple alternatives for estimating θ: θ̂, θ̃,
and θ̄. The sample average of Y1, . . . , Yn is Ȳ .

Estimators and other statistics (i.e., things computed from data) may sometimes
have a subscript with the sample size n to remind us of the asymptotic perspective of a
sequence (indexed by n) of random variables. For example, with n denoting sample size,
θ̂n, t̂n, and Ȳn.

The following is a summary.
y scalar fixed (non-random) value
Y scalar random variable
θ scalar non-random value
θ̂ scalar random variable

x non-random column vector
x′ transpose of x
X random column vector
β non-random column vector
β̂ random column vector

w non-random matrix
w′ transpose of w
W random matrix
Ω non-random matrix
Ω̂ random matrix

Symbols

In addition to the following symbols, vocabulary words and abbreviations (like “quantile”
or “IVQR”) can be looked up in the Index in the very back of the text.

=⇒ implies; see Chapter 2
⇐= is implied by; see Chapter 2
⇐⇒ if and only if; see Chapter 2
limn→∞ limit
plimn→∞ probability limit
→ converges to (deterministic)



NOTATION 3

p→ converges in probability to; see Hansen (2020b, §7.3)
a.s.→ converges almost surely to; see Hansen (2020b, §7.14)
d→ converges in distribution to; see Hansen (2020b, §8.2)
⇝ converges weakly to
≡ is defined as
≈ approximately equals
.
= equals when ignoring smaller-order terms
∼ is distributed as
a∼ is distributed approximately (or asymptotically) as
X ⊥⊥ Y X and Y are statistically independent
N(µ, σ2) normal distribution with mean µ and variance σ2

N(0, 1) standard normal distribution
Φ(·) cumulative distribution function (CDF) of N(0, 1)
ϕ(·) probability density function (PDF) of N(0, 1)
FY (·) cumulative distribution function (CDF) of Y
QY (·) quantile function of Y
fY (·) probability density function (PDF) of Y (or PMF if discrete)
1{·} indicator function: 1{A} = 1 if event A occurs, else 1{A} = 0
P(A) probability of event A
P(A | B) conditional probability of A given B
E(Y ) expected value of Y
Ê(Y ) expectation for sample distribution; same as 1

n

∑n
i=1 Yi

E(Y |X = x) CEF (function of x); see Hansen (2020a, §2.5)
E(Y |X) expected value of Y given X; this is a random variable
Var(Y ) variance of Y
Var(Y |X = x) conditional variance (a non-random value)
Var(Y |X) conditional variance (a random variable)
Cov(Y,X) covariance
Corr(Y,X) correlation
b ∈ {a, b, c} b is in the set containing a, b, and c
S1 ∪ S2 the union of sets S1 and S2
J⋃

j=1
Sj the union of S1, . . . ,SJ

S1 ∩ S2 the intersection of sets S1 and S2
J⋂

j=1
Sj the intersection of S1, . . . ,SJ

N the set of natural numbers, {1, 2, 3, . . .}
R the set of real numbers (which excludes ±∞)
R≥0 the non-negative real numbers
R>0 the strictly positive real numbers
R̄ the extended real numbers, R ∪ {−∞,∞}



4 NOTATION

Rk k-dimensional Euclidean space
Z the set of integers, {. . . ,−2,−1, 0, 1, 2, . . .}
Z≥0, Z>0 analogous to R≥0 and R>0

SE(θ̂) standard error of estimator θ̂
argming f(g) the value of g that minimizes f(g)

Ik k × k identity matrix (ones on main diagonal, zeros elsewhere)
∥·∥ norm (Euclidean unless otherwise defined)
tr(v) trace of matrix v
v′ transpose of matrix v
v−1 inverse of matrix v
v > 0 matrix v is positive definite
v ≥ 0 matrix v is positive semi-definite



Part I

Foundations

5





Introduction

This part may be largely review, but it is helpful to have a deeper understanding of “basic”
ideas before adding complexity. Eventually the focus narrows to identification of causal
effects, specifically how in linear regression “control variables” can help reduce omitted
variable bias but usually do not eliminate it.
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Chapter 1

Stata

Unit learning objectives for this chapter

1.1. Access Stata and code basic commands for data manipulation and analysis. [TLO 5]

This chapter provides a brief overview of Stata, which you will use for the end-of-part
exercises in this book.

Optional resources for this chapter

• Many user-contributed Stata commands can be installed from SSC, includ-
ing bcuse (Baum, 2012), ivreg2 (Baum, Schaffer, and Stillman, 2002), and
ranktest (Kleibergen, Schaffer, and Windmeijer, 2007), which are used in this
class.

• UCLA resources: https://stats.idre.ucla.edu/stata

1.1 Access

As a student at Mizzou, you can use Software Anywhere for free, even from home.1 It
currently has Stata version 15 (StataCorp, 2017), which is a few versions old but sufficient
for this class.

The on-campus computing sites also provide a variety of statistical software. You can
check which computing sites/labs have your favorite software on the Computing Sites
Software web page.2

1https://doit.missouri.edu/services/software/software-anywhere/
2https://doit.missouri.edu/services/computing-sites/sites-software/

9
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1.2 Pros and Cons

As with econometric paradigms, different statistical software packages have complemen-
tary strengths; none is “best” for every case. Stata is commonly used by eocnomists,
especially in applied microeconomics. Below are some general strengths and weaknesses.
Strengths:

1. Very intuitive and simple; easy to do most common tasks.
2. Popular among applied economists =⇒ lots of support, data often available in

Stata format, used in jobs, etc.
3. I think the help files within Stata are very helpful (once you know the basic structure

and syntax).
Weaknesses:

1. Not as many fancy functions as R, although econometricians are getting better
about providing code in Stata (e.g., lots of the new RD methods).

2. Not as easy to code your own functions (vs. R, based on my experiences doing both).
3. Can only have one dataset in memory at a time.
4. Can be slower, but depends on Stata version (some support parallel processing) and

the particular computational task.

1.3 General Setup

When you open Stata, you should see one “window” with multiple “panes” inside. The big
one is the console, which shows the commands you run and the corresponding output.
The very short one at the bottom (below the console) is the command line, where you
can enter commands one at a time. However, it’s generally best to keep all your code in a
“do-file” (see below), unless you’re just opening a help file or browsing the data manually.
The other panes you can probably just close and ignore. If you make a graph, it will open
in a new window. If you make another graph, it will open in the same (second) window,
unless you include an option to name your graph.

Generally, you should write all your code in a do-file. These are files with .do file
extension. They are not “programs” but scripts: a sequence of commands for Stata to
run in order. The do-file editor is a separate window. To open it, hit Ctrl+9 (Windows) or
use the “Window” file-menu, then go down to “Do-file Editor,” then “New Do-file Editor.”
In this new window, you can start typing a new do-file, or open an old file, or save your
current file. I suggest having this window open on the left half of your screen, with the
console fully visible on the right half of your screen.

You can run code from the do-file editor without using the mouse or switching to
the console. Simply highlight whichever line(s) of code you want to run, and hit Ctrl+D
(Windows; probably Cmd+D Mac?). You should see the your highlighted code appear
line-by-line in the console, along with any resulting output.

Economists care about replicability, meaning somebody else on a different computer
should be able to exactly reproduce any result you report in your research. Making sure
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everything you do is in a do-file helps ensure replicability. When you (think you) are
“done” with your research, you should be able to take (only) the raw dataset(s) and your
do-file(s), and run your do-files in order to generate every single number or graph included
in your research paper. Saving log files (see below) also helps.

Besides the built-in Stata commands, there are many high-quality (and some low-
quality) user-contributed commands. These often have corresponding articles in the Stata
Journal, like the articles for commands distcomp (Kaplan, 2019) and sivqr (Kaplan,
2022b). They are often very easy to install, too. For example, you can issue command
net from https://kaplandm.github.io/stata from the Stata command line, then
click a few times to install any Stata command I have made available. These and others
are also available on SSC and can be installed from the Stata command line with ssc
install sivqr (or whatever the command name). These commands’ code is usually in
an ado-file with .ado file extension. Such files are plain-text, so you can see the code
yourself (open it in the do-file editor or just in a text editing program). They define a
program and sometimes refer to other functions designed for internal use.

Stata includes some additional functionality in Mata, which is more like a regular
programming language. This is helpful if you are writing your own functions, like if you
need to do some numerical optimization, but probably nothing you would need to use for
empirical work.

1.4 Administrative Commands

There are some commands in Stata that you probably want to use at the beginning of
all your do-files, to help get everything set up. This section briefly covers some common
such administrative commands.

One thing that is not a command but is very help is comments. A comment is
ignored by Stata, but lets you describe your do-file’s goals (and put your name at the
very top of your file), or the reason for a particular line of code. Comments are helpful for
working with coauthors, but also just helpful for working with your future self. Research
projects usually last at least one year, and often you do not remember why you wrote
line 157 of your do-file after one year. Here is an example of using code comments to
communicate effectively with your future self: xkcd.com/1421. In Stata, any line starting
with an asterisk * is treated as a comment. Also, even if not at the beginning of a
line, double-slash // tells Stata to ignore the rest of the line. You can also use C-style
multi-line comments, starting with /* and ending with */.

Here are some suggested commands to include at the top of your do-file.

• clear all: clears any data in memory; keep in mind that you will need to re-run
your code many, many times (fixing bugs, adjusting data prep, etc.), so you should
plan for having just run your code but maybe having gotten an error.

• capture log close: closes any log file left hanging open (again, if you got an error
in the middle of your last run. . . ).

https://xkcd.com/1421/
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• cd: change the current working directory (to a particular directory on your com-
puter, where your data and such are stored, and where output will get saved by
default, etc.).

• log using FILENAME.log , replace: start saving a log file, so all your commands
and output will be saved; the “.log” makes it plain-text (my preference, instead of
Stata markup language [like HTML]), and the replace option tells it to over-write
the currently saved one (because again, this may be your 64th time running this
do-file). Important: at the very end of your do-file, put log close as your very
last line.

• pwd: prints the filepath of the current working directory in the console.

• version: prints the current version of Stata that you’re running.

• which: prints the version of any user-contributed command (or even built-in com-
mand); for example, which sivqr to see the current version of sivqr you have
installed.

• set more off: make sure Stata just runs through your whole do-file without wait-
ing for you to click “more”; very important! (Otherwise you may start your file
running, go work on something else for an hour, and come back only to realize it
ran for 3 minutes before waiting for you to click “more.”)

1.5 Data Input and Examination

Stata can read/input a few different formats of data, using the following commands.

• use loads data from .dta files, the proprietary Stata format; just tell it the name
of the file, and usually you want to use the clear option to clear out the current
dataset in memory, like use my-file.dta , clear (or you can omit the .dta part).

• insheet loads comma-separated values (.csv) data files or tab-separated files (often
.txt or .dat); for example, something like insheet using my-file.csv , comma
names to load a CSV file with a header row (names).

• infile can handle fixed-format data files (or whitespace-delimited files), although
those are less common nowadays.

Stata can also output a few different formats of data, using the following commands.

• save generates a Stata-format .dta file, and the replace option is usually helpful
(to overwrite an existing file with the same name); for example, save my-new-file
, replace (the .dta is added to the filename automatically).
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• export delimited can produce comma-delimited or tab-delimited files that are
easy to import into other statistical software (like R).

• export excel creates an Excel file (which is rarely useful), and other export vari-
ants can work with databases or SAS.

Once your dataset is loaded into memory, you can examine it a bit.

• describe

• codebook

• list in 1/5 to print the first five rows (observations) to the console; or list x y
z in 1/5 to print only variables x, y, and z, etc.

• browse to open the data browser.

Usually edit is a bad idea because any changes you make will not be replicated by running
(only) your do-file; any changes you make to the data should be done “programmatically,”
with code in your do-file that can be replicated by other users.

1.6 Data Manipulation Commands

There are many ways to manipulate (change) your data, including with the following
Stata commands.

• order: reorder the columns (variables) in your dataset; for example, order y x to
put the y variable as the first column and x as the second (and leave the remaining
variables in the same order).

• keep and drop: retain or delete the specified columns in the data; for example,
drop y to delete the y variable (column), or keep x to keep only the x variable
(and delete everything else).

• keep if and drop if: retain or delete the rows in the data satisfying the speci-
fied condition; for example, keep if !missing(x) to keep only observations (rows)
with non-missing x value, or drop if missing(x) to drop observations with miss-
ing x value.

• sort and gsort: sort the rows according to the value of some variable(s); for
example, sort x to sort the rows in ascending order by the value of their x variable.

• generate, replace, and egen: generate a new variable (column), or replace certain
values; for example, generate wx=w*x creates a new column/variable named wx
that equals the product of existing variables w and x, or replace z=1 if x>0 to
replace the value of variable z in observations with strictly positive x.
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There are a few more commands that are complicated but useful.

Command reshape is mostly useful with panel data that includes multiple observa-
tions of the same “unit” (individual, firm, etc.) in different time periods. Sometimes,
you might get a dataset where each unit has only one row, but there are variables like
inc2013 and inc2014 that give the inc value observed in years 2013 and 2014. For most
Stata commands for panel data, you instead want one row per unit-year, like one row
for unit 1 in year 2013 and a separate row for the same unit in 2014. To convert such
data, use reshape long; for example, reshape long inc , i(id) j(year) when vari-
able id uniquely identifies the units and the original dataset has variables like inc2013
and inc2014, which get converted into a single inc variable (column) plus a year col-
umn that stores the 2013 or 2014 from the original variable names. To go in the reverse
direction (less useful), use reshape wide.

Command collapse can aggregate or summarize your data. For example, if you
have wages for many individuals across many states and years, you could do collapse
(mean) wage , by(state year) to create a dataset with only one observation (row)

per unique state-year combination, containing the mean wage among all the individuals
in that state-year.

There are also a couple useful commands for combining the dataset in memory with
another data file, the simpler one being append. For example, this can be useful if you
have separate datasets for separate years of data, but they all have the same variables,
so you just need to stack the datasets on top of each other. In that case, you load the
earliest file into memory, say year 2013, then append using data2014, then append
using data2015, etc., assuming your files are named like data2014.dta.

Command merge instead combines datasets “horizontally.” Each dataset needs to
have identifier variable(s) that can be matched across datasets. For example, if you had
one dataset with each person’s id number and height, and another dataset with id
and the person’s weight, then you could merge them together to get a single dataset
with both height and weight: you’d load the first dataset (say heightdatafile.dta),
then merge 1:1 id using weightdatafile where the 1:1 indicates that id is a unique
identifier in each dataset (there are never multiple rows with the same id value). Instead
of such a “one-to-one” merge, sometimes a “many-to-one” merge is useful. For example,
if your data in memory (the “master” data) has individuals living in different states, with
multiple individuals per state, and you have another data file (the “using” data) with the
current sales tax rate in each state, with only one row per state, then you could do a
many-to-one merge like merge m:1 state using taxdatafile if the second dataset is
taxdatafile.dta. Conversely, you can also do a one-to-many merge with merge 1:m
. Finally, merge creates a new variable named _merge whose values you should check,
because they indicate whether each row (in the newly merge dataset) has data from the
master data (value 1), from the using data (value 2), or both (value 3). It’s not necessarily
bad to have values of 1 or 2, as long as you are expecting them and treat them properly
in your subsequent analysis.
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1.7 Data Analysis

There are many, many Stata commands for data analysis, most of which you can easily
Google; these are just a few examples.

• summarize: compute summary statistics; you can also use the detail option to get
even more statistics.

• tabulate: helpful summary for discrete or categorical data; for example, tabulate
region to see how frequently each value of region appears in your dataset.

• regress: linear regression. Just specify the dependent variable followed by the
regressors, and the type of standard errors you want in the vce option; for exam-
ple, regress y x1 x2 , vce(robust) to get heteroskedasticity-robust standard
errors. There are some operators that can make it easier for you to include poly-
nomial, interaction, dummy, lagged, and differenced terms in your model, like reg
y c.x##c.x to include a polynomial in x, or reg y i.region to generate dummy
variables for different values of categorical variable region, or reg y x L.x to use
lagged x, etc.

• histogram and scatter: make graphs.

Some of the end-of-chapter exercises provide additional code for more complex econo-
metric analysis.
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Chapter 2

Logic

Unit learning objectives for this chapter

2.1. Define and apply basic logic terms and relationships [TLO 1]

This chapter is mostly taken from Section 6.1 of Kaplan (2022a).
Some basic logic is useful for understanding certain parts of econometrics. First,

logic is useful for understanding the relationship among different conditions. Often these
conditions are assumptions used in various theorems. Second, logic is useful for under-
standing what a theorem actually claims. Third, logic is helpful for interpreting results.
The following may not be fully technically correct from a philosopher’s perspective, like
perhaps I conflate logical implication with the material conditional, but it suffices for
econometrics.

2.1 Terminology

=⇒ Kaplan video: Logic Terms Example

Many words and notations can refer to the same logical relationship. Let A and B be
two statements that can be either true or false. For example, maybe A is “Y ≥ 10” and
B is “Y ≥ 0.” Or, A is “this animal is a cat,” and B is “this animal is a mammal.” The
following ways of describing the logical relationship between A and B all have the same
meaning.

1. If A is true, then B is true (often shortened: “if A, then B”)
2. A =⇒ B
3. A implies B
4. B ⇐= A
5. B is implied by A

17
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6. B is true if A is true
7. A is true only if B is true
8. A is a sufficient condition for B (shorter: “A is sufficient for B”)
9. B is a necessary condition for A (shorter: “B is necessary for A”)

10. A is stronger than B
11. B is weaker than A
12. It is impossible for B to be false when A is true (but it is fine if both are true, or

both are false, or A is false and B is true)
13. The truth table (T=true, F=false):

A B A =⇒ B

T T T
T F F
F T T
F F T

14. The diagram (everything in A is also in B):

AB

To state equivalence of A and B, opposite statements can be combined. Specifically,
any of the following have the same meaning.

1. A ⇐⇒ B (meaning both A =⇒ B and A ⇐= B)
2. A is true if and only if B is true (meaning A is true if B is true and A is true

only if B is true)
3. B is true if and only if A is true
4. A is necessary and sufficient for B
5. B is necessary and sufficient for A
6. A and B are equivalent
7. It is impossible for A to be false when B is true, and impossible for A to be true

when B is false.
8. The truth table (T=true, F=false):

A B A ⇐⇒ B

T T T
T F F
F T F
F F T

Variations of A =⇒ B have the following names. Read ¬A as “not A”: ¬A is false

https://en.wikipedia.org/wiki/Truth_table
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when A is true, and ¬A is true when A is false.

• ¬A =⇒ ¬B is the inverse of A =⇒ B.

• B =⇒ A is the converse of A =⇒ B.

• ¬B =⇒ ¬A is the contrapositive of A =⇒ B.

The statement A =⇒ B is logically equivalent to its contrapositive. That is, state-
ments “A =⇒ B” and “¬B =⇒ ¬A” can be both true or both false, but it’s impossible
for one to be true and the other false.

The statement A =⇒ B is not logically equivalent to either its inverse or con-
verse. (The inverse and converse are equivalent to each other because the inverse is the
contrapositive of the converse.)

Example 2.1 (Kaplan video). Let A be “X ≤ 0” and let B be “X ≤ 10.”
• A =⇒ B: any number below 0 is also below 10.
• We could equivalently say “A implies B” or “B is true if A is true” or “A is stronger

than B” or “A is sufficient for B.”
• The contrapositive is X > 10 =⇒ X > 0, which is also true: any number above
10 is also above 0.

• The inverse is X > 0 =⇒ X > 10, which is false: e.g., if X = 5, then X > 0 but
not X > 10.

• The converse is X ≤ 10 =⇒ X ≤ 0, also false: again if X = 5, then X ≤ 10 but
not X ≤ 0.

2.2 Theorems

Theorems all have the same logical structure: if assumption A is true, then conclusion
B is true. Sometimes A and B have multiple parts, like A is really “A1 and A2.” (Like,
“If SUTVA holds and treatment is randomized, then the ATE is identified and equals the
mean difference.”) The theorem’s practical use is: if we can verify that A is true, then we
know B is also true.

What if we think A is false? Then, B could be false, or it could be true. This may be
seen most readily from the picture version of the A and B relationship in Section 2.1: we
could be somewhere inside B but outside A (i.e., B true, A false); or we could be outside
both (both false). That is, as in Section 2.1, the theorem A =⇒ B is not equivalent to
its inverse.

Also from Section 2.1, a theorem is equivalent to its contrapositive. That is, if the
theorem’s conclusion is false, then we know at least one of its assumptions is false.

Example 2.2 (Kaplan video). Consider three line segments, x, y, and z. Let A be “x,
y, and z form a triangle”; let B be “the length of z is less than or equal to the sum of the
lengths of x and y.”

https://youtu.be/GRCa5-TxBUM
https://youtu.be/ipkmpzbDtSY
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• In Euclidean geometry, if assumption A is true, then conclusion B is true; the
theorem “A =⇒ B” is correct (known as the triangle inequality).

• The inverse is, “if A is false, then B is false,” or: “if x, y, and z do not form a
triangle, then the length of z is greater than the sum of the lengths of x and y.”
This statement is incorrect: if the segments do not form a triangle, then they can
be any lengths.

• The contrapositive is, “if B is false, then A is false,” or: “if the length of z is
greater than the sum of the lengths of x and y, then the three segments do not
form a triangle.” The contrapositive is true; if you have three such segments, it’s
impossible to arrange them into a triangle.

2.3 Comparing Assumptions

To compare assumptions, the terms “stronger” and “weaker” are most commonly used.
Let A1 and A2 denote different assumptions. Per Section 2.1, “A1 is stronger than A2” is
equivalent to A1 =⇒ A2, which is also equivalent to “A2 is weaker than A1.”

All else equal, it is more useful to have a theorem with weaker assumptions because
it applies to more settings. That is, if A1 =⇒ A2, then we prefer a theorem based
on A2, the weaker assumption. A theorem based on A1 can only be used when A1 is
true. In contrast, a theorem based on A2 can be used not only when A1 is true (because
A1 =⇒ A2), but also sometimes when A1 is false (but A2 is still true).

Example 2.3 (Kaplan video). Let assumption A1 be, “a city is in Missouri,” and let
assumption A2 be, “a city is in the United States.” Consider the theorems A1 =⇒ B
and A2 =⇒ B. (The conclusion is irrelevant here, but to be concrete you could imagine
B is “the city is in the northern hemisphere.”) Because Missouri is part of the United
States, A1 =⇒ A2, i.e., A1 is the stronger assumption and A2 is the weaker assumption.
We prefer the theorem based on the weaker assumption because it applies to more cities.
For example, only the theorem A2 =⇒ B applies to Houston; A1 is false, but A2 is true.
(And recall that when A1 is false, the theorem A1 =⇒ B does not conclude that B is
false; it just says, “I don’t know if B is true or false,” i.e., it is useless.)

Discussion Question 2.1 (median theorem logic). Consider the theorem, “If sampling
is iid, then the sample median consistently estimates the population median.” Hint: draw
a picture and/or write it as A =⇒ B.

a) What does this tell us about consistency of the sample median when sampling is
not iid?

b) What does this tell us about sampling when the sample median is not consistent?

Discussion Question 2.2 (mean theorem logic). Consider the theorem, “If sampling is
iid and the population mean is well-defined, then the sample mean consistently estimates
the population mean.” Hint: there may be multiple possible pictures that show this
relationship among A1 (iid), A2 (well-defined), and B (consistency).

https://en.wikipedia.org/wiki/Triangle_inequality
https://youtu.be/dMOhEYfkkOM
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a) What does this tell us about consistency of the sample mean when sampling is not
iid?

b) What does this tell us about sampling when the sample mean is not consistent?

Discussion Question 2.3 (logic with feathers). Consider two theorems. Theorem 1
says, “If X is an adult eagle, then it has feathers.” Theorem 2 says, “If X is an adult bird,
then it has feathers.”

a) Describe each theorem logically: what’s the assumption (A), what’s the conclusion
(B), what’s the relationship?

b) State Theorem 1’s contrapositive; is it true?
c) Compare: does Theorem 1 or Theorem 2 have a stronger assumption? Why?
d) Compare: which theorem is more useful? (Which applies to more situations?)
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Chapter 3

The Big Picture

Unit learning objectives for this chapter

3.1. Define terms and concepts fundamental to econometrics as a whole and the portion
of it on which we will focus, including the interpretation and significance of empirical
results. [TLOs 1, 2, and 4]

This chapter provides a view of the wide world of econometrics, including fundamental
ideas that will recur throughout the book. The section titles use the word “and” instead
of “versus” to emphasize that different paradigms may be helpful in different contexts or
even complement each other in the same context; it is not a fight about which is “best,”
because there is no universal “best.” If you end up using econometrics for research, then
you will (hopefully) not be using methods directly from this class but more sophisticated
methods that you learn about later. I hope this chapter (and book) helps you more
readily understand the new methods you encounter later.

Optional resources for this chapter

• Quantifying uncertainty and statistical significance (Masten video)

• Bayesian vs. frequentist cookie inference example (StackExchange)

• Structural vs. reduced form approach (Masten video)

• Structural modeling advantages (Masten video)

• Greater external validity for “structural” results (Masten video)
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https://www.youtube.com/watch?v=3IOzq0hOttY
https://stats.stackexchange.com/a/2287
https://www.youtube.com/watch?v=L2ybepEF9dM
https://www.youtube.com/watch?v=nlsR4lxYBRo
https://www.youtube.com/watch?v=nlsR4lxYBRo
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3.1 Description, Prediction, and Causality

This section draws from Section 4.3 of Kaplan (2022a).
There are three categories of questions that econometric methods can help answer,

related to description, prediction, and causality. Description is essentially about features
of the joint distribution of observable variables, like correlations and conditional means.
Prediction is guessing an unknown value based on other observed values; the “best” guess
depends on the consequences of wrong guesses, which are often used to make a decision.
Causality is important for making decisions, like should our firm spend more on advertis-
ing, or should we raise or lower the minimum wage? Causality is about the effect of such
policy changes on other variables.

Example 3.1 (Kaplan video). Consider the relationship between an individual’s employ-
ment status and mental health, specifically anxiety. A descriptive question is: what’s the
proportion of employed individuals who have generalized anxiety disorder (GAD), and
how much higher or lower is that proportion among unemployed individuals? A predictive
question is: given somebody’s employment status, what’s the “best” guess of their score
on the GAD-7 anxiety measure? A causal question is: how does being employed (instead
of unemployed) affect an individual’s level of anxiety as quantified by the GAD-7?

Discussion Question 3.1 (description, prediction, causality). Which type of question
(description, prediction, causality) is each of the following? Explain why. Hint: there’s
one of each.

a) If you only know whether an individual is from Canada or the U.S., what is your
best guess of their income?

b) You are currently working in the U.S. but considering moving to Canada. How will
your income change if you do?

c) Which country’s population has higher income: Canada or the U.S.?

3.2 Population and Sample

Generally, the population is what we want to learn about, and the sample is the data
from which we can learn. There are different ways to mathematically model a population,
depending on the object of interest. Often, we can learn about a feature of a population
by computing the same feature of the sample. More details about how we interpret the
population and sample are in Section 3.4.

In this book, the population is a represented by a joint probability distribution of
random variables, and the sample is a set of n observations of values drawn from that
distribution. Population features are mirrored by features of the sample. For example,
population random variable Y has mean E(Y ), and given Y1, Y2, . . . , Yn, the sample mean
is Ê(Y ) = (1/n)

∑n
i=1 Yi. The sample distribution or empirical distribution is a

discrete probability distribution with probability 1/n on each value of Yi; the sample
mean is thus the mean of the empirical distribution.

https://youtu.be/JwcqZ3hzd7w
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3.2.1 Population Types

=⇒ Kaplan video: Population Types

This subsection is a shorter version of Section 2.2 of Kaplan (2022a).
In this textbook, the population is modeled mathematically as a probability distribu-

tion. This is appropriate for the infinite population or superpopulation below, but not
the finite population. Consequently, it is most important to distinguish between the finite
population and the other two types.

Beyond Our Scope

Recently, there has been some renewed interest in finite-population methods in econo-
metrics; for example, see Abadie, Athey, Imbens, and Wooldridge (2020).

Generally, the finite population perspective cares more about the outcomes of a finite
group of individuals, whereas the other two population types care more about proper-
ties of the underlying mechanisms that generated the outcomes, often called the data-
generating process (DGP).

A finite population is closest to the regular English word “population,” which means
all the people living in some area. For example, if we are interested in the outcomes of
(only) everyone in Missouri in 2023, then we have a finite population. Other examples of
finite populations are (for a given time period) all employees at a particular firm, all firms
in a particular industry, all students in a particular school, or all hospitals of a certain
size. In a finite population, we care only about the actual outcomes, not underlying
reasons; for example, maybe we want to know how many individuals in Missouri actually
earned the minimum wage in January 2023, but we do not care about the determinants
of wage. Hypothetically, if we could observe every single member of a finite population,
then we could fully answer our question, with no uncertainty. That is, our confidence
interval would just be a single point, equal to the true value.

Sometimes a finite population is so large compared to the sample size (i.e., the num-
ber of population members we observe) that an infinite population is a reasonable
approximation. For example, if we observe only 600 individuals out of the 6+ million
in Missouri, econometric results based on finite and infinite populations are practically
identical. Although “infinite” sounds more complex than “finite,” it is actually simpler
mathematically: instead of needing to track every single member of a finite population,
an infinite population is succinctly described by a probability distribution or random
variable.

Besides this convenience, sometimes there is no finite population (however large) that
answers your question. For example, imagine there’s a new manufacturing process for
carbon monoxide monitors that should sound an alarm above 50ppm. Most work properly,
but some are faulty and never alarm. Specifically, this manufacturing process corresponds

https://youtu.be/2LkQBA6pL-M


26 CHAPTER 3. THE BIG PICTURE

to some probability of producing a faulty monitor. Mathematically, the manufacturing
process can be modeled as random variable W with some probability of the value “faulty.”
If you want to learn this probability (i.e., this property of the manufacturing process),
then there is no finite number of monitors that can exactly answer your question; no finite
number of realizations exactly determines P(W = faulty). This is an infinite population
question.

One variation of the infinite population is the superpopulation (coined by Deming
and Stephan, 1941). This imagines (infinitely) many possible universes; our actual uni-
verse is just one out of infinity. Thus, even if it appears we have a finite population, we
could imagine that our universe’s finite population is actually a single sample from an
infinite number of universes’ finite populations. The term “superpopulation” essentially
means “population of populations.” Our universe’s finite population “is only one of the
many possible populations that might have resulted from the same underlying system of
social and economic causes” (Deming and Stephan, 1941, p. 45). For example, imagine we
want to learn the relationship between U.S. state-level unemployment rates and state min-
imum wage levels. It may appear we are stuck with a finite population because there are
only 50 states, each of which has an observable unemployment rate and minimum wage.
However, observing all 50 states still doesn’t fully answer our question about the under-
lying mechanism that relates unemployment and minimum wage, so a finite population
seems inappropriate. But we can’t just manufacture new states like we can manufacture
new carbon monoxide monitors, so an infinite population also seems inappropriate. The
superpopulation imagines manufacturing new entire universes, each with 50 states and
the same economic and legal systems.

In Sum: Population Type

Hypothetically, could a finite number of observations fully answer your question?
No =⇒ superpopulation or infinite population, modeled as probability distribution
(as in this textbook)
Yes =⇒ finite population (use different methods unless sample is much smaller than
population)

Example 3.2 (employment status). Consider the employment status of individuals in
Missouri. A finite population is more appropriate if you want to document the actual
percentage of Missouri individuals unemployed last week. A superpopulation is more
appropriate if you want to learn about the underlying mechanism that relates education
and unemployment. That is, knowing each individual’s employment status fully answers
the first question, but not the second question.

Example 3.3 (employee productivity). Consider the productivity of employees at your
company (you’re the CEO). If you want to know each employee’s productivity over the
past fiscal quarter, then a finite population is more appropriate. If you want to learn how
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a particular company policy affects productivity, then a superpopulation is more appro-
priate. That is, knowing each employee’s productivity fully answers the first question,
but not the second question.

Discussion Question 3.2 (student data). Imagine you’re a high school principal. You
have data on every student, including their standardized test scores from last spring.

a) Describe a specific question for which the finite population is most appropriate, and
explain why.

b) Describe a specific question for which an infinite population or superpopulation is
most appropriate, and explain why.

3.2.2 Before and After Sampling: Two Perspectives

=⇒ Kaplan video: “Before” and “After” Perspectives of Data

This subsection is from Section 2.1 of Kaplan (2022a).
Consider a coin flip. The two possible outcomes are heads (h) and tails (t). After

the flip, we observe the outcome (h or t). Before the flip, either h or t is possible, with
different probabilities.

Let variable W represent the outcome. After the flip, the outcome is known: either
W = h or W = t. Before the flip, both W = h and W = t are possible. If the coin is
“fair,” then possible outcome W = h has probability 1/2, as does W = t.

The “after” view sees W as a realized value (or realization). It is either heads or
tails. Even if the actual “value” (heads or tails) is unknown to us, there is just a single
value. For example, in physics the variable c represents the speed of light in a vacuum;
you may not know the value, but c represents a single value.

Instead, the “before” view sees W as a random variable. That is, instead of repre-
senting a single (maybe unknown) value like in algebra, W represents a set of possible
values, each associated with a probability. In the coin flip example, the possible outcomes
are h and t, and the associated probabilities are both 0.5.

Other terms for W include a random draw (or just draw), or more specifically a
random draw (or “randomly drawn”) from a particular probability distribution. Seeing
the population as a probability distribution (see Section 3.2.1), we could say W is ran-
domly sampled from its population distribution, or if there are multiple random variables
W1,W2, . . . (e.g., multiple flips of the same coin), we could say they are randomly sampled
from the population or that they collectively form a random sample; see Section 3.2.3
for more about sampling.

Notationally, in this textbook, random variables are usually written uppercase (like W
or Y ), whereas realized values are usually written lowercase (like w or y). This notation
is not unique to this textbook, but beware that other books use different notation. (For
more on notation, see the Notation section in the front matter before Chapter 1.)

https://youtu.be/2qeLBg47MIo
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Example 3.4 (Kaplan video). Let R = 1 if it rains in Columbia, MO on Tuesday
and R = 0 if not. If today is Monday, then either outcome is possible, so we have
the “before” view: R is a random variable, with some probability of R = 0 and some
probability of R = 1. If instead today is Wednesday, then what happened Tuesday is
already determined, so we have the “after” view. If it rained, then R = 1; if not, R = 0.
There is only a single value, not multiple possible values. Even if we don’t know the
realized value r, we know it’s just a single value.

Extending the above are the before sampling and after sampling perspectives, or
“before observation” and “after observation.” Similar to above, “before” corresponds to
random variables, whereas “after” corresponds to realized values. Before sampling a unit
(person, firm, etc.) from a population, we don’t know which one we’ll get, so there are
multiple possible values. After sampling, we can see the specific values we got.

Example 3.5 (age as random variable). Imagine you plan to record the age of one person
living in your city. You take a blank piece of paper on which you’ll write the age. After
you find a person and write their age (“after sampling”), that number can be seen as a
realized value, like w. In contrast, before sampling, there are many possible numbers that
could end up on your paper. It’s not that peoples’ ages are undetermined; they each know
their own age. But before you “sample” somebody, it’s undetermined whose age will end
up on your paper. It could be your neighbor DeMarcus, age 88. It could be your kid’s
friend Lucia, age 7. It could be your colleague Xiaohong, age 35. The random variable
W is like your blank paper: it has many possible values, like W = 88, W = 7, or W = 35.

Discussion Question 3.3 (web traffic). Let Y = 1 if you’re logged into the course
website and Y = 0 if not.

a) From what perspective is Y a non-random value?
b) From what perspective is Y a random variable?

In Sum: Before & After

Before: multiple possible values =⇒ random variable
After: single observed value =⇒ realized value (non-random)

3.2.3 Sampling Types

=⇒ Kaplan video: Types of Sampling

This subsection is a shorter version of Section 3.2 of Kaplan (2022a).
Properties of estimators depend on how a sample is drawn from the population. How-

ever, this book focuses mostly on identification, so generally iid sampling (see below)
is assumed for simplicity. One exception is the discussion of “cluster-robust” confidence

https://youtu.be/m0XBukuRf9I
https://youtu.be/3u8dm9_MfkA
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intervals when using panel data. There are also problems related to sampling like sam-
ple selection bias and missing data; for example, see Section 12.3 (“Threats to Internal
Validity”) of Kaplan (2022a) or Chapter 21 (“Missing Data”) of Kaplan (2021).

Notationally, we observe the values from n units, which could be individuals, firms,
countries, etc. (I often refer to units as “individuals,” too.) Let i = 1 refer to the
first unit, i = 2 to the second, etc., up to i = n, where n is the sample size. The
corresponding values are Y1, Y2, . . . , Yn, with Yi more generally denoting the observation
for unit i. A particular dataset may have specific values like Y1 = 5, Y2 = 8, etc., but
to analyze (frequentist) statistical properties, each Yi is seen as a random variable as in
Section 3.2.2. You can imagine n buckets (or pieces of paper), initially empty, that will
eventually contain information from n observations. The sampling procedure does not
determine the specific numeric values that end up in the buckets, but it determines how
the buckets get filled.

In this section, two important sampling properties are considered: “independent” and
“identically distributed.” If both hold, then the Yi are called independent and iden-
tically distributed (iid) random variables (or “sampled iid”), and “sampling is iid.”
Sometimes the vague phrase random sampling refers to iid sampling.

Notationally, iid sampling is indicated by iid∼ . For example, with population CDF
FY (·),

Yi
iid∼ FY , i = 1, . . . , n. (3.1)

The FY can be replaced by another distribution function or name.

Independent

Qualitatively, in the context of sampling, independence (or independent sampling)
means that from the “before” view, any two observations are unrelated. For example,
the value of Y2 is unrelated to Y1: we are not any more likely to see a high Y2 if we see a
high Y1 in the sample.

Mathematically, independence means

Yi ⊥⊥ Yk for any i ̸= k, (3.2)

where ⊥⊥ denotes statistical independence. That is, Y1 ⊥⊥ Y2, Y1 ⊥⊥ Y8, Y6 ⊥⊥ Y4, etc. For
any i ̸= k, independent sampling implies (but is not implied by), among other properties,

Cov(Yi, Yk) = 0, Var(Yi + Yk) = Var(Yi) + Var(Yk), E(Yi | Yk) = E(Yi). (3.3)

Example 3.6 (Kaplan video). You plan to flip a coin and record Y1 = 1 if heads and
Y1 = 0 if tails. You plan flip the same coin again and record Y2 = 1 if heads and Y2 = 0 if
tails. These are independent: Y1 ⊥⊥ Y2. Although the probabilities are very closely related
(actually identical), the realization of the first flip (heads or tails) has no relationship with
the second flip. For example, even if we know the first flip is heads, this does not change
the probability of heads for the second flip: P(Y2 = 1 | Y1 = 1) = P(Y2 = 1).

https://youtu.be/M9ET1mq1uRs
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Example 3.7 (Kaplan video). You plan to pick a random person in the world and record
how many years of formal education they’ve had as Y1. You plan to then pick another
random person and record their years of education in Y2. The way you sample Y2 has no
relation to the first sampled person or their Y1 value, so there is independence: Y1 ⊥⊥ Y2.
Among other implications, this means Y1 and Y2 have zero correlation (uncorrelated) and
zero covariance, Cov(Y1, Y2) = 0.

Identically Distributed

The identically distributed property means that from the “before” view, the distribu-
tion of Yi is the same for any i. Qualitatively, all units are sampled from the same popu-
lation. Mathematically, given shared population CDF FY (·), Yi ∼ FY for all i = 1, . . . , n;
or without specifying FY explicitly, identically distributed means Yi

d
= Yk for any i, k.

This further implies equalities like E(Yi) = E(Yk) and Var(Yi) = Var(Yk).

Example 3.8 (Kaplan video). The Y1 and Y2 in Example 3.6 are identically distributed
because they are from the same coin, so the probability of heads is the same each time.
(Unless you cheat or flip it differently or something, but those are nuances for physics
class, not econometrics.)

Discussion Question 3.4 (i/id sampling). You are planning to sample values Y1 and
Y2, but you have not yet sampled them. Each of the following four statements implies one
of the four sampling properties: 1) independent, 2) not independent (i.e., dependent), 3)
identically distributed, 4) not identically distributed. Which is which?

a) You are just as likely to get Y1 = 3 as Y2 = 3, and similarly for any other value
besides 3.

b) If you get a negative Y1, then you’ll probably get a negative Y2; but if you get a
positive Y1, then you’ll probably get a positive Y2.

c) Separately and simultaneously, you will randomly sample Y1 while your friend sam-
ples Y2.

d) For Y1 you are going to get the salary of somebody with an economics degree, and
Y2 will be the salary of somebody with an art history degree.

Example 3.9 (Kaplan video). Imagine randomly picking a Mizzou student ID number,
then randomly picking a 2nd, then 3rd, then 4th. The corresponding Yi are both inde-
pendent and identically distributed (iid). They are independent because each ID number
is randomly drawn without any consideration of how the other numbers are drawn, and
without any consideration of the other observed Yi values. They are identically distributed
because each ID number is drawn from the same population (anyone who has a Mizzou
student ID).

Example 3.10 (Kaplan video). Each Mizzou student is classified as either a resident of
Missouri (“in-state”) or not (“non-resident”). Imagine buckets 1 and 2 say “in-state,” while
buckets 3 and 4 say “non-resident”: observations Y1 and Y2 are from in-state students,

https://youtu.be/M9ET1mq1uRs
https://youtu.be/M9ET1mq1uRs
https://youtu.be/45lkFUSLfjk
https://youtu.be/45lkFUSLfjk
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while Y3 and Y4 are from non-resident students. (This is “stratified sampling”: assigning
buckets to different strata before sampling.) For most variables, the in-state distribution
differs from the non-resident distribution, so the distribution of Y1 and Y2 (in-state) differs
from the distribution of Y3 and Y4 (non-resident). That is, sampling is not identically
distributed. Thus, even if the samples are all independent, sampling is not iid.

Example 3.11 (Kaplan video). Imagine randomly picking a class (like introductory
econometrics) at Mizzou, and filling the first two buckets (Y1 and Y2) with two random
students from that class; then randomly picking another class, and another two students
for the other buckets (Y3 and Y4). (This is an example of “clustered sampling,” where
each class is a “cluster”; this differs from “clustering” in cluster analysis.) Observations are
identically distributed (because each Yi has the same probability of getting any particular
student) but probably not independent. For example, dependence may come from stu-
dents in the same class being similarly affected by their shared experience. Here, buckets
1 and 2 are correlated, and 3 and 4 are correlated, but not 1 and 3, nor 2 and 4, etc.
Thus, sampling is not iid.

Example 3.12 (Kaplan video). Imagine randomly picking 2 Mizzou students (like with
random ID numbers), then observing them this semester and next semester. For example,
imagine bucket 1 contains the first student’s GPA this semester, bucket 2 contains the
same student’s GPA next semester, and buckets 3 and 4 contain the other student’s GPAs
from this semester and next semester. Buckets 1 and 2 (Y1 and Y2) are probably both
high or both low, rather than one high and one low, and similarly for buckets 3 and 4 (Y3
and Y4). That is, buckets 1 and 2 are correlated, and 3 and 4 are correlated. Further,
observations may not even be identically distributed if fall GPA and spring GPA do not
have the same distribution. Thus, sampling is not iid.

Discussion Question 3.5 (rural household sampling). You want to learn about house-
hold consumption in rural Indonesia. In an area with 100 villages, you either i) pick 5
villages at random, then survey every household in each of the 5 villages; or ii) make a
list of all households in all 100 villages, then randomly pick 5% of them. Explain why
each approach is or isn’t iid.

3.3 Frequentist and Bayesian

=⇒ Kaplan video: Bayesian and Frequentist Perspectives

This subsection is a shorter version of Section 3.1 of Kaplan (2022a).
The Bayesian and frequentist (or classical) frameworks have both produced valu-

able econometric methods. This book uses the frequentist framework. Often the practical
difference is small, although in some cases it can be large (e.g., Kaplan and Zhuo, 2021).

https://youtu.be/45lkFUSLfjk
https://en.wikipedia.org/wiki/Cluster_analysis
https://youtu.be/45lkFUSLfjk
https://youtu.be/PJjahfVsS1c
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The goal of this section is to develop a basic understanding of both frameworks, includ-
ing how sampled data is used to learn about the population, as well as how uncertainty
is quantified.

3.3.1 Very Brief Overview: Bayesian Approach

The Bayesian approach models your beliefs about an unknown population value θ, like
the mean θ = E(Y ). Your prior (or prior belief) is what you believe about θ before seeing
the data. Your posterior (or posterior belief) is what you believe about θ after seeing
the data. The Bayesian approach describes how to update your prior using the observed
data, to get your posterior.

Mathematically, “belief” is a probability distribution. For example, let random vari-
able B represent your belief about the population mean. If you think there’s a 50% chance
the mean is negative, then P(B < 0) = 50%. If you think there’s a 1/4 probability that
B is below −1, then P(B < −1) = 1/4. (Elsewhere, you may see this written more
confusingly as P(θ < 0) and P(θ < −1).)

For example, imagine you see a bird flying in your backyard, and you grab your
binoculars to try to identify it. Let θ represent the true species, while B is your belief.
Imagine (for simplicity) you only ever see three types of bird in your backyard, all wood-
peckers: downy, hairy, and red-bellied, written θ = d, θ = h, and θ = r. Based on the
location and habitat, you know hairy is somewhat less likely in general, so your prior is
P(B = d) = P(B = r) = 0.4, P(B = h) = 0.2. Looking through your binoculars (looking
at the data), you’re pretty sure it’s not the red-bellied, but it’s too far to distinguish
downy from hairy, so your updated posterior belief has P(B = d) = 0.6, P(B = h) = 0.3,
P(B = r) = 0.1. The low probability of red-bellied comes from the data, whereas the
higher probability of downy than hairy comes from your prior.

The posterior distribution is the Bayesian way of quantifying uncertainty. It is rela-
tively intuitive, similar to how people talk about uncertainty in daily life. The posterior
distribution is often summarized by a credible interval, i.e., a range of values that
you’re pretty sure (like 90% sure) contains the true θ. Or in the above example with
categorical θ, the credible set {d, h} has 90% posterior belief: you’d say, “I’m 90% sure
it’s a downy or hair woodpecker, although I think there’s a 10% chance I’m wrong and
it’s a red-bellied woodpecker.”

3.3.2 Very Brief Overview: Frequentist Approach

The core of the frequentist approach is the “before” perspective (Section 3.2.2), which can
also be described in terms of repeated sampling. Instead of the belief probabilities of
a Bayesian posterior, frequentist probabilities are from the “before” view of the dataset
(and thus value of estimator and such). Equivalently, as a thought experiment, we can
imagine many different random samples drawn from the same population; the “before”
probabilities are then how often certain values occur in these many random datasets.



3.3. FREQUENTIST AND BAYESIAN 33

For intuition, imagine you could randomly sample 100 datasets from the same pop-
ulation. Then, the frequentist probability of an event is approximately how many times
that event occurs among the 100 samples. For example, we could compute the sample
mean Ȳ in all 100 samples; because the datasets are all different, the sample means Ȳ
are also all different. If Ȳ ≤ 0 in 50 of the 100 hypothetical samples, then P(Ȳn ≤
0) ≈ 50/100 = 50%. Or, if Ȳ is in the interval [−0.4, 0.4] in 70 of 100 samples, then
P(−0.4 ≤ Ȳ ≤ 0.4) ≈ 70%.

3.3.3 Bayesian and Frequentist Differences

The following makes explicit some of the differences between the Bayesian and frequentist
approaches described above.

First, the frameworks treat different variables as random or non-random. The fre-
quentist framework treats the population mean and other population features as non-
random values, whereas it treats the data as random. For example, the population mean
µ = E(Y ) is a non-random value, whereas an observation Y is a random variable. In
contrast, the Bayesian framework treats (beliefs about) population features as random,
whereas it treats the data as non-random values (the “after” view).

Second, due to this different treatment, the frameworks answer different types of
questions, especially when quantifying uncertainty. The Bayesian framework answers
questions about our beliefs after seeing the data. The frequentist framework answers
questions about probabilities of seeing different features in the data, given the true pop-
ulation values.

Example 3.13 (Kaplan video). Consider the question, “Given the observed data, what
do I believe is the probability that the population mean is above 1/2?” This is a Bayesian
question. Mathematically, if y is the “observed data,” this question is commonly written
as P(µ > 1/2 | y), noting the conventional but confusing notation where µ represents
beliefs. This question makes no sense from the frequentist perspective: either µ > 1/2 or
not; it cannot be “maybe,” with some probability.

Example 3.14 (Kaplan video). Consider the question, “Given the value of µ = E(Y ),
what’s the probability that the sample mean is above 1/2?” This is a frequentist question.
Mathematically, this is usually written P(Ȳ > 1/2), or Pµ(Ȳ > 1/2) to be explicit about
the dependence on µ. The sample mean Ȳ is a function of data, so it is treated as a
random variable. This question makes no sense from the Bayesian perspective: we can
see the data, so we can see either Ȳ > 1/2 or not; it cannot be “maybe,” with some
probability.

Interestingly, both frameworks can answer questions like P(Ȳ < µ), but with different
interpretations. The Bayesian answer interprets Ȳ as a number (that we see in the data)
and µ as a random variable representing our beliefs about the population mean. The
frequentist answer interprets Ȳ as the random variable (from the “before” view) and µ as
the non-random population value.

https://youtu.be/8UUDbkUI2wU
https://youtu.be/8UUDbkUI2wU
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Third, frequentist methods use only the data, whereas Bayesian methods can formally
incorporate additional knowledge. In practice, though, even frequentist results should be
interpreted in light of other knowledge. The difference is that this process is not formalized
within the frequentist methodology itself. Unfortunately, many people do not combine
frequentist results with other knowledge, instead interpreting frequentist results as if one
single dataset contains the full, absolute truth of the universe; please do not do this!

In Sum: Bayesian & Frequentist

Frequentist: “before” view of data (random variables); assess methods’ performance
across repeated random samples from same population
Bayesian: “after” view of data (non-random); model beliefs (about population fea-
tures) as random variables

Discussion Question 3.6 (frequentist vs. Bayesian inference). Discuss https://xkcd.
com/1132. Note the null hypothesis is that the sun has not exploded; the alternative
hypothesis is that the sun has exploded.

a) Explain why the p-value is indeed computed correctly.
b) Given the machine’s output, do you think the sun exploded? Why/not?

3.4 Identification, Estimation, and Inference

Figure 3.1 shows one perspective of what (some) econometrics is about. Different parts
of the “map” corresponds to identification and estimation.

Identification relates to the top-right of Figure 3.1. There are two different ways
to think about identification. First, as in the map, imagine population parameter θ is a
feature of the joint population distribution of observable variables, F (·). For example,
maybe θ = E(Y ) is the mean of Y , or maybe θ = Cov(Y,X)/Var(X) is the slope of
the linear projection of Y onto (1, X). In some cases, this slope can be interpreted as
the causal effect of X on Y . Identification can be understood in terms of the set of as-
sumptions under which the population feature θ has this particular causal interpretation.
Alternatively, imagine we define β as the causal effect of X on Y . This β is not a feature
of the population distribution of (Y,X). However, β is identified if (under a set of iden-
tifying assumptions) it equals a feature of the population distribution of observables.
More specifically, a parameter β is point identified F (·) uniquely determines the value
of β. That is, if we somehow knew F (·), then we would also know the value of β. This
book focuses on point identification of causal parameters.

https://xkcd.com/1132
https://xkcd.com/1132
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Figure 3.1: Map of (part of) the world of econometrics (Mercator projection).

Beyond Our Scope

Parameters can also be set identified or partially identified, meaning that F (·)
does not uniquely map to a single value of the parameter but rather a set of possible
parameters. For example, maybe knowing F (·) lets us narrow down the possible
values of β to the interval [a, b], but a < b. For example, see Part VI of Kaplan
(2021).

Estimation relates to the bottom of Figure 3.1. Given identification, our object of
interest is a feature of the population distribution of observables. In many cases, to get an
estimator, we simply compute the same feature of the sample distribution, also called the
empirical distribution, F̂ (·). This is called the analogy principle or plug-in principle.
Other population parameters are defined as the solution to a population optimization
problem, in which case the estimator solves the sample version of the problem. The OLS
estimator can be thought of from both perspectives: it estimates the population parameter
β = [E(XX ′)]−1 E(XY ) by β̂ = [Ê(XX ′)]−1 Ê(XY ), or equivalently it estimates the
population parameter β = argminb E[(Y −X ′b)2] by β̂ = argminb Ê[(Y −X ′b)2].

Inference is a vague word and also not well represented by Figure 3.1. People use infer-
ence in a variety of contexts with different meaning: Bayesian inference, causal inference,
statistical inference, etc. In this book, it refers to methods (mostly confidence intervals)
that quantify the statistical uncertainty about a certain population feature, which may
not be the actual parameter of interest if the identifying assumptions are violated. For
example, if you run reg y x in Stata, the confidence interval is for the population lin-
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ear projection coefficients; even if you are interested in the causal effect of x on y, the
confidence interval cannot account for your uncertainty about the identifying assump-
tions required for the linear projection slope to have a causal interpretation. However,
sometimes there are ways to empirically assess certain identifying assumptions, as we will
see.

3.5 General Equilibrium and Partial Equilibrium

This subsection is Section 4.3.3 of Kaplan (2022a).
Another econometric dichotomy is between general equilibrium (GE) and par-

tial equilibrium (PE) analysis. GE more ambitiously tries to model entire markets,
sometimes multiple markets, whereas PE takes current market equilibria as given. The
tradeoff is that the GE framework can analyze policies that change equilibria (i.e., that
have general equilibrium effects), but it requires stronger assumptions to do so.

Example 3.15 (Kaplan video). Imagine you were analyzing the impact of free public
childcare on mothers’ employment. A PE analysis would consider how mothers might
respond to different childcare policies given the current prices of private childcare, current
wages, etc. A GE analysis might further model the childcare and labor markets, to allow
for the possible general equilibrium effects of public childcare policy on the prices in those
markets. If there is a big expansion of free public childcare, then private childcares may
indeed change their prices. If the expansion allows many mothers to enter the workforce,
then the labor supply curve shifts out, which could lower wages. However, if the proposed
changes to childcare policy are relatively small, then such GE effects may be negligible,
and PE analysis may suffice.

The famous Lucas critique (Lucas, 1976) argues in part that macroeconomic policy
analysis requires structural, GE models. Lucas writes (p. 41), “Given that the structure
of an econometric model consists of optimal decision rules of economic agents, and that
optimal decision rules vary systematically with changes in the structure of series relevant
to the decision maker, it follows that any change in policy will systematically alter the
structure of econometric models.” That is, he says that if we want to guess how people
and firms will behave in the future, under new macroeconomic policies, then we need to
account for GE effects, which requires deeper, structural understanding and modeling of
economic behavior.

In Sum: General & Partial Equilibrium Models

Partial equilibrium models treat prices and other market equilibria as fixed,
whereas general equilibrium models allow markets to change.

https://youtu.be/4T3zZ1JgAm0
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3.6 Structural and Reduced-Form Approaches

This subsection is a shorter version of Section 4.3.2 of Kaplan (2022a).
There are two general approaches to learning about causality: the reduced-form ap-

proach, and the structural approach. Confusingly, the reduced-form approach is some-
times called causal inference even though the structural approach also aims to learn
about causality. (Also confusingly, “reduced form” can refer to other related but different
concepts.)

Both approaches consider counterfactual analysis, but in different ways. Broadly,
a counterfactual is a universe that’s different than our actual universe. Usually, the
counterfactual universe is nearly identical to our actual universe except for one particular
policy whose effect we want to learn.

The reduced-form approach tries to isolate causal effects by using comparisons that
are either randomized or “as good as randomized.” For example, randomized treatment
means that individuals are randomly assigned to be treated or not, without regard to
their characteristics. Hopefully, it is then appropriate to interpret the mean difference as
the average effect of the treatment. “As good as randomized” means that although we
did not explicitly randomly assign treatment, the actual assignment mechanism did not
depend on individuals’ characteristics anyway. More often this is (hoped to be) true after
some other adjustment is made.

In contrast, the structural approach tries to more explicitly model the inner work-
ings of causal systems. Structural models often come from economic theory, like decision-
making or market equilibria models. The goal is to estimate such models’ parameters, like
elasticities, discount factors, risk aversion, and demand curves. There are different ways
people define “structural,” but I think a helpful definition is: a model that is invariant to
a set of policies under consideration. If we are considering very large, macro-level policy
changes, then we would need a relatively complex model, otherwise the policy changes
could change the model (for example, through general equilibrium effects). If we are
considering relatively small, micro-level policy changes, then a simpler model may suffice.
Either way, the hope is that we can estimate the structural model and use it to guess the
causal effect of each possible policy change.

The structural and reduced-form approaches have complementary advantages, and
often both are helpful; for example, see the survey by Lewbel (2019). Structural models
often require stronger (less realistic) assumptions, but in return they can analyze a wider
variety of possible policies. Also, there can be relatively vague “structural” models (like
in this book!), or relatively complex reduced-form models.

Example 3.16 (Kaplan video). Imagine trying to learn how a retirement pension for-
mula (i.e., how much money somebody gets paid after retiring, based on their years of
experience, age, and salary history) affects the age at which a teacher decides to retire.
A reduced-form analysis might compare the mean retirement age of teachers who joined
a school in the year 1998 with the mean retirement age of teachers who joined in 1999,

https://youtu.be/JFtHBTACeUE
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just after the formula was changed, hoping that the two groups of teachers are otherwise
“as good as randomized.” A structural analysis might explicitly model a teacher’s retire-
ment decision within an expected utility framework that “discounts” the value of future
periods (like net present value). The structural analysis requires strong (maybe unrealis-
tic) assumptions about things like the utility function and the distribution of unobserved
variables. However, it can then evaluate the effect of hypothetical pension changes that
may have never been implemented before, rather than only estimating the effect of the
historical 1999 pension change.

Example 3.17. Imagine trying to learn about the effect of free public childcare on how
much mothers work in the formal sector. A reduced-form analysis might estimate how
much mothers work in cities that just opened such childcare centers last year compared
to mothers in cities that plan to open them next year. The hope is that whether a city
opens the childcare centers last year or next year is “as good as randomized,” so that
the mean difference in hours worked can be interpreted as the effect of the childcare
(rather than the effect of something else that’s different). A structural analysis might
try to estimate an economic model of a mother’s decision to work in the formal sector,
including variables like the price of childcare, wages, and utility from different activities.
Such a model requires strong assumptions (although “as good as randomized” may also be
unrealistic!), but can then be used to evaluate the effects of a wide variety of hypothetical
policies, not only the effect of the childcare centers that opened last year.

In Sum: Structural & Reduced-Form Approaches

Reduced-form: randomized or “as good as randomized” comparisons to isolate
causality
Structural: more explicit economic models of causal relationships

3.7 Linear Regression

Discussion Question 3.7 (Model interpretation). Interpret Y = β0 + β1X + U . (As a
concrete example: Y is wage, X is years of education.) In particular,

a) what does β1 mean?
b) what does U mean?

The method of ordinary least squares (OLS) can be defined in multiple ways that
each help illustrate a more general point.

The following notation is used in later chapters, too. Let Y be a scalar random variable
that is the outcome of interest, like an individual’s earnings or a state’s traffic fatality
rate. Let X be a column vector containing all the regressors, also known as covariates
or predictors or right-hand-side variables or independent variables, usually with
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1 as the first element, like X = (1, X2, X3, . . .)
′. (Note that Wooldridge (2010) defines

X as a row vector to avoid needing as many transpose symbols, but at the expense of
needing to remember which vectors are columns vs. rows.) In this book, usually U is
an unobserved scalar structural error term (with some causal meaning), whereas V is a
statistical error term defined with respect to a linear projection or conditional mean.

3.7.1 Linear Projection

This subsection draws from Sections 7.3–7.5 of Kaplan (2022a).
Fundamentally, OLS estimates the coefficients of the linear projection (LP) of Y

onto X. The LP is a population object:

LP(Y |X) =X ′β, (3.4)

where vector

β = [E(XX ′)]−1 E(XY ) (3.5)

contains the linear projection coefficients (LPCs). This β is a feature of the popula-
tion, i.e., it is a summary of the joint distribution of (Y,X ′). Assuming β is well-defined,
iid sampling is sufficient for the OLS estimator β̂ to be consistent for β, written β̂ p→ β;
details are below.

The best linear predictor (BLP) is another interpretation of the population LP.
Often we think of “prediction” in terms of data, but here it is meant in the sense of trying
to guess Y given X in the population. The “best” guess depends on the consequences
of a wrong guess. For mathematical convenience, this is often quantified by squaring the
difference between the guessed value and the true value Y , which is called quadratic
loss (or L2 loss). In BLP, “linear predictor” means a guess of the form X ′g (a linear
combination of the predictors X, where g is a non-random vector). It turns out that the
LPC β solves

β = argmin
g

E[(Y −X ′g)2]. (3.6)

That is, among all possible predictions of the form X ′g, the mean squared prediction
error E[(true− guess)2] is minimized by setting g = β. Besides the caveat that quadratic
loss may not reflect the actual consequences of our incorrect predictions, another caveat
is that “best” does not mean “good”: it could be that all predictions of the form X ′g are
awful, and the BLP is merely the least bad.
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Beyond Our Scope

What if we replace quadratic loss with another loss function? (For binary Y , see
Section 14.3.) If instead of squaring the error we take the absolute value, then we get
the so-called “median regression” estimator. If more generally we use a tilted version
of the absolute value function that allows positive errors to be worse (or better) than
negative errors, then we get “quantile regression.” For example, see Part II of Kaplan
(2021).

The best linear approximation (BLA) is yet another interpretation of the LP.
“Best” again refers to minimizing mean squared error (and again does not mean “good”!),
and “linear” again refers to the functional form X ′g that takes a linear combination of
X. “Approximation” refers to approximation of the conditional mean E(Y |X). That is,
the LPC β also solves

β = argmin
g

E{[E(Y |X)−X ′g]2}. (3.7)

This could also be written in terms of the conditional mean function (CMF), also
called the conditional expectation function (CEF),

m(x) = E(Y |X = x). (3.8)

Note that m(·) is a non-random function: it maps each possible non-random value x
(lowercase) to the corresponding non-random scalar E(Y | X = x), i.e., the mean Y
among individuals in the subpopulation with X = x. Given this m(·), (3.7) can be
written

β = argmin
g

E{[m(X)−X ′g]2.} (3.9)

As noted above, OLS most fundamentally estimates the LP/BLP/BLA. The OLS
estimator can be written as the sample analog of (3.5),

β̂ = [Ê(XX ′)]−1 Ê(XY ). (3.10)

Given iid sampling, sample moments converge in probability to the corresponding popu-
lation moments by the weak law of large numbers (WLLN), so

Ê(XX ′)
p→ E(XX ′), Ê(XY )

p→ E(XY ),

which can then be combined by the continuous mapping theorem (again assuming every-
thing is well-defined):

β̂ = [Ê(XX ′)]−1 Ê(XY )
p→ [E(XX ′)]−1 E(XY ) = β.
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The above sample analog form of the OLS estimator can be derived from the “least
squares” definition that mirrors (3.6),

β̂ ≡ argmin
b

Ê[(Y −X ′b)2] =
1

n

n∑
i=1

(Yi −X ′
ib)

2. (3.11)

The objective function is clearly convex (satisfying the second-order condition), so the
(unique global) minimizer solves the first-order condition

0 =
∂

∂b

1

n

n∑
i=1

(Yi −X ′
ib)

2

∣∣∣∣∣
b=β̂

=
1

n

n∑
i=1

2Xi(Yi −X ′
iβ̂) =

2

n

n∑
i=1

(XiYi −XiX
′
iβ̂).

Dividing by 2 and solving for β̂,

β̂ =
( 1

n

n∑
i=1

XiX
′
i

)−1 1

n

n∑
i=1

XiYi = [Ê(XX ′)]−1 Ê(XY ).

Just as we can interpret the population β in terms of LP, BLP, or BLA, we can also inter-
pret the estimator in terms of the sample minimization problem (3.11) that parallels the
BLP population minimization problem, or as the sample analog (3.10) of the population
LPC expression in (3.5).

Often the linear projection model is written in error form, but note that the above
does not fundamentally require any such “error term.” Nonetheless, sometimes it is con-
venient to define the linear projection error V as the difference between the true Y and
the linear projection:

V ≡ Y − LP(Y |X) = Y −X ′β. (3.12)

Given this definition of V , it follows automatically that

E(XV ) = 0,

meaning every element of the vector E(XV ) is zero. This is not an assumption: it is a
property that follows from the definition of V as the linear projection error.

3.7.2 Conditional Mean Function

Linear CMF is LP/BLP/BLA

While OLS most fundamentally estimates the LP/BLP/BLA, under stronger assumptions
it can estimate the CMF defined in (3.8). From (3.9), if the true CMF happens to have
the linear functional form m(X) =X ′γ for some non-random vector γ, then

m(X)−X ′b =X ′γ −X ′b
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can be set to zero by setting b = γ, in which case the entire RHS is zero and thus the
global minimum because the RHS is non-negative (due to the squaring). Thus, the RHS
is γ (defined above to be the CMF coefficient vector), and the LHS is the LPC β, so
β = γ and the LP and CMF are equal. That is, if the CMF is “linear” in the sense of
having the same functional form as the LP, then the LP and CMF are equal, so we can
interpret the OLS estimand (which fundamentally is the LP) as the CMF. In some cases,
this is always true, like if X = (1, X)′ where X is a dummy variable (only takes value 0
or 1).

Beyond Our Scope

There are ways to estimate the CMF without requiring that you guess the exact
functional form ahead of time, called nonparametric regression; for example, see
Part V of Kaplan (2021).

CMF in Error Form

Like the LP, the CMF can also be written in error form. Parallel to the LP error defined
in (3.12), the CMF error is defined as

V ≡ Y −m(X), (3.13)

where m(·) is the CMF defined in (3.8). The property E(V | X) = 0 follows from the
definition; it is not an additional assumption. That is, if we write

Y = m(X) + V (3.14)

with m(·) the CMF from (3.8), then it automatically follows that

E(V |X) = E(Y −m(X) |X) = E(Y |X)−m(X) = 0, (3.15)

where the first equality plugs in the definition in (3.13), the second uses the linearity
property of E(·), and the third uses the definition of m(·).

CMF vs. Conditional Mean

One common confusion is the difference between m(x) and m(X). The former is a non-
random function evaluated at a non-random value, hence m(x) is a non-random value,
like 7 or −1.1. The latter is a non-random function evaluated at a random value X,
hence m(X) is also a random variable. For example, imagine scalar X with P(X =
0) = P(X = 1) = 0.5, and m(x) = x + 2; then P(m(X) = 2) = P(X = 0) = 0.5 and
P(m(X) = 3) = P(X = 1) = 0.5, showing that m(X) is a random variable, whereas
m(0) = 2 and m(1) = 3 are non-random values.
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Similarly, E(V | X) is a random variable, whereas E(V | X = x) is a non-random
value. The expression E(V | X) = 0 means that zero is the only possible value the
random variable takes. Equivalently, we could also write E(V | X = x) = 0 for all
possible values x, which may be easier to understand.

CMF with Binary Regressor

Consider the special case with binary X. Let m(x) = β0 + β1x. Then we can solve for
the parameters from m(0) = β0 and m(1) = β0 + β1, implying β1 = m(1)−m(0). That
is, the intercept β0 is the conditional mean of Y when X = 0, and the slope β1 is the
difference in conditional means of Y between X = 1 and X = 0.

3.7.3 Causal Interpretation

Under additional assumptions, the LP or CMF can have a causal interpretation. This is
left to later chapters.

3.8 Economic Significance

3.8.1 Basic Idea

The term economic significance refers to the magnitude of an estimated parameter. An
estimate is not economically significant if it is “economically” negligible (not meaningfully
different than zero). “Economically” just means “for real-world purposes,” like whether it
is important to consider for policy purposes. One way to think about this is: would you
personally care about the difference? For example, imagine θ̂ estimates the effect on your
final exam score of studying an additional hour per week. Would you care about having
a final exam score that’s θ̂ percentage points higher? If θ̂ = 0.01, then no; if θ̂ = 50,
then yes. Of course, it’s a continuum, so somewhere between “yes” and “no” are varying
degrees of “maybe,” corresponding to varying degrees of moderate economic significance.

Example 3.18. Would you care if you had θ̂ = 2 additional years of education? This is
a lot, like an entire master’s degree, so presumably you would indeed care.

3.8.2 Units of Measure

It is very important to consider units of measure. For example, imagine the estimated
effect on income is θ̂ = 10; is that economically significant? If the units are dollars per
hour, then yes; if it’s dollars per year, then no; if it’s thousands of dollars per month,
then yes; etc.

It is also very important to consider realistic policy changes (which usually requires
paying attention to the units of X). For example, imagine your estimated θ̂ is the effect
of a one-unit increase in the proportion of the state budget allocated to higher education.
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If the current proportion is 0.08 (meaning 8%), then a realistic policy change would be
something like 0.02 units. A one-unit increase would mean changing from 0% to 100%
of the budget spent on higher education. Even if θ̂ looks economically significant, maybe
0.02θ̂ does not.

3.8.3 Log Models

In addition to units of measure, coefficient interpretations depend on whether a variable
enters the model in levels or in logs. In economics, “log” always refers to the natural log.

The interpretations of different log models are detailed in Section 8.1 of Kaplan
(2022a). Here is a summary. If control variables are added to the model, the inter-
pretations do not change, unless there are interaction terms involving the regressor of
interest X. The approximations below come from a linearization of the (natural) log
function log(w) around w = 1: log(w) ≈ w − 1. Such an approximation is pretty good if
|w − 1| ≤ 0.1 or so, with the approximation error increasing in |w − 1|.

A log-linear model has the form

log(Y ) = β0 +Xβ1 + U. (3.16)

A one-unit increase in X is associated with a 100(eβ1 − 1)% change in Y . If β1 is near
zero, then this is approximately 100β1%. A d-unit increase in X is associated with a
100(edβ1 − 1)% change in Y , or approximately 100dβ1% for small enough dβ1.

A linear-log model has the form

Y = β0 + log(X)β1 + U. (3.17)

A 1% increase in X is associated with a β1 log(1.01)-unit change in Y , which is approxi-
mately a β1/100-unit change. A 100p% increase in X is associated with a β1 log(1+p)-unit
change in Y . For small p, this is approximately a pβ1-unit change.

A log-log model has the form

log(Y ) = β0 + log(X)β1 + U. (3.18)

A 1% increase in X is associated with a 100(1.01β1 − 1)% change in Y , which is approxi-
mately a β1% change in Y (i.e., an elasticity). A 100p% increase in X is associated with
a 100((1 + p)β1 − 1)% change in Y . For small pβ1, this is approximately 100pβ1%.

3.9 Quantifying Uncertainty

See also Section 3.7 of Kaplan (2022a), as well as Section 3.8 (“Quantifying Uncertainty:
Misinterpretation and Misuse”).

While an estimator provides a best guess about the true population value given the
data (roughly speaking), we usually also want a sense of our uncertainty about the true
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value. The most common frequentist methods to quantify uncertainty are confidence
intervals and p-values from hypothesis tests. This book focuses on confidence intervals
because most econometricians agree they are less likely to be misinterpreted or misused
(than p-values). Additionally, in many settings, with large n the frequentist confidence
interval is very similar to the Bayesian credible interval. Hopefully you have already
learned the basics of hypothesis testing and p-values (because they are still reported, and
occasionally still useful), like that an estimate θ̂ is statistically significant at level α
if the p-value for H0 : θ = 0 is below α, or that failing to reject such a null hypothesis
should not be interpreted as our best guess being θ = 0. For example, if θ̂ = 0.1 and
p = 0.33, then we would not be surprised to see such a dataset if indeed θ = 0, but we
would also not be surprised to see such a dataset if θ = 0.2, etc.

A confidence interval (CI) only quantifies uncertainty due to random sampling, not
uncertainty about identifying assumptions. For example, a CI for the linear projection
slope accounts only for the uncertainty due to having finite sample size n, not due to
uncertainty about the true CMF being linear, nor due to uncertainty about the CMF
slope having a causal interpretation. This can be misleading. If we have very large n, then
our CI will be very short (because we have very little uncertainty about the LPC), even if
we are very uncertain about the CMF being linear or having a causal interpretation. For
this reason, it is useful to know the fundamental population parameter that a particular
estimator is consistent for, like how OLS is fundamentally consistent for the LPC.

A CI provides a range of values that should contain the true value with high probabil-
ity. Recall that from the frequentist perspective, “probability” is from the before-sampling
perspective, and the CI is random (because it depends on the observations, which are mod-
eled as random), whereas the true population value is non-random. That is, a CI can be
seen as a procedure such that (before sampling) we have a high probability of randomly
sampling a dataset for which the CI contains the true value. This probability is called
the coverage probability (CP). That is, given population value θ and CI [L̂, Û ], where
the lower and upper endpoints L̂ and Û are computed from data (thus random variables),
the coverage probability is

CP ≡ P(L̂ ≤ θ ≤ Û) = P(θ ∈ [L̂, Û ]). (3.19)

The confidence level or nominal coverage probability is the desired coverage prob-
ability. Usually a CI is justified by an asymptotic argument such that asymptotically,
its coverage probability equals the nominal level. (Sometimes the asymptotic coverage
probability is only shown to be greater than or equal to the nominal level.) However, for
finite n, the coverage probability may be higher or lower than desired. If it is higher than
desired, then the CI is “too conservative”: hypothetically, it could be shortened and still
achieve the desired coverage probability. Lower than desired CP is usually considered
even worse: we are over-confident about how precise our estimates are. Of course, even
with a 95% CI, our CI fails to include the true value 5% of the time, so we should never
be too confident anyway. This is why replication is an important part of any science
(although that begs the question of whether economics is truly a science!).
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Coverage probability can also be interpreted in terms of repeated sampling. For
example, if we have a 90% probability of randomly sampling a dataset for which the CI
contains the true value, and we randomly sample 100 datasets, then in roughly 90 of the
100 datasets the CI should contain the true value.

Instead of a binary label of “statistically significant at a 5% level” whenever p < 0.05,
it is more helpful to look at the full range of possible population values included in the
CI when quantifying uncertainty. At minimum: consider the economic significance of the
lowest value in the CI, the estimated value, and the highest value in the CI. If a confidence
level 100(1−α)% CI does not contain zero, then it is “statistically significant at level α,”
but that is usually not the most helpful statement to make. For example, if a 95% CI is
[0.1, 1.1], then there is statistical significance at a 5% level.

Discussion Question 3.8 (salary increase significance). Imagine you compute a 95%
CI of [4.1, 5.9] around your estimated annual salary effect of θ̂ = 5 dollars per year. Are
these results statistically significant? Are they economically significant? Explain. Hint:
would you care if your annual salary increased by θ̂ = 5 dollars per year?

Discussion Question 3.9 (significance: distance and education). Let Y be years of
education, and let X be distance from someone’s childhood home to the nearest college
or university, measured in kilometers (1 km = 0.6mi). Let θ be the causal effect of X on
Y . You think you found an “as good as randomized” natural experiment, from which you
estimate θ̂ = −0.03. You compute a 95% CI of [−0.05,−0.01].

a) How economically significant is the point estimate of −0.03? Hint: consider the
units.

b) Is this statistically significant at a 5% level?
c) More generally, discuss your CI and uncertainty.

There are many possible ways to misinterpret or misuse confidence intervals (or p-
values), including the following (not exhaustive!).

• Multiple testing: if you take enough random samples, or test enough different hy-
potheses in the same sample, you will eventually get a “statistically signficant”
result; for example, see this insightful comic (xkcd.com/882) that illustrates the
multiple testing problem (or multiple comparisons problem), or this video.

• Publication bias: if statistically significant results are more likely to be published,
then it’s similar to the multiple testing problem in the linked comic, where we only
read about the one significant result but not the 19 not-significant results.

• Assumptions: a CI may not be valid if it is based on iid sampling but the actual data
were not sampled iid; and the CI does not account for additional interpretations of
the population value based on identifying assumptions.

• Frequentist results may be misinterpreted as Bayesian, like a p-value being misin-
terpreted as the probability that the null hypothesis is true.

https://xkcd.com/882
https://youtu.be/w5TDw4FLvSo
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• Unlikely events happen: even if you only run one test on one dataset with confidence
level 99%, your dataset may be in the unlucky 1% for which the true value is outside
the CI.

Example 3.19 (Kaplan video). Your friend claims to have magical powers. You have
a deck of playing cards; you repeatedly draw a card (without showing it) and ask your
friend to guess whether the card is black or red. You record the data and compute a 90%
CI for your friend’s probability p of guessing correctly. Random guessing would yield
p = 0.5, but your CI is [0.52, 0.61], all values above 0.5. Your friend’s interpretation is
that statistics have now proved true the claim of magical powers. However, you think it
was just luck and ask to gather more data. Indeed, the new dataset’s 90% CI is [0.44, 0.51].
You try another few datasets, and those CIs also contain 0.5. It seems the first result was
simply luck, not magic.

Discussion Question 3.10 (frequentist or Bayesian?). For each of the following, say
whether it is a frequentist question, Bayesian question, neither, or both; if both, explain
the two possible interpretations. Hint: use Section 3.3 as well as Section 3.9.

a) What’s the probability that the current natural unemployment rate in the U.S. is
between 4.5% and 7.5%?

b) Can we create a diagnostic tool for our company’s daily website traffic data to
identify whether it’s normal or has been hacked, limiting the rate of falsely reporting
“hacked” on normal days to only 1% of normal days?

c) What is the probability that the true unemployment rate is within 1 percentage
point of the estimated unemployment rate?

d) Is the positive estimate θ̂ > 0 primarily due to the income effect or substitution
effect?

3.10 Quantifying Accuracy of an Estimator

This section is mostly from Section 3.6 of Kaplan (2022a).
From the frequentist perspective, an estimator’s accuracy can be quantified by com-

paring features of its sampling distribution to the true population value. The sampling
distribution views the estimator from the before-sampling perspective; for intuition,
you can imagine taking 1000 random samples and plotting a histogram of the estimated
values. Bias is an important, commonly mentioned property, but it is not sufficient to
quantify accuracy. Mean squared error better quantifies accuracy.

Throughout, let θ be the population parameter estimated by θ̂n; for example, θ =
E(Y ) and θ̂n = Ȳn.

https://youtu.be/skSw7roQu1Q
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3.10.1 Bias

Definitions

The bias of θ̂n compares the mean of its sampling distribution to the true population θ.
Mathematically,

Bias(θ̂n) ≡ E(θ̂n)− θ. (3.20)

The bias captures if the estimator systematically differs from θ in a particular direction,
i.e., how wrong the average θ̂n is.

There are four types of bias:

upward bias (positive bias): E(θ̂n) > θ,

downward bias (negative bias): E(θ̂n) < θ,

attenuation bias (bias toward zero): 0 <
E(θ̂n)

θ
< 1, so |E(θ̂n)| < |θ|,

bias away from zero:
E(θ̂n)

θ
> 1, so |E(θ̂n)| > |θ|.

An estimator is unbiased if its bias is zero. Using (3.20),

Bias(θ̂) = 0 ⇐⇒ E(θ̂) = θ, (3.21)

where symbol ⇐⇒ can be read as “is equivalent to” (see Chapter 2).

Example 3.20 (Kaplan video). With iid sampling, the sample mean is an unbiased esti-
mator of the population mean. The estimator is θ̂n = Ȳn, and the population parameter
is θ = E(Y ). With n = 1, Ȳ1 = Y1, so E(Ȳ1) = E(Y1) = E(Y ). With n = 2,

E[Ȳ2] = E[(1/2)Y1 + (1/2)Y2] =

E(Y )/2︷ ︸︸ ︷
(1/2)E(Y1)+

E(Y )/2︷ ︸︸ ︷
(1/2)E(Y2) = E(Y ), (3.22)

using the linearity property of E(·). Similar derivations hold for any n, so E(Ȳn) = E(Y ),
thus the bias is zero given (3.21).

Example 3.21 (Kaplan video). The estimator θ̂n = Ȳn+1 has positive bias for the mean
E(Y ): E(θ̂n) = E(Ȳn + 1) = E(Ȳn) + 1 = E(Y ) + 1 > E(Y ). The estimator θ̂n = Ȳn − 2
has negative bias for the mean E(Y ): E(θ̂n) = E(Ȳn−2) = E(Ȳn)−2 = E(Y )−2 < E(Y ).
The estimator θ̂n = 0.5Ȳn has attenuation bias for the mean E(Y ): E(θ̂n) = E(0.5Ȳn) =
0.5E(Ȳn) = 0.5E(Y ), so 0 < [E(θ̂n)/E(Y )] = 0.5 < 1.

Insufficiency of Bias to Quantify Accuracy

Bias alone does not fully quantify accuracy. That is, if you only consider bias when
choosing between two possible estimators, then you may be fooled into choosing the
worse estimator.

https://youtu.be/qc-yoERJOr0
https://youtu.be/qc-yoERJOr0
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Let θ̂1 and θ̂2 be two different estimators of the same unknown parameter θ. Here,
the subscripts 1 and 2 do not indicate n but just that the estimators are different. For
simplicity, let θ = 0. The first estimator’s distribution is

P(θ̂1 = −100) = P(θ̂1 = 100) = 1/2. (3.23)

The second estimator’s distribution is

P(θ̂2 = 1) = 1. (3.24)

The first estimator has smaller bias. The estimators’ means are

E(θ̂1) = (1/2)(−100) + (1/2)(100) = 0, E(θ̂2) = (1)(1) = 1. (3.25)

Thus, recalling θ = 0, the bias of each estimator is

Bias(θ̂1) = E(θ̂1)− θ = 0− 0 = 0, Bias(θ̂2) = E(θ̂2)− θ = 1− 0 = 1. (3.26)

Estimator θ̂1 is unbiased, whereas θ̂2 has upward bias.
But intuitively, θ̂2 is much better. It always differs from the true θ by only 1, whereas

θ̂1 always differs by 100, which is much worse. That is, regardless of the dataset, θ̂2 is
always 100 times closer than θ1 to the true θ = 0. This illustrates how bias alone does
not properly quantify our preferences: it tells us to prefer θ̂1 (lower bias) when in fact we
strongly prefer θ̂2 (always much closer to θ).

3.10.2 Mean Squared Error

=⇒ Kaplan video: MSE Examples

The mean squared error (MSE) is a more complete measure of “how bad” an
estimator is. The idea is analogous to using quadratic loss for prediction as in (3.6).
Among other possible loss functions, this is most common and generally reasonable. MSE
is mean quadratic loss:

MSE(θ̂) ≡ E[L2(θ̂, θ)] = E[(θ̂ − θ)2]. (3.27)

Continuing the example, our intuitive preference for θ̂2 over θ̂1 is supported by MSE.
Because MSE measures “how bad” an estimator is, θ̂2 being “better” means it has lower
MSE. Specifically,

MSE(θ̂1) = E[(θ̂1 − θ)2] = (1/2)(−100− 0)2 + (1/2)(100− 0)2 = 10,000,

MSE(θ̂2) = E[(θ̂2 − θ)2] = (1)(1− 0)2 = 1.

This matches our intuition: θ̂2 is much better than θ̂1 because it has much lower MSE.

https://youtu.be/9QflZpHWC-Q
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MSE can also be decomposed into variance plus squared bias. The variance is

Var(θ̂) ≡ E[(θ̂ − E(θ̂))2]. (3.28)

(The square root of this is the standard deviation, also called the “standard error” of
the estimator θ̂.) Skipping the math, using the bias and variance definitions in (3.20)
and (3.28),

E[(θ̂ − θ)2] = Var(θ̂) + [Bias(θ̂)]2. (3.29)

All else equal, larger bias is bad, but it’s also bad to have very high and very low estimates
across datasets (large variance and “standard error”) even if they happen to average to θ.

Example 3.22 (Kaplan video). Continue the previous example, but instead of assuming
θ = 0, let

P(θ̂1 = θ − 100) = P(θ̂1 = θ + 100) = 1/2, P(θ̂2 = θ + 1) = 1. (3.30)

The MSEs are the same as before because the θ cancels out:

MSE(θ̂1) = E[(θ̂1 − θ)2] = (1/2)(θ − 100− θ)2 + (1/2)(θ + 100− θ)2 = 10,000,

MSE(θ̂2) = E[(θ̂2 − θ)2] = (1)(θ + 1− θ)2 = 1.
(3.31)

Example 3.23 (Kaplan video). Imagine we know the bias and variance of two estimators,
but not the full sampling distributions. This is still sufficient to compute MSE using
(3.29). For example, let

Bias(β̂1) = 1,Var(β̂1) = 16, Bias(β̂2) = 10,Var(β̂2) = 9. (3.32)

Plugging these into (3.29),

MSE(β̂1) = 12 + 16 = 17, MSE(β̂2) = 102 + 9 = 109. (3.33)

According to MSE, β̂1 is better because it has lower MSE (“less bad”) than β̂2. In this
case, although β̂1 has larger variance, its bias is enough smaller than its overall MSE is
also smaller.

Discussion Question 3.11 (estimator MSE). Consider three estimators of the popu-
lation mean µ = E(Y ), and their three sampling distributions: µ̂1 ∼ N(µ, 25), µ̂2 ∼
N(µ+3, 16), and µ̂3 ∼ N(µ+2, 9), i.e., the sampling distributions of the three estimators
are all normal distributions with respective means µ, µ + 3, and µ + 2, and respective
variances 25, 16, and 9.

a) Compute the MSE of each estimator.
b) Rank the three estimators from best to worst, in terms of MSE.

https://youtu.be/U3g4D1TLVbs
https://youtu.be/U3g4D1TLVbs
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3.10.3 Consistency and Asymptotic MSE

At the intuitive level, an estimator is consistent if in “large” samples (large n), there is
a “high” probability of the estimator being “close” to the true value. This is similar to the
idea of “probably approximately correct” in computer science: estimator θ̂n is “consistent”
if with large n it is “probably approximately correct.” Unfortunately, there are usually
no precise quantitative definitions of “large,” “high,” and “close.”

If θ̂n is not consistent, then it has asymptotic bias: even with infinite data, the
estimator would still be biased. One way to formally define asymptotic bias is

AsyBias(θ̂n) ≡ plim
n→∞

θ̂n − θ. (3.34)

Analogous to “unbiasedness” being “zero bias,” here “consistency” is “zero asymptotic
bias”: roughly speaking, with a large dataset, there is very little bias. There are the same
four types of asymptotic bias as bias: upward/positive, downward/negative, attenuation,
and away from zero.

It is also possible to compare approximate (asymptotic) mean squared error by com-
paring asymptotic distributions. Again, lower is better, and it depends on both bias and
variance components. For two consistent estimators, this reduces to comparing asymp-
totic variance. For example, if

√
n(θ̂1 − θ)

d→ N(0, σ2
1) and

√
n(θ̂2 − θ)

d→ N(0, σ2
2), then

we prefer estimator θ̂1 (and call it more efficient than θ̂2) iff σ1 < σ2.

Beyond Our Scope

In contexts like nonparametric regression, there is also an important bias term, even
asymptotically, and procedures are designed to try to minimize the asymptotic MSE;
for example, see Chapter 18 (“Model Selection”) of Kaplan (2021).

https://en.wikipedia.org/wiki/Probably_approximately_correct_learning
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Chapter 4

Identification by Independence

Unit learning objectives for this chapter

4.1. Explain mathematically and verbally how an independence condition can achieve
identification, in both structural and potential outcomes models. [TLOs 2 and 3]

4.2. In real-world examples, provide reasons why the key identifying assumption proba-
bly does (not) hold. [TLO 4]

To develop intuition and vocabulary, this chapter explains identification in the simplest
structural and potential outcomes models.

Some material is from Chapters 4 and 6 of Kaplan (2022a). Some of the same topics
as in Section 4.1 are covered in Sections 21.1–3 of Wooldridge (2010).

Optional resources for this chapter

• Causal inference intro (Masten video)

• Correlation vs. causation (Masten video)

• Potential outcomes and SUTVA (Wikipedia)

• Potential outcomes example (Masten video)

• SUTVA and spillovers (Masten video)

• Individual causal effects (Masten video)

• ATE (Masten video)

• ATT (Masten video)

• Assumptions for randomized experiment validity (Masten video)
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https://www.youtube.com/watch?v=FNpcwiOme1g
https://www.youtube.com/watch?v=vtSCZcKXw1w
https://en.wikipedia.org/wiki/Rubin_causal_model
https://www.youtube.com/watch?v=2CSSwKFE7iQ
https://www.youtube.com/watch?v=J2Zt59FN-Rc
https://www.youtube.com/watch?v=Cf5aJGyadEE
https://www.youtube.com/watch?v=ln5LBKiF8hE
https://www.youtube.com/watch?v=O4EjBeKDE2o
https://www.youtube.com/watch?v=kYf2bHdgUHc
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4.1 Average Treatment Effect

First, the potential outcomes framework and notation are introduced. Then, the average
treatment effect is defined, after which identification results are given.

4.1.1 Potential Outcomes

=⇒ Kaplan video: Potential Outcomes and the ATE

This subsection is a shorter version of Section 4.4.1 of Kaplan (2022a).
The potential outcomes framework is also called the Neyman–Rubin causal

model after its two earliest contributors (although sometimes Neyman’s name is dropped).
It is popular not only in economics, but statistics, medicine, political science, and other
fields.

The terms treatment and treatment effect just refer to any variable and its causal
effect on another variable. In English, usually “treatment” makes us think narrowly about
medicine (or lumber. . . and facials?), but it can be anything. For example, the “treatment”
could be a job training program, and the “treatment effect” is the causal effect of the
program on a person’s wage. Or, a treatment could be going to a charter school (instead
of public school). Another treatment could be a policy or law, like a higher sales tax, or
a certain labor law.

As throughout this book, “individual” can mean a firm, county, school, etc.
Imagine two parallel universes. The universes are identical except for one difference:

whether or not an individual is treated. The individual’s outcome in the universe without
treatment is their untreated potential outcome, and the individual’s outcome in the
universe with treatment is their treated potential outcome.

Notationally, Y t represents the treated potential outcome and Y u the untreated po-
tential outcome. Elsewhere, often Y1 and Y0 represent the treated and untreated potential
outcomes, or Y (1) and Y (0).

Potential outcomes Y u and Y t are not always observable. Often, if an individual is
untreated in our universe, then we can observe her untreated potential outcome Y u, but
not her Y t; conversely, if she is treated, then we observe Y t but not Y u. This partial
observability makes causal inference more difficult than description or prediction.

Example 4.1 (Kaplan video). Imagine one universe where a student wins the lottery to
enter a popular charter school, and another universe where the student remains in the
conventional public school. Potential outcomes Y t and Y u are dummy (binary) variables
for whether or not the student eventually graduated from college in each respective uni-
verse. Again, in our universe, we can observe Y t if the student wins the lottery and Y u

if not, but we cannot observe both.

https://youtu.be/Yb4rK1sUCl4
https://youtu.be/hrzlrTMkpek
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4.1.2 Treatment Effects

This subsection is a shorter version of Section 4.4.2 of Kaplan (2022a).
The difference Y t − Y u between an individual’s two potential outcomes is that in-

dividual’s treatment effect. Just as different individuals can have different (Y u, Y t),
individuals can have different treatment effects Y t − Y u; i.e., individuals can be affected
differently by the same treatment. The fancy term for people being different is hetero-
geneity, more specifically here “treatment effect heterogeneity.”

Example 4.2 (Kaplan video). In the charter school example (Example 4.1), Y t − Y u

is the treatment effect of the charter school on college graduation. That is, it is the
difference between the college graduation outcomes in the charter school universe and the
public school universe. Because the outcome is binary (1 if graduate college, 0 if don’t),
there are only four possible values of (Y u, Y t) (student types) and only three possible
treatment effect values: Y t − Y u = 1 if the student graduates in the charter school
universe (Y t = 1) but not the public school universe (Y u = 0); Y t − Y u = −1 if they
only graduate in the public school universe (Y u = 1) but not the charter school universe
(Y t = 0); and Y t − Y u = 0 if they graduate either in both universes (Y t = Y u = 1) or
neither (Y t = Y u = 0). This is seen in the later example of Table 4.1.

In economics, where many systems are interrelated, sometimes it’s difficult merely to
specify which “effect” we care about. For example, consider racial differences in salary.
In the parallel universe that’s “identical” except for the individual’s race, does “identi-
cal” include having the same job at the same firm? Or does it allow for an effect of
race on hiring? Does it allow for an effect on educational opportunities, or an effect
on family background (parents’ education, wealth, etc.)? There is no “right” or “wrong”
specification, but each answers a different question.

In Sum: Causality in Potential Outcomes Framework

Treatment effect: the difference in outcomes between parallel universes identical ex-
cept for treatment

4.1.3 Average Treatment Effect

=⇒ Kaplan video: Potential Outcomes and the ATE (again)

This subsection is a shorter version of Section 4.5 of Kaplan (2022a).
Although the full distribution of potential outcomes (Y u, Y t) contains the most infor-

mation, usually only certain summary features are studied; here, we focus on the mean.
The average treatment effect (ATE) is E(Y t−Y u). “Average” refers to the popula-

tion mean, while “treatment effect” refers to Y t−Y u. Thus, the ATE may be interpreted

https://youtu.be/hrzlrTMkpek
https://youtu.be/Yb4rK1sUCl4
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as the probability-weighted average (mean) of all possible individual treatment effects in
the population. Another name for the ATE is the average causal effect (ACE), but I
use ATE to emphasize that this concept is from the potential outcomes framework.

The ATE has another interpretation. Using the linearity of the expectation operator,

ATE ≡ E(Y t − Y u) = E(Y t)− E(Y u). (4.1)

Here, E(Y t) is the mean treated potential outcome, and E(Y u) is the mean untreated po-
tential outcome. This could be interpreted as “the treatment effect on the mean outcome”:
treatment causes the mean outcome to change from E(Y u) to E(Y t).

Example 4.3 (Kaplan video). Table 4.1 shows a numerical version of the charter school
example. The four student “types” refer to the four possible values of (Y u, Y t), and each
type has its own probability. Given the probabilities, the mean untreated outcome E(Y u),
mean treated outcome E(Y t), and ATE E(Y t − Y u) are

E(Y u) = (0.3)(0) + (0.3)(0) + (0.1)(1) + (0.3)(1) = 0.4, (4.2)
E(Y t) = (0.3)(0) + (0.3)(1) + (0.1)(0) + (0.3)(1) = 0.6, (4.3)

E(Y t − Y u) = (0.3)(0) + (0.3)(1) + (0.1)(−1) + (0.3)(0) = 0.2. (4.4)

To verify (4.1),
E(Y t − Y u) = 0.2 = 0.6− 0.4 = E(Y t)− E(Y u). (4.5)

Table 4.1: Charter school example population of potential outcomes and ATE.

Student type Probability Y u Y t Y t − Y u

1 0.3 0 0 0
2 0.3 0 1 1
3 0.1 1 0 −1
4 0.3 1 1 0

Mean 0.4 0.6 0.2

There are some important limitations of the ATE, including the following.
• Zero ATE does not mean zero effect (e.g., it could affect variance).
• ATE compares a universe where everybody is treated to a universe where nobody is

treated, which may be unrealistic; often we are interested in more marginal policy
changes.

See Section 4.5.2 of Kaplan (2022a) for details and examples.

4.1.4 ATE Identification

Besides their potential outcomes, each individual has a treatment dummy X such that
their observed outcome Y is

Y = (1−X)Y u +XY t. (4.6)

https://youtu.be/hrzlrTMkpek


4.1. AVERAGE TREATMENT EFFECT 57

That is, if X = 0, then Y = Y u, whereas if X = 1, then Y = Y t.

Assumption A4.1 (SUTVA). Everyone with X = 1 receives the same treatment, and
one individual’s treatment does not affect any other individual’s potential outcomes.

Assumption A4.1 is usually just called SUTVA, but the main part of it is often called
no interference (or non-interference).

Assumption A4.2 (independence). Treatment is independent of the potential outcomes:
X ⊥⊥ (Y u, Y t).

Assumption A4.2 has many names: independence, ignorability, or unconfound-
edness. The combination of A4.2 and A4.3 is sometimes called strong ignorability.
For more detail, history, and discussion, see Imbens and Wooldridge (2007).

Assumption A4.3 (overlap). There is strictly positive probability of both treatment
and non-treatment: 0 < P(X = 1) < 1.

Assumption A4.3 is intuitive: if everybody (or nobody) is treated, then it’s impossible
to compare treated and untreated outcomes. For example, if P(X = 1) = 0, then nobody
is treated, so it’s impossible to learn about E(Y t) because Y t is never observed. Although
trivial in this simple context, overlap becomes more important to consider when other
conditioning variables are included.

Theorem 4.1 formally states the ATE identification result. Intuitively, the key is that
A4.2 allows us to observe representative samples of both Y u and Y t; treatment cannot
be chosen or assigned based on an individual’s potential outcomes. Mathematically, A4.2
implies that the means of the potential outcomes do not statistically depend on the
treatment X:

E(Y t) = E(Y t | X = 1), E(Y u) = E(Y u | X = 0). (4.7)

This condition is called mean independence: conditioning on X does not affect the
mean of Y t or of Y u. Independence implies mean independence; mean independence is
weaker than independence. We observe Y = Y t when X = 1 and Y = Y u when X = 0,
so

E(Y t | X = 1) = E(Y | X = 1), E(Y u | X = 1) = E(Y | X = 0). (4.8)

Combining (4.7) and (4.8), this says that the population mean of the treated potential
outcome, E(Y t), equals the mean of the observed outcome in the treated population,
E(Y | X = 1). Thus, E(Y t) = E(Y | X = 1) is identified. Similarly, E(Y u) = E(Y | X =
0) is identified, so E(Y t)− E(Y u) is identified.

Theorem 4.1 (ATE identification). Under A4.1–A4.3, the ATE is identified:

E(Y t − Y u) = E(Y t)− E(Y u) = E(Y | X = 1)− E(Y | X = 0),

which is also the slope in the linear CMF model E(Y | X = x) = β0+β1x. More generally,
A4.2 can be replaced by the mean independence condition in (4.7).
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Proof. Using the above,

ATE ≡

use linearity, (4.1)︷ ︸︸ ︷
E(Y t − Y u) =

use (4.7)︷ ︸︸ ︷
E(Y t)− E(Y u)

=

use (4.8)︷ ︸︸ ︷
E(Y t | X = 1)−

use (4.8)︷ ︸︸ ︷
E(Y u | X = 0)

= E(Y | X = 1)− E(Y | X = 0).

Beyond Our Scope

We can also learn about “quantile treatment effects” like the median treatment effect,
defined as the difference between the medians of the treated and untreated potential
outcome distributions. The same identification argument goes through if we assume
median independence instead of mean independence; with full independence, all quan-
tile treatment effects (and the ATE) are identified. For example, see Chapter 6 of
Kaplan (2021).

Discussion Question 4.1 (college and wage). Let X = 1 if an individual has a college
degree (the “treatment”) and otherwise X = 0. Let Y be the individual’s wage at age 45,
with Y u and Y t the potential outcomes. Explain specifically why A4.2 is violated.

Discussion Question 4.2. In which direction do you think self-selection would bias the
ATE estimator in the following cases? (Hint: draw pictures.) (Hint: imagine the true
ATE is just zero for simplicity; is the sample mean difference positive or negative?)

a) Everyone has the same Y u.
b) Everyone has the same Y t.
c) The treatment effect Y t − Y u is decreasing in Y u (i.e., larger Y u corresponds to

lower Y t − Y u).

4.1.5 SUTVA Violations

As alluded to above, SUTVA can be violated in many ways, especially in economics.
This is not about sampling, or randomization, or data; it is about the potential outcomes
framework itself. Without SUTVA, it’s unclear what “treatment effect” even means.

One common violation of SUTVA is from spillover effects that benefit even untreated
individuals. That is, the treatment’s benefit “spills over” into untreated individuals. Per-
haps the treated individuals can share the treatment itself with others, or perhaps others
benefit from the improved outcomes of treated individuals.

Example 4.4. Consider a treatment that provides treated individuals with helpful in-
formation about financial planning. Treated individuals might share such information
with their untreated friends and family. Thus, an untreated individual’s outcome may
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depend on whether or not their friend is treated. This spillover effect violates the “no
interference” part of SUTVA.

Example 4.5. Consider a “treatment” that leads to less binge drinking among treated
individuals. Even if the treatment itself is not shared, the reduction in binge drinking
may reduce social pressure and result in less binge drinking among untreated individuals.
Here, untreated individuals are affected by the treatment through the changed behavior
of treated individuals. This spillover effect violates SUTVA.

Another common violation of SUTVA is from general equilibrium effects (Sec-
tion 3.5), such as changing market prices.

Example 4.6 (Kaplan video). Consider a new agricultural technology hoping to increase
cacao farmers’ earnings (through increased productivity). If only one farmer gets this
treatment (technology), then she benefits from increased production, selling more cacao
at the current global price. But if all farmers in the world get the technology, then the
global cacao supply curve shifts and the price drops. Thus, each farmer’s untreated and
treated potential outcomes (earnings) are affected by all other farmers’ treatment status,
which affects the market equilibrium price. This violates SUTVA.

Example 4.7. Consider the “treatment” that provides a subsidy for buying a house.
This increases demand, which increases prices. This general equilibrium effect violates
SUTVA.

Discussion Question 4.3 (cash transfer spillovers). Consider the effect of income on
food consumption (Y ) in a rural village. Consider an “unconditional cash transfer” pro-
gram (like GiveDirectly) that gives the equivalent of $1000 to a treated individual. De-
scribe different possible spillover effects that would violate SUTVA.

Beyond Our Scope

Check your intuition at https://doi.org/10.3982/ECTA17945 that reports esti-
mates of such spillover effects.

4.1.6 ATT Identification

A common variant of the ATE is the average treatment effect on the treated (ATT),
less commonly abbreviated ATET. The definition is

ATT ≡ E(Y t − Y u | X = 1). (4.9)

The ATT is the ATE for the subpopulation of individuals who are actually treated in our
universe (X = 1).

https://www.cdc.gov/alcohol/fact-sheets/binge-drinking.htm
https://youtu.be/5dqTda8KPAc
https://www.givedirectly.org
https://doi.org/10.3982/ECTA17945
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The ATT identifying assumptions are similar but slightly weaker than for the ATE.
Specifically, Assumption A4.4 requires mean-independence of Y u but not Y t like before.
Intuitively, for the actually-treated (X = 1) subpopulation, we always observe Y = Y t,
so we only need identifying assumptions to learn about the unobserved Y u. The precise
argument is seen in the proof of Theorem 4.2.

Assumption A4.4 (untreated mean independence). The untreated potential outcome
is mean-independent of the treatment: E(Y u | X) = E(Y u).

Theorem 4.2 (ATT identification by independence). Under A4.1, A4.3, and A4.4, the
ATT is identified: ATT = E(Y | X = 1)− E(Y | X = 0).

Proof. Starting from the definition of ATT in (4.9),

ATT =

use linearity of E(·)︷ ︸︸ ︷
E(Y t − Y u | X = 1)

=

use Y = Y t when X = 1︷ ︸︸ ︷
E(Y t | X = 1) −

use A4.4︷ ︸︸ ︷
E(Y u | X = 1)

= E(Y | X = 1)−
use Y = Y u when X = 0︷ ︸︸ ︷

E(Y u | X = 0)

= E(Y | X = 1)− E(Y | X = 0).

In economics, often the ATT does not equal the ATE. Mathematically, they can be
equal; note that in both Theorems 4.1 and 4.2, the right-hand side is E(Y | X = 1)−E(Y |
X = 0), and the assumptions of Theorem 4.2 are strictly weaker than (i.e., are implied by)
those of Theorem 4.1, so the assumptions of Theorem 4.1 imply ATE = ATT. However,
more generally, often economic agents “select into” treatment (i.e., choose X = 1) if they
benefit more from it. In such cases, we should generally guess that the ATT makes the
treatment appear more beneficial than does the ATE.

Example 4.8 (Kaplan video). Consider the “treatment” of a small business receiving
a loan, and the outcome of monthly sales revenue. Although there are certainly other
factors, economic theory suggests that the small businesses applying for loans tend to be
the ones that would most benefit from loans. Thus, we’d guess that the ATT (the effect
on small businesses who in reality got a loan) is probably higher than the overall ATE
that includes businesses who did not apply for loans. That is, because small businesses
can (partially) self-select into treatment depending on their benefit from the treatment,
the benefit is probably higher among the actually-treated businesses.

Discussion Question 4.4 (ATE vs. ATT). Consider Table 4.2.
a) Explain why the different types of individuals (different rows in the table) choose

the X value shown, based on their potential outcomes.
b) Compute the ATE.

https://youtu.be/OnBMkg3xmkM
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Table 4.2: Potential outcomes example: ATE vs. ATT.

Y u Y t X Probability

0 8 1 0.25
4 6 1 0.25
3 1 0 0.25
1 1 0 0.25

c) Compute the ATT.
d) Compute E(Y | X = 1) − E(Y | X = 0), the observed treated-untreated mean

difference.
e) Explain why the ATT is identified but the ATE is not, both mathematically and

intuitively.
f) Explain why the ATT is larger than the ATE in this example.

4.1.7 Estimation

Under an additional assumption about sampling (like iid) and assuming all relevant mo-
ments are well-defined and finite, consistent estimation follows:

Ê(Y | X = 1)
p→ E(Y | X = 1), Ê(Y | X = 0)

p→ E(Y | X = 0), (4.10)

so (by the continuous mapping theorem) the sample treated-untreated mean difference is
consistent for the population mean difference. Asymptotic normality can also be derived.

For this class, rather than deriving asymptotic properties through the precise ap-
plications of the weak law of large numbers, continuous mapping theorem, and central
limit theorem, we will focus on the interpretation of results. The estimator Ê(Y | X =
1)−Ê(Y | X = 0) can always be computed, but its interpretation requires critical thought
specific to each empirical setting. Most fundamentally, we can interpret it as simply an
estimate of the population mean difference. This may still be valuable for description. If
the identifying assumptions of Theorem 4.2 hold, then we can additionally interpret it as
an estimate of the population ATT. If we further assume the ATT and ATE are equal (as
implied by A4.2), then we can additionally interpret it as an estimate of the population
ATE.

For dissertation-level research, this critical thought requires deep familiarity with your
empirical setting. For example, if you are looking at a therapy program for prisoners, you
would need to know how individuals get assigned to the program: do they freely choose?
Are they assigned based on some observable characteristics W ? If a counselor chooses
who participates, are counselors randomly assigned to prisoners, do different counselors
have different probabilities of assigning individuals to therapy? Is it a group therapy where
spillover effects may be important? Are policy-makers considering a program expansion,
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or ending it? We will practice thinking critically about assumptions, but for research you
will also need to acquire the extensive knowledge as the input to your critical thinking.

4.2 Linear Structural Model

To identify parameters in a structural model, generally we need some sort of exogeneity
condition that says X is unrelated to other causal determinants of Y . Below are some
examples.

4.2.1 Fixed Coefficients

Consider the linear structural model

Y = β0 + β1X + U, (4.11)

where the unobserved scalar U captures the combined effect on Y of everything besides the
common linear effect β1 of X (and β0 and β1 are non-random parameter values). That is,
U contains heterogeneity (if some individuals’ effect of X is above β1, or below), as well as
nonlinearity in X (like if Y also depends on X2), as well as omitted variables (like if some
other Q has an effect on Y ). If all these other effects are “unrelated” to X, then X is called
exogenous and β1 is identified; if not, then X is called endogenous. Mathematically,
here “exogenous” means uncorrelated. In other contexts, “exogenous” may required mean
independence or independence (which here are sufficient but not necessary).

Theorem 4.3 (linear structural identification). Given (4.11), if Cov(X,U) = 0, then β1
is identified and equals the slope of the linear projection LP(Y | 1, X).

Proof. The slope of LP(Y | 1, X) is

Cov(Y,X)

Var(X)
=

Cov(β0 + β1X + U,X)

Var(X)
=

β1Cov(X,X) + Cov(U,X)

Var(X)
=

β1Var(X) + 0

Var(X)

= β1.

Discussion Question 4.5 (college and wage: endogeneity). As in DQ 4.1, let X = 1 if
an individual has a college degree and otherwise X = 0. Let Y be the individual’s wage
at age 45. Explain one real-world reason why Cov(X,U) ̸= 0, including the sign (positive
or negative).

4.2.2 Random Coefficients

Consider the linear structural random coefficients model

Y = U0 + U1X, (4.12)
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where U0 and U1 are unobserved random variables. That is, each individual is represented
by (Y,U0, U1, X); you can think of “random” as just meaning “individual-specific.” This
model more explicitly shows the heterogeneity in the intercept and slope. If X is binary,
then the potential outcomes model in (4.6) can be rewritten as

Y = Y u + (Y t − Y u)X, (4.13)

which is (4.12) with U0 = Y u and U1 = Y t − Y u (the individual’s treatment effect).

Discussion Question 4.6 (college and wage: random coefficients). Let X = 1 if an
individual has a college degree and otherwise X = 0. Let Y be the individual’s wage at
age 45.

a) How do you interpret the economic meaning of U0?
b) How do you interpret the economic meaning of U1?
c) Why do you think individuals have different U0?
d) Why do you think individuals have different U1?

Theorem 4.4 (linear random coefficient identification). Given (4.12), if U0 and U1 are
mean-independent of X, then E(U0) and E(U1) are identified and equal to the linear CMF
intercept and slope, respectively.

Proof. Take the conditional mean of (4.12):

E(Y | X) = E(U0 + U1X | X) = E(U0 | X) + E(U1 | X)X = E(U0) + E(U1)X,

where the first equality is from (4.12), the second equality is by the linearity property of
expectation, and the third equality is from the assumed mean independence. Altogether,
this shows that the conditional mean of Y given X is linear (affine) in X, with non-random
intercept E(U0) and non-random slope E(U1).

We can connect the random coefficients model to the fixed coefficients model in (4.11).
Rewrite (4.12) as

Y = U0 + U1X

= U0 + U1X +

=0︷ ︸︸ ︷
E(U0)− E(U0)+

=0︷ ︸︸ ︷
[E(U1)− E(U1)]X

=

β0︷ ︸︸ ︷
E(U0)+

β1︷ ︸︸ ︷
E(U1)X +

U︷ ︸︸ ︷
U0 − E(U0) + [U1 − E(U1)]X .

4.3 Nonseparable Structural Model

Consider the all-causes model
Y = h(X,U) (4.14)
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that shows how Y is fully determined by observable scalar X and unobserved vector U ,
through the function h(·). That is, U contains all determinants of Y besides X, and thus
is very large. This model is called nonseparable because the X and unobservables enter
h(·) together, not additively separable like Y = f(X) + g(U). The nonseparable model
is more general because it still allows for additive separability but does not require it.

The average structural function (ASF) is a common object of interest, defined as

ASF(x) ≡ E[h(x,U)], (4.15)

where the expectation is with respect to the unconditional distribution of U . Like the
CMF, the ASF is a non-random function (because it plugs in a non-random x and then
averages out the U).

The average structural effect (ASE) is the partial derivative of the ASF:

ASE(x) ≡ ∂

∂x
ASF(x) = E[

∂

∂x
h(x,U)]. (4.16)

If x is discrete instead of continuous, then as usual the partial derivative can be replaced
by a discrete difference like

ASE = ASF(1)−ASF(0) = E[h(1,U)− h(0,U)].

As with the ATE, due to linearity of expectation, we can either think of the ASE as the
difference between two points on the ASF (or derivative), or the mean of the individual-
level causal effects. For example, in the binary X case, the causal effect of changing
X = 0 to X = 1 is

C(U) ≡ h(1,U)− h(0,U), (4.17)

which depends on an individual’s U (some individuals’ Y may be more responsive to X
changes than others’). The average such causal effect is

E[C(U)] = E[h(1,U)− h(0,U)] = E[h(1,U)]− E[h(0,U)] = ASF(1)−ASF(0) = ASE .
(4.18)

To connect back with the ATE, first consider a binary X. An individual with unob-
served U has potential outcomes

Y u = h(0,U), Y t = h(1,U). (4.19)

That is, the model says if we change the individual’s X = 0 to X = 1, their Y will change
from h(0,U) to h(1,U).

Theorem 4.5. Given the structural all-causes model in (4.14) with binary X ∈ {0, 1}
and the potential outcomes in (4.19), if X ⊥⊥ U , then the slope coefficient β1 of the CMF
E(Y | X = x) = β0 + β1x equals the ATE and equals the ASF.
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Proof. Given X ⊥⊥ U , (4.14), and (4.15),

E(Y | X = 1) = E[h(X,U) | X = 1] = E[h(1,U) | X = 1] = E[h(1,U)] = ASF(1),

and similarly
E(Y | X = 0) = E[h(0,U)] = ASF(0).

The CMF slope equals E(Y | X = 1)−E(Y | X = 0), which thus equals ASF(1)−ASF(0),
which is the average structural effect of X on Y . Taking expectations of (4.19), E(Y u) =
ASF(0) and E(Y t) = ASF(1), so additionally the ASE equals E(Y t) − E(Y u), which
equals the ATE.

Theorem 4.6. Given the structural all-causes model in (4.14), if X ⊥⊥ U , then the ASF
is identified and equals the CMF (and thus the ASE is the derivative or difference of the
CMF).

Proof. For any x,

E(Y | X = x) = E[h(X,U) | X = x] = E[h(x,U) | X = x] = E[h(x,U)] = ASF(x),

where the first equality is from plugging in (4.14), the second is because it conditions on
X = x, the third is from X ⊥⊥ U , and the fourth is the definition of ASF in (4.15).

Note: although the nonseparable model may seem fancy, it’s still essentially asking:
what if we changed every single individual in the population from X = x to X = x+ 1?
(Or X = x + dx.) Often a policy only affects certain individuals’ X values (and such
“marginal” individuals may differ in important ways from the population as a whole).

Discussion Question 4.7 (wage and education: nonseparable). Imagine an “audit
study” where fake resumes are posted to apply to jobs online, and years of experience
X ∈ {0, 1, 2, . . . , 15} is randomized while holding other applicant characteristics constant
(or varying them independently of X). Let Y = 1 if the employer requests a follow-up
interview, otherwise Y = 0.

a) Interpret the identification result in Theorem 4.6 in terms of this example.
b) How/does the identification result help us estimate the effect of interest from our

audit study data? Explain.
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Chapter 5

Identification by
Conditional Independence

Unit learning objectives for this chapter

5.1. Explain how the intuition of causal identification from independence extends to a
conditional setting. [TLO 2]

The intuition for identification by independence can be extended to conditional inde-
pendence, for both treatment effects and structural models.

Optional resources for this chapter

• Potential outcomes and CATE (Masten video)

• conditional independence/unconfoundedness (Masten video)

• ATE/conditional independence example (Masten video)

• Overlap assumption (Masten video)

5.1 Conditional Average Treatment Effect

Consider the ATE for the subpopulation of individuals with W = w. For example, this
could be the subpopulation of individuals who are 40 years old, have 16 years of education,
and are married. This is called the conditional average treatment effect (CATE),
here denoted

CATE(w) ≡ E(Y t − Y u |W = w) = E(Y t |W = w)− E(Y u |W = w), (5.1)

67

https://www.youtube.com/watch?v=2CSSwKFE7iQ
https://www.youtube.com/watch?v=zZtL7cWN-3c
https://www.youtube.com/watch?v=oXyGaOQ5PCs
https://www.youtube.com/watch?v=K12qDIHAK54
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where as in (4.1) the equality is due to the linearity of the expectation operator.
By the law of iterated expectations, the ATE can be written as

ATE = E[CATE(W )], (5.2)

where the expectation is with respect to the population distribution of W .
Imagine we run an experiment where we randomize treatment, but the treatment

probability is higher for unemployed individuals, and the outcome Y is wage one year
later. Let X = 1 if treated and X = 0 if untreated; let W = 1 if unemployed and
W = 0 otherwise. We randomize with P(X = 1 | W = 1) = 0.8 and P(X = 1 | W =
0) = 0.1. Our earlier independence assumption is likely violated. For simplicity, imagine
the treatment is useless, so Y t = Y u = Y for everyone. Assuming the unemployed
individuals tend to have lower wages, then a simple comparison of treated and untreated
wages misleadingly suggests the treatment has a negative effect. For example, simplifying
further, imagine all unemployed individuals have Y = 15 and all employed individuals
have Y = 25, and there are 10 unemployed individuals and 20 employed individuals.
Given the treatment probabilities, the treatment group consists of 8 of the 10 unemployed
individuals with Y = 15, plus 2 of the 20 employed individuals with Y = 25; altogether, 10
individuals, with average wage 17. The remaining individuals are untreated, with average
wage [(2)(15) + (18)(25)]/(2 + 18) = 24, much higher than the treated group! This is
because the independence assumption A4.2 fails: X is not independent of (Y u, Y t).

However, we can still identify the true ATE by using conditional independence. Given
W , X is independent of potential outcomes. For example, if we only look at unemployed
individuals, then we have a randomized experiment where A4.2 holds; and similarly if we
only look at employed individuals. Thus, the conditional ATEs are identified, and the
ATE is identified by taking a weighted average of the CATEs (rather than pooling the
data like above).

Assumption A5.1 (conditional independence). Treatment X is conditionally (on W )
independent of the potential outcomes: (Y u, Y t) ⊥⊥ X |W .

Assumption A5.2 (overlap). There is strictly positive probability of both treatment
and non-treatment for every subpopulation: 0 < P(X = 1 |W = w) < 1 for all w.

The key argument again relies on the (conditional) independence assumption. As-
sumption A5.1 implies

E(Y t |W = w) = E(Y t |W = w, X = 1)

E(Y u |W = w) = E(Y u |W = w, X = 0).
(5.3)

This condition is called conditional mean independence: after conditioning on W =
w, further conditioning on X does not affect the conditional mean of Y t or Y u. Given
(4.6),

E(Y t |W = w, X = 1) = E(Y |W = w, X = 1)

E(Y u |W = w, X = 0) = E(Y |W = w, X = 0).
(5.4)
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This is an example of nonparametric identification because we have not restricted
the CMF E(Y | W = w, X = x) to be linear or quadratic or have any other specific
functional form (parameterization). Even if we end up estimating the CMF parametri-
cally, it is still reassuring that our underlying identification argument does not rely on
our knowing the true functional form.

Theorem 5.1 (CATE identification). Under A4.1, A5.1, and A5.2, each CATE is iden-
tified:

CATE(w) = E[Y t − Y u |W = w] = E(Y | X = 1,W = w)− E(Y | X = 0,W = w).

Thus, the ATE is also identified. More generally, A5.1 can be replaced by conditional
mean independence as in (5.3).

Proof. Using the above ingredients,

CATE(w) ≡

use linearity, (5.1)︷ ︸︸ ︷
E(Y t − Y u |W = w)

=

use (5.3)︷ ︸︸ ︷
E(Y t |W = w)− E(Y u |W = w)

=

use (5.4)︷ ︸︸ ︷
E(Y t |W = w, X = 1)−

use (5.4)︷ ︸︸ ︷
E(Y u |W = w, X = 0)

= E(Y |W = w, X = 1)− E(Y |W = w, X = 0),

which is a feature of (only) the joint population distribution of observables (Y,W , X).
By (5.2), the ATE is thus also identified.

Beyond Our Scope

How can we estimate the CATE using the identification result in Theorem 5.1? In
principle, given iid data (or otherwise restricted dependence), we can consistently
estimate any feature of the joint distribution of (Y,X,W ). For example, if X and W
are both binary, then E(Y | W = 0, X = 0) can be estimated by Ê(Y | W = 0, X = 0),
the sample mean of the Yi for observations with Wi = 0 and Xi = 0. However, if
W is continuous, then P(Wi = w) = 0 for any w ∈ R, so this estimation approach
fails. We need to either assume the CMF is linear or quadratic (or some other specific
functional form), or else use nonparameteric regression, as introduced in Part V of
Kaplan (2021).

Discussion Question 5.1 (doctor certification). Let W ∈ R be a continuous scalar
random variable representing a doctor’s quality, and let X = 1{W ≥ 0} be a dummy
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variable for whether the doctor receives a publicly visible certification as being high-
quality. Let Y t ∈ [0, 10] be the doctor’s patient satisfaction rating in the world where
the doctor is certified, and Y u ∈ [0, 10] the rating in the world where the doctor is not
certified (but everything else is identical, including true quality W ).

a) Give a specific, real-world reason why probably (Y u, Y t) ⊥⊥ X fails; explain both
intuitively and mathematically. (If it helps: try graphing the functions µt(w) =
E(Y t | W = w) and µu(w) = E(Y u | W = w).)

b) Explain how it is possible to satisfy Assumption A5.1 even if patient satisfaction
increases with true quality W .

c) Explain why Assumption A5.2 (overlap) fails, and intuitively why thus we cannot
estimate E(Y | W = w,X = 1)− E(Y | W = w,X = 0).

Beyond Our Scope

The overlap problem in DQ 5.1 can be addressed by (roughly speaking) comparing
doctors who are just barely above zero to doctors who are just barely below: their
W is very similar, but the former have X = 1 while the latter have X = 0. This
approach is called regression discontinuity and is covered in the ECON 9446/9447
sequence.

5.2 CATT

Analogous to the ATE and ATT, the conditional average treatment effect on the
treated (CATT) is identified under somewhat weaker assumptions than the CATE.
Specifically, we only need an identifying assumption about Y u, not Y t. The CATT is
defined as

CATT(w) ≡ E(Y t − Y u |W = w, X = 1)

= E(Y t |W = w, X = 1)− E(Y u |W = w, X = 1),
(5.5)

and parallel to (5.2) the unconditional ATT is

ATT = E[CATT(W ), X = 1] (5.6)

by the law of iterated expectations, where the (outer) expectation is with respect to the
population distribution of W conditional on X = 1.

Assumption A5.3 (untreated conditional mean independence). The untreated potential
outcome is conditionally mean-independent of the treatment: E(Y u | W , X) = E(Y u |
W ).
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Theorem 5.2 (CATT identification). Under A4.1, A5.2, and A5.3, each CATT is iden-
tified:

CATT(w) = E[Y t − Y u |W = w, X = 1]

= E(Y | X = 1,W = w)− E(Y | X = 0,W = w).

Thus, the ATT is also identified.

Proof. Starting from the definition of CATT, similar to the arguments in the proof of
Theorem 5.1,

CATT(w) ≡

use linearity, (5.5)︷ ︸︸ ︷
E(Y t − Y u |W = w, X = 1)

=

Y t=Y because X=1︷ ︸︸ ︷
E(Y t |W = w, X = 1)−

use A5.3︷ ︸︸ ︷
E(Y u |W = w, X = 1)

= E(Y |W = w, X = 1)−
Y u=Y because X=0︷ ︸︸ ︷

E(Y u |W = w, X = 0)

= E(Y |W = w, X = 1)− E(Y |W = w, X = 0),

which is a feature of (only) the joint population distribution of observables (Y,W , X).
By (5.6), the ATT is thus also identified.

Discussion Question 5.2. Consider expanding Medicaid (health insurance for low-
income people) in Missouri by increasing the income threshold (below which somebody
is eligible) for individuals from $18,754/yr to $24,000/yr.

a) Which (sub)population do we care about for the purpose of assessing the possible
benefit of this particular policy change? That is, do we care about the average
benefit for everybody in Missouri (the ATE)? For current Medicaid recipients (the
ATT)? Some other subpopulation (conditional on other W )? Explain.

b) Do you think the benefits of Medicaid are higher or lower or similar for the subpop-
ulation you described compared to the full Missouri population? Explain.

c) Do you think the benefits of Medicaid are higher or lower or similar for the subpop-
ulation you described compared to current Missouri Medicaid recipients? Explain.

5.3 Linear Structural Model

Consider the linear structural model

Y = Xβ1 +W
′β2 + U, (5.7)

where W includes an intercept as well as control variables. The following assumptions
and arguments are similar to Appendix 7.2 of Stock and Watson (2015).
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Assumption A5.4 (conditional mean independence). Given (5.7), E(U |W , X) = E(U |
W ): given W , U is mean-independent of X.

Assumption A5.5 (linear error expectation). The conditional mean of U is linear in
W : E(U |W ) =W ′δ.

Theorem 5.3. Given (5.7), under Assumptions A5.4 and A5.5, the structural slope co-
efficient β1 is identified by the corresponding CMF slope coefficient.

Proof. Taking the conditional mean of (5.7),

m(x,w) ≡ E(Y | X = x,W = w)

= E(Xβ1 +W
′β2 + U | X = x,W = w)

= xβ1 +w
′β2 + E(U | X = x,W = w)

= xβ1 +w
′(β2 + δ).

Thus, the (linear) CMF coefficient on x is β1, identical to the structural coefficient on
x. (However, the CMF coefficient vector for w does not match the structural β2, unless
δ = 0.)

Discussion Question 5.3 (student-teacher ratio). The following is similar to a running
example in Stock and Watson (2015). Let Y be the average math test score of an ele-
mentary school in Missouri. Let X be the school’s student-teacher ratio; for example, if
the school has 500 students and 25 teachers, then X = 500/25 = 20. Interest is in the
causal effect of X on Y .

a) Explain how family income could be a source of omitted bias.
b) Let W include the percentage of students who qualify for free lunch (due to low

family income). Explain mathematically and verbally what it would mean for As-
sumption A5.4 to hold.

c) Explain one potential reason A5.4 does not hold.

The linearity assumptions can be relaxed, as in Section 5.A, but the main point is that
sometimes “conditional exogeneity” (like A5.4) lets us learn about a structural relationship
between Y and X if we have sufficiently helpful control variables in W , although the
structural coefficients on W are not identified. That is, the estimated coefficients on
control variables cannot be interpreted causally. This means we should not necessarily
worry if such estimated coefficients have the opposite sign of our intuition. For example,
with scalar W for simplicity, maybe we think in the real world β2 > 0 (W has a positive
causal effect on Y ), but possibly δ < 0 and moreover β2 + δ < 0, in which case the
population CMF coefficient is negative even though the population structural coefficient
is positive.



Appendix to Chapter 5

5.A Nonseparable Structural Model

The intuition here is the same as in Section 5.1: if X is “as good as randomized” condi-
tional on W , then we should be able to learn about the causal effect of X on Y . The
mathematical details differ.

Extending (4.14), consider the nonseparable all-causes model

Y = h(X,W ,U), (5.8)

where (Y,X,W ) is observable but not U .
First consider binary X. For an individual with (w,u), the causal effect (structural

effect) of X on Y is
C(w,u) ≡ h(1,w,u)− h(0,w,u). (5.9)

If we condition on w but average out u,

CASE(w) = E[C(w,U) |W = w], (5.10)

where the expectation is taken with respect to the conditional distribution of U given
W = w. To connect back to the CATE, the potential outcomes are

Y u = h(0,W ,U), Y t = h(1,W ,U), (5.11)

so the CATE is

CATE(w) = E(Y t − Y u |W = w)

= E[h(1,W ,U)− h(0,W ,U) |W = w]

= E[C(w,U) |W = w]

= CASE(w).

Similar to Theorem 4.5, the CASE with binary X is identified following an argument
parallel to CATE. As with CATE, the key is a conditional independence assumption,
parallel to A5.1.

73
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Assumption A5.6 (conditional independence). Regressor of interest X is conditionally
(on W ) independent of the unobserved determinants of Y : U ⊥⊥ X |W .

Theorem 5.4 (CASE identification, binary). Given (5.8), under Assumptions A5.2
and A5.6, the CASE is identified by the difference in conditional means (the “slope” of
the CMF): CASE(w) = E(Y | X = 1,W = w)− E(Y | X = 0,W = w).

Proof. The proof follows the same logic as that of Theorem 5.1:

CASE(w) ≡ E[h(1,w,U)− h(0,w,U) |W = w]

= E[h(1,w,U) |W = w]− E[h(0,w,U) |W = w]

= E[h(1,W ,U) |W = w]− E[h(0,W ,U) |W = w]

= E[h(1,W ,U) |W = w, X = 1]− E[h(0,W ,U) |W = w, X = 0]

= E[h(X,W ,U) |W = w, X = 1]− E[h(X,W ,U) |W = w, X = 0]

= E[Y |W = w, X = 1]− E[Y |W = w, X = 0],

which is a feature of (only) the joint population distribution of observables (Y,W , X).

The CASE is defined and identified more generally with non-binary X, including
continuous X. The discrete X identification follows the same definition and proof as
binary X, merely replacing 0 and 1 with general values a and b. For continuous X,
similar to (4.16), let

CASE(x,w) = E[
∂

∂x
h(x,w,U) | X = x,W = w]. (5.12)

For notational simplicity, assume U is also continuous, even conditional on any subset of
(X,W ), so the expectation can be written as an integral against the conditional PDF of
U . Writing U as the support of U ,

E[
∂

∂x
h(x,w,U) | X = x,W = w] =

∫
U

∂

∂x
h(x,w,u)fU |X,W (u | X = x,W = w) du.

(5.13)
The partial derivative of the CMF is

∂

∂x
m(x,w) =

∂

∂x
E[Y | X = x,W = w]

=
∂

∂x
E[h(X,W ,U) | X = x,W = w]

=
∂

∂x
E[h(x,w,U) | X = x,W = w]

=
∂

∂x

∫
U
h(x,w,u)fU |X,W (u | X = x,W = w) du.
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Under a relatively weak technical condition, the derivative and integral can be inter-
changed; doing that and then applying the product rule,

∂

∂x
m(x,w) =

∫
U

∂

∂x
[h(x,w,u)fU |X,W (u | X = x,W = w)] du

=

∫
U

{
[
∂

∂x
h(x,w,u)fU |X,W (u | X = x,W = w)]

+ [h(x,w,u)
∂

∂x
fU |X,W (u | X = x,W = w)]

}
du

= CASE(x,w) +

∫
U
h(x,w,u)

∂

∂x
fU |X,W (u | X = x,W = w) du.

Under Assumption A5.6, after conditioning on W = w, the distribution (or equivalently
here PDF) of U does not depend on X = x, so

fU |X,W (u | X = x,W = w) = fU |W (u |W = w),

with no dependence on X = x. Thus, taking a derivative with respect to x yields zero,
which zeroes out the second term in the expression above, so the CMF partial derivative
equals the CASE.

Theorem 5.5 (CASE identification). Given (5.8), under Assumption A5.6 (and an over-
lap condition), the CASE is identified by the corresponding partial derivative of the CMF:
CASE(x,w) = ∂

∂x E(Y | X = x,W = w).

Proof. See above.

Beyond Our Scope

Like the CATE identification, this is another example of nonparametric identification:
we do not assume that either the structural model or the CMF is linear, or quadratic,
or any other specific functional form. To estimate the CASE, we would need to either
specify a function form or use nonparametric regression. We could also try to reduce
our statistical uncertainty by doing further averaging (in both the population object
and estimator), like averaging the CASE over the distribution of W and/or X.
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Chapter 6

OVB and Proxy Variables

Unit learning objectives for this chapter

6.1. Define terms and concepts related to omitted variable bias and proxy variables.
[TLO 1]

6.2. Describe how proxy variables can help reduce omitted variable bias, both intuitively
and mathematically. [TLO 3]

This chapter first describes and quantifies the problem known as omitted variable
bias, for linear structural models. Then, it shows how “proxy variables” can help reduce
this bias.

This problem only really applies to estimating causal effects. For description, for
example, if we want to estimate the linear projection slope of LP(Y | 1, X), then it
doesn’t matter what other variables there are; the linear projection depends only on Y
and X. (Mathematically, you could ask about bias in the estimated coefficient on X in
LP(Y | 1, X,Q) if Q is omitted and instead LP(Y | 1, X) is estimated, but that’s not
usually a situation faced in practice.) For prediction, we do not care about coefficients,
only prediction accuracy; omitting a predictor may make our accuracy worse, but we
wouldn’t say it’s “biased.”

Optional resources for this chapter

• OVB/confounders (Masten video)

• Collider bias examples: https://doi.org/10.1093/ije/dyp334

• Collider bias review (very detailed): https://doi.org/10.1146/annurev-
soc-071913-043455

77

https://www.youtube.com/watch?v=NGeXsFHeTh8
https://doi.org/10.1093/ije/dyp334
https://doi.org/10.1146/annurev-soc-071913-043455
https://doi.org/10.1146/annurev-soc-071913-043455
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6.1 Omitted Variable Bias

6.1.1 Allegory for Intuition

The following allegory is from Kaplan (2022a). Imagine a ghost (Q) that often accompa-
nies a child (X), i.e., the ghost and child are often in the same place at the same time.
The ghost always makes a huge mess (Y ): spilling flour, knocking over chairs, drawing on
walls, etc. The child’s parents only observe the child and the mess; they do not observe
the ghost. The parents note that when the child is in the kitchen, then there is often a
mess in the kitchen, and when the child is in the bathroom, then there is often a mess in
the bathroom, etc. Thus, they infer that the child (X) causes the mess (Y ). However,
we know that it only appears that way because

GHOST.1 the ghost (Q) often accompanies the child (X) and

GHOST.2 the ghost (Q) causes a mess (Y ).

The child is the regressor. The ghost is the omitted variable. The parents are economists
who over-estimate how much mess the child causes. This phenomenon is omitted vari-
able bias (OVB).

6.1.2 Formal Characterization of OVB

Mathematically, consider the linear structural model

Y =X ′β +Qγ + V, (6.1)

where X includes an intercept. Assume the structural error V is “well-behaved” in the
sense of satisfying the linear projection error property:

E(XV ) = 0, E(QV ) = 0. (6.2)

Thus, if we could observe Q, then we could consistently estimate the structural coefficients
β and γ by OLS because they are also linear projection coefficients. However, if Q is not
observed, then

Y =X ′β + U, U ≡ Qγ + V. (6.3)

If Qγ and X are related, then U is not an LP error, so β is not the LPC and thus not
the OLS estimand.

To precisely characterize the OVB, let

LP(Q |X) =X ′δ, R ≡ Q−X ′δ. (6.4)

Plug these into (6.1):

Y =X ′β + (X ′δ +R)γ + V =X ′(β + γδ) + (V +Rγ). (6.5)



6.1. OMITTED VARIABLE BIAS 79

Note V +Rγ satisfies the LP error property:

E[X(V +Rγ)] = E[XV +XRγ] =

=0 by (6.2)︷ ︸︸ ︷
E(XV ) +

=0 by (6.4)︷ ︸︸ ︷
E(XR) γ = 0. (6.6)

Thus, (6.5) is a linear projection of Y onto X in error form, so OLS is consistent for
β + γδ (the LPC), meaning the asymptotic bias is γδ.

Theorem 6.1 (OVB). Given the structural model in (6.1), with the structural error
satisfying (6.2), and given the definitions in (6.4), the linear projection of Y onto X is
LP(Y |X) =X ′(β + γδ).

Proof. See above.

Theorem 6.1 shows why both Conditions GHOST.1 and GHOST.2 are required for
OVB. Condition GHOST.1 is about δ, which is the vector of “partial correlations” of Q
with X. If δ = 0, then the OVB term becomes zero. Condition GHOST.2 says γ ̸= 0,
recalling γ is the coefficient on Q in the structural model.

Corollary 6.2 (OVB). Assume conditions such that OLS estimator consistently estimates
the linear projection coefficients. Let β̂ be the OLS estimator from regressing Y onto X.
Given Theorem 6.1, β̂ p→ β + γδ, also written plimn→∞ β̂ = β + γδ. The “OVB” (or
“asymptotic bias”) is thus

plim
n→∞

β̂ − β = γδ.

For the jth vector element β̂j, the OVB is γδj, which equals zero if either γ = 0 or δj = 0
(or both). If γ ̸= 0 and δj ̸= 0, then the sign (positive or negative) of OVB depends on
the signs of γ and δj.

Note if all δj = 0 except δk ̸= 0, then δk = Cov(Q,Xk)/Var(Xk), which is easier to
think about than a general partial correlation (LP coefficient).

Example 6.1 (kindergarten effect). Let Y be annual earnings of an individual at age
30, and let X = 1 if (as a child) the individual had more than 24 students in their
kindergarten class, otherwise X = 0.

a. Let Q be the size of the individual’s first-grade class. If class size affects students at
all (in terms of long-term earnings), then probably larger class size (less attention
from teacher) causes lower earnings, so γ < 0. Because most students stay at the
same school for kindergarten and first grade, the class sizes are probably positively
correlated, δ1 > 0. Thus, there is negative OVB because γδ1 < 0, so plimn→∞ β̂1 <
β1. Most likely the true kindergarten effect is negative (larger class size causes
smaller earnings), though possibly very small, so negative OVB actually makes the
magnitude appear larger than it really is.
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b. Let Q be the number of cubbies (places to put clothes, backpacks, etc.) in the
kindergarten classroom. Naturally, this is correlated with the number of students,
so δ1 > 0. However, the number of cubbies probably does not affect future earnings;
for example, if I sneak into my child’s classroom and add a cubby, it will not cause
higher future earnings. Thus, γ = 0, so γδ1 = 0 and this is not a source of OVB.

c. Let Q = 1 if the kindergarten is in a high-income neighborhood, otherwise Q = 0.
Because higher-income neighborhoods tend to have better-funded schools who can
afford to hire more teachers, δ1 < 0 (we are more likely to see Q = 1 − X than
Q = X). Further, being in a higher-income neighborhood itself causes higher future
earnings, so γ > 0. Thus, again we have negative OVB because γδ1 < 0.

d. As a sanity check: repeat the previous example but defining Q = 1 for low-income
and Q = 0 for high-income. In that case, δ1 > 0 (instead of < 0), and γ < 0 (instead
of > 0), but the resulting OVB is still negative because again γδ1 < 0. That is, the
way we define the variable Q does not affect the OVB.

Discussion Question 6.1 (assessing OVB). Among public elementary schools (students
mostly 5–11 years old) in California, let Y be the average standardized math test score
among a school’s 5th-graders, and let X be the school’s student-teacher ratio for 5th-
graders (like average number of students per class). Consider a simple regression of Y
on X. For any two of the following variables, assess each OVB condition separately, and
then decide whether you think it’s a source of OVB.

a) School’s parking lot area per student. (Remember 5–11-year-olds don’t have cars
to park.)

b) Time of day of the test.
c) School’s total spending per student (including books, facilities, etc.).
d) Percentage of English learners (non-native speakers) among a school’s 5th-grade

students.

Discussion Question 6.2 (wage OVB). Let Y be log wage, X1 experience, X2 years
of education, and Q unobserved “ability,” and assume that the structural model Y =
β0 +X1β1 +X2β2 +Qγ + V has structural error term V satisfy E[(1, X1, X2, Q)V ] = 0′.
Also assume for simplicity LP(Q | 1, X1, X2) = δ0 +X1δ1 +X2δ2 has δ1 = 0.

a) Do you think δ2 < 0, δ2 > 0, or δ2 = 0? Explain why.
b) Do you think β2 is < 0, > 0, or = 0? Explain.
c) Do you think γ is < 0, > 0, or = 0? Explain.
d) Given the above, would plimn→∞ β̂2 be < β2, > β2, or = β2? Explain.

Discussion Question 6.3 (OVB: ES habits). For my introductory econometrics class,
let Y be a student’s final semester score (0 ≤ Y ≤ 100), and X = 1 if the student starts
the exercise sets well ahead of the deadline (otherwise X = 0).

a) What’s one variable that might cause OVB? Explain why you think both OVB
conditions are satisfied.
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b) Which direction of asymptotic bias would your omitted variable cause? Explain
both mathematically and intuitively.

6.1.3 Measurement Error

One special case of OVB is due to measurement error. The observed Y and/or X variable
can be written in terms of the true value plus an error. The error is then an omitted
variable, which may (or may not) cause OVB depending on its properties.

Measurement Error in Outcome Variable

See also Section 12.3.2 of Kaplan (2022a) and Section 4.4.1 of Wooldridge (2010).
Consider measurement error in Y . The true but unobserved (latent) value is Y ∗, but

we observe Y , which has measurement error

M ≡ Y − Y ∗. (6.7)

In the simplest case, imagine we want to learn the population E(Y ∗). For estimation,
if we observed Y ∗, then the sample mean (generally) is consistent for the population mean.
However, we instead observe Y and can consistently estimate E(Y ). The identification
question here is: does E(Y ∗) = E(Y )? That is, can we equate the parameter we care
about (mean of Y ∗) with a feature of the population distribution of the observed Y ?

The following formally states a simple identification result.

Proposition 6.3. Give Y = Y ∗ +M , under the identifying assumption E(M) = 0, the
true population mean E(Y ∗) is identified and equal to the observable mean E(Y ).

Proof. Using linearity of expectation,

E(Y ) = E(Y ∗ +M) = E(Y ∗) + E(M) = E(Y ∗) + 0,

where the final equality relies on the assumption E(M) = 0.

However, if E(M) ̸= 0, then the true mean is not identified. If E(M) > 0, then
E(Y ) > E(Y ∗), so there is upward (positive) bias. If E(M) < 0, then E(Y ) < E(Y ∗), so
there is downward (negative) bias.

Discussion Question 6.4 (exercise). Imagine you ask people how many minutes they
exercised last week, to try to learn how much exercise people do each week.

a) Define each variable’s meaning. What’s Y ? What’s Y ∗? What’s M?
b) Explain a reason we might see E(M) > 0.
c) Explain a reason we might see E(M) < 0.
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Extending to regression, consider the LP of interest

Y ∗ =X ′β + V, E(XV ) = 0. (6.8)

Substituting Y ∗ = Y −M using (6.7),

Y −M =X ′β + V,

Y =X ′β +M + V =X ′β + U, U ≡ M + V, (6.9)

so β remains the LPC if and only if M + V satisfies the LP error property

0 = E[X(M + V )] = E(XM) +

=0 by (6.8)︷ ︸︸ ︷
E(XV ) = E(XM). (6.10)

If we do not care about the intercept term (the coefficient on X1 = 1), then this says
we need Corr(Xj ,M) = 0 for all j = 2, . . . ,dim(X). For example, this is implied by
M ⊥⊥X: the measurement error is independent of the regressors.

Conversely, if the measurement error is correlated with some regressors, then it is a
source of omitted variable bias. In fact, (6.9) is a special case of (6.3) with γ = 1 and
Q = M . Thus, the following is a corollary of Theorem 6.1.

Corollary 6.4 (measurement error in outcome). Given the setup of (6.8) and (6.9),
applying the results of Theorem 6.1, the linear projection of the observable Y onto X is
LP(Y |X) =X ′(β+ δ), where δ is the LPC in LP(M |X) =X ′δ. If Corr(M,Xj) = 0
for all j = 2, . . . ,dim(X), and assuming X1 = 1 is the intercept term like usual, then
the slope coefficients of LP(Y ∗ | X) are identified and equal to the slope coefficients of
LP(Y |X).

Proof. Apply Theorem 6.1 with γ = 1 and Q = M . If E(M) ̸= 0, and assuming X1 = 1
is an intercept term like usual, then we can rewrite

Y = [X ′β + E(M)] + [M − E(M)],

where the intercept term is now β1+E(M), and M −E(M) satisfies E[Xj(M −E(M))] =
Cov(Xj ,M) = 0 under the identifying assumption Corr(Xj ,M) = 0 stated in Corol-
lary 6.4. Thus, M − E(M) satisfies the LP error property E[X(M − E(M))] = 0, so the
LPC is (β1 + E(M), β2, β3, . . .)

′, i.e., β but with the intercept adjusted by E(M).

Discussion Question 6.5 (exercise and gym membership). Let Y ∗ be an individual’s
true minutes of exercise per week, and Y is their self-reported value (i.e., how much
exercise the say they did when asked on a survey). Let X = 1 if somebody is a gym
member, and X = 0 otherwise.

a) Explain a reason we might see Cov(X,M) ̸= 0, and whether this would make the
covariance > or <.



6.1. OMITTED VARIABLE BIAS 83

b) Compare the LP slope of Y on (1, X), which is Cov(X,Y )/Var(X), with the LP
slope of Y ∗ on (1, X), which is β1 = Cov(X,Y ∗)/Var(X). What’s the direction of
asymptotic bias?

Instead of additive measurement error, we could write it as a multiplicative error, Y =
MY ∗. Then, log(Y ) = log(M) + log(Y ∗). Thus, for a regression with a logged outcome
and multiplicative measurement error, there’s just a log(M) term floating around, so we
check if Cov(Xj , log(M)) = 0 or not.

Discussion Question 6.6 (self-reported scrap rate). (See also DQ 6.9.) Let Y ∗ be the
true “scrap rate” of a manufacturing firm: how many products (out of 100) need to be
“scrapped” (put in trash) because their quality is too low, so high scrap rate is bad. For
example, Y ∗ = 0.04 means a 4% scrap rate. Consider a government program that provides
grant money to manufacturing firms to lower their scrap rate. The government randomly
assigns firms to a control group and treatment group, to run an experiment. On January
1, the treated firms receive grant money, which they are supposed to use to improve
efficiency. All firms self-report their scrap rates on December 31; this is Y = Y ∗ +M .

a) Describe a reason why treated firms might want to systematically over-report (M >
0) or under-report (M < 0) their scrap rates.

b) In that case, and assuming untreated firms report accurately (M = 0), would we
overestimate or underestimate the treatment effect of a grant? (The estimator is the
slope coefficient in the regression of Y on (1, X).) Why? (To get started: consider
if the true effect/slope is zero; how does the measurement error make it appear as
if there is a non-zero effect?)

c) If the government uses these incorrect estimates to decide whether or not to continue
the program, what incorrect decision might they make? Why? (To get started:
again imagine there is zero true effect.)

Measurement Error in Regressor

The following is mostly from Section 12.3.3 of Kaplan (2022a); see also Section 4.4.2 of
Wooldridge (2010).

Now consider measurement error in a regressor. This is sometimes called errors-in-
variables.

The following uses a simple regression (one non-constant regressor) to show how mea-
surement error can cause asymptotic bias. The true LP with latent X∗ is

Y = β0 + β1X
∗ +R, E(R) = Cov(X∗, R) = 0. (6.11)

Because the observed X is X = X∗ +M , substituting in X∗ = X −M ,

Y = β0 + β1(X −M) +R = β0 + β1X + (R− β1M). (6.12)

The asymptotic bias is

AsyBias(β̂1) =
Cov(X,R− β1M)

Var(X)
,
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so the asymptotic bias is zero if and only if Cov(X,R−β1M) = 0, i.e., if the observed X
is uncorrelated with the unobserved “error term” R− β1M . Using (6.11) and linearity,

Cov(X,R− β1M) = Cov(X,R)− Cov(X,β1M)

= Cov(X∗ +M,R)− β1Cov(X,M)

=

=0︷ ︸︸ ︷
Cov(X∗, R)+Cov(M,R)− β1Cov(X,M).

If M is uncorrelated with the LP error R = Y −β0−β1X
∗, and if β1 = 0 (which means Y

and the true X∗ are not correlated), then this is zero. Otherwise, there is almost certainly
asymptotic bias, in particular when Cov(X,M) ̸= 0.

Unfortunately, Cov(X,M) = 0 is very unlikely. Consider what seems to be the best-
case scenario: M is just random noise unrelated to the true value X∗, so Cov(X∗,M) =
0. This is sometimes called classical measurement error, or more specifically the
classical errors-in-variables assumption. Unfortunately, using Cov(X∗,M) = 0,

Cov(X,M) = Cov(X∗ +M,M) =

=0︷ ︸︸ ︷
Cov(X∗,M)+

=Var(M)︷ ︸︸ ︷
Cov(M,M) = Var(M). (6.13)

Assuming P(M = 0) < 1, then Var(M) > 0, so Cov(X,M) > 0. Thus, even if
Cov(M,R) = 0, the asymptotic bias is not zero because −β1Cov(X,M) ̸= 0.

In this case with Cov(X,M) > 0 and Cov(M,R) = 0, the resulting bias is called
attenuation bias. That is, the estimates are systematically pushed closer to zero by the
measurement error. Putting together the above equations, the asymptotic bias is

−β1
Cov(X,M)

Var(X)
= −β1

Var(M)

Var(X)
, (6.14)

which has the opposite sign of β1 because variances are positive. That is, if β1 > 0 then
the bias is negative, whereas if β1 < 0 then the bias is positive, so the bias always pushes
toward zero. Further, the magnitude of the bias is never larger than β1, so it can never
“overshoot” zero, because Var(M) < Var(X):

Var(X) = Var(X∗ +M) = Var(X∗) + Var(M) + 2

=0 by CEV︷ ︸︸ ︷
Cov(X∗,M) = Var(X∗) + Var(M).

Even if we cannot fix the attenuation bias, it is helpful to know the direction of the
bias. For example, if we estimated β̂1 = 7, and we suspect attenuation bias, then our
best guess is that β1 might be even larger than 7. Similarly, if the corresponding 95% CI
is [4, 10], then we may feel even more confident about the lower endpoint, though we may
not think 10 is the upper bound.

Discussion Question 6.7 (EIV example). Let X∗ ∈ {1, 2, 3}. Assume if X∗ = 1 or
X∗ = 3, then X = X∗ and M = 0. But if X∗ = 2, then P(M = −1) = P(M = 1) = 0.5,
i.e., P(X = 1 | X∗ = 2) = P(X = 3 | X∗ = 2) = 0.5. So, E(M | X∗ = x) = 0 for
x = 1, 2, 3, which sounds nicely behaved.
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a) Is Corr(X,M) = 0, > 0, or < 0? Why? (Hint: graph possible values of (X,M).)
b) Let Y = β0 + β1X

∗ + V , where for simplicity V = 0 (always), β0 = 0, and β1 = 2.
Graph all possible values of (X∗, Y ), and then (on the same axes but with a different
plot symbol shape or color) graph all possible values of (X,Y ). Draw a best-fit/OLS
line through each set of points.

c) What type of bias does this measurement error cause?

Unfortunately, outside the very special case of classical errors-in-variables with a linear
model, the direction of bias may differ. It is not necessarily attenuation bias. In particular,
if Cov(M,R) ̸= 0 and |Cov(M,R)| > |β1Cov(X,M)|, then the sign of the bias is the sign
of Cov(M,R), i.e., positive bias if Cov(M,R) > 0 or negative bias if Cov(M,R) < 0. So,
generally, any type of asymptotic bias is possible, depending how the measurement error
is related to other variables.

One way to address measurement error is with instrumental variables, as in Chapter 8.

6.2 Proxy Variables

Continue from the model in (6.1) and (6.2), where if we could observe Q then the linear
structural model coefficients can be estimated by OLS.

Consider a proxy variable Z that we can observe and use as a control variable, hoping
that it captures enough about Q to reduce OVB. Usually Z is assumed redundant in the
structural model, meaning it does not appear in (6.1). (With other mathematical setups,
the definition differs, but the qualitative idea is the same.) This is essentially implied by
(6.2): if Z were part of V , and Z is correlated with Q (see below), then V would not
satisfy the LP error property, so the original model (6.1) even including Q would suffer
from OVB.

Assumption A6.1 (proxy redundancy). The proxy variable Z is not part of the struc-
tural model; mathematically, E(ZV ) = 0.

Similar to the derivation of Theorem 6.1, the Q in (6.1) can be replaced by its linear
projection in error form. Similar to (6.4) but now with Z,

LP(Q |X, Z) =X ′ρ+ Zθ1, R ≡ Q− LP(Q |X, Z). (6.15)

Plugging in,

Y =X ′β + (X ′ρ+ Zθ1 +R)γ + V =X ′(β + γρ) + γθ1Z + (V +Rγ). (6.16)

Note V +Rγ satisfies the LP error property:

E[(X ′, Z)(V +Rγ)] = E[(X ′, Z)V + (X ′, Z)Rγ]

=

=0 by (6.2) and A6.1︷ ︸︸ ︷
E[(X ′, Z)V ] +

=0 by (6.15)︷ ︸︸ ︷
E[(X ′, Z)R] γ = 0.
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Thus, (6.5) is a linear projection of Y onto X in error form, so OLS is consistent for
β + γρ (the LPC), meaning the asymptotic bias is γρ.

The difference with Theorem 6.1 is having ρ instead of δ. Thus, the key to success of
a proxy variable is how much of the variation in Q it “soaks up” in the linear projection,
reducing the linear projection coefficients on X.

Theorem 6.5 (proxy OVB). Given the structural model in (6.1), with the structural
error satisfying A6.1 and (6.2), and given the definitions in (6.15), the linear projection
of Y onto X and Z is LP(Y |X, Z) =X ′(β + γρ) + Zθ1.

Proof. See above.

Corollary 6.6 (perfect proxy). A perfect proxy for Q satisfies ρ = 0 (or allowing ρ1 ̸=
0, which only affects the intercept), meaning LP(Q |X, Z) = ρ1+Zθ1 with no dependence
on X. Then, the structural slope coefficients are all linear projection coefficients, for
which the OLS estimator is consistent under relatively weak sampling and finite-moment
conditions.

Proof. From Theorem 6.5, the linear projection coefficients are β + γρ, so regardless of
γ, if any ρj = 0 then the corresponding LPC is βj , the structural coefficient.

Discussion Question 6.8 (recidivism and therapy). Consider the causal effect of a
particular cognitive behavioral therapy (CBT) program on the future criminal activity of
current prison inmates. Specifically, there is a group of individuals who were previously
in prison, with X = 1 if they participated in CBT and X = 0 if not, and who were then
tracked for five years after their release from prison, with Y the number of additional
days spent in prison during that five-year window.

a) Prisoners are more likely to be assigned to CBT if they committed a more severe
crime; prisoners are also more likely to commit future crimes (and more severe
future crimes) if their initial crime is more severe. Explain which direction of OVB
this generates.

b) We also observe Z, the length (in days) of the prisoner’s initial prison sentence.
Explain with words and equations the conditions under which Z would be a perfect
proxy.

Discussion Question 6.9 (scrap rate and grants). This example is similar to Example
4.4 of Wooldridge (2010); see also III.5 later. Let Y be the log “scrap rate” of a manufac-
turing firm: how many products (out of 100) need to be “scrapped” (put in trash) because
their quality is too low, so high scrap rate is bad. Consider a government program that
provides grant money to manufacturing firms to lower their scrap rate, but the grants are
not randomized. Specifically, grants target firms who have more room for improvement
of their scrap rate.

a) Explain which direction of OVB the above setup generates, both mathematically
and intuitively. Say explicitly whether this makes the grants look more or less
helpful than they really are.
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b) Let Z be a firm’s lagged (last year’s) scrap rate. Explain with words and equations
the conditions under which Z would be a perfect proxy.

However, if a variable is a really bad proxy, then it can actually worsen OVB, as well
as increasing standard errors. Thus, you need to think carefully about whether a variable
actually should proxy for a particular omitted variable, rather than simply including all
available variables in the data. For example, see the simple example at the very end of
Chapter 4 (page 72) of Wooldridge (2010).

6.3 Collider Bias

This section is taken from Section 9.6 of Kaplan (2022a).
Although OVB shows the risk of omitting certain types of variables, other types of

variables actually should be omitted, otherwise they cause a different type of (asymptotic)
bias.

A collider or common outcome is a variable on which both X and Y have a
causal effect. For example, imagine you want to learn the effect of a firm’s ownership
structure (say X = 1 for family-owned, X = 0 otherwise) on its research and development
expenditure Y . Both X and Y affect the firm’s performance Z, so Z is a collider.

Including a collider as a regressor causes collider bias when estimating a causal rela-
tionship. This is not as intuitive as OVB, but it can be just as problematic. Section 6.A
provides a detailed example.
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Appendix to Chapter 6

6.A Collider Bias: Example

The following example is a modification of https://doi.org/10.1093/ije/dyp334.

Imagine you’re interested in the causal effect of eating falafel or salad on having the flu
(which is zero effect), and you have a sample of 200 individuals. You randomly assigned
100 people to eat falafel for lunch, and 100 salad; a few hours later, you test each for flu
(assume there is no testing error). Let Y = 1 if somebody has the flu (otherwise Y = 0),
and X = 1 if somebody ate falafel for lunch (X = 0 if salad). Let Z = 1 if the individual
has a fever (otherwise Z = 0). Sadly, the salad had some romaine contaminated with E.
coli, so 40% of those who ate salad got a fever from the E. coli, unrelated to whether or
not they had the flu. Among individuals with flu, 90% have a fever, but 10% don’t.

Table 6.1: Counts in falafel/salad/flu example.

Fever No fever

Flu No flu Flu No flu Flu No flu

Falafel 50 50 45 0 5 50
Salad 50 50 47 20 3 30

Table 6.1 shows the number of individuals in different categories. Overall, there is no
relationship between lunch and flu, so the flu rate is the same in the falafel and salad
groups. To make the numbers easier, the overall flu rate is 50% (100/200 overall, 50/100
in each group). Because nobody who ate falafel got E. coli, the only reason for fever is the
flu, which has a 90% fever rate. Thus, among the 50 with flu who at falafel, (50)(0.9) = 45
have a fever and 5 do not. This entirely explains the Falafel row. In the salad row, given
the statistical independence of flu (probability 0.5) and E. coli (probability 0.4), the
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probability of having neither is

P(not flu and not E. coli) = P(not flu) P(not E. coli) = [1−
0.5︷ ︸︸ ︷

P(flu)][1−
0.4︷ ︸︸ ︷

P(E. coli)]
= (0.5)(0.6) = 0.3,

hence (100)(0.3) = 30 salad-eaters who have neither flu nor E. coli, and thus no fever.
This explains the No fever / No flu entry of 30 in the Salad row. Similarly,

P(flu, not E. coli) = (0.5)(0.6) = 0.3 (30 people),
P(flu, E. coli) = (0.5)(0.4) = 0.2 (20 people),

P(not flu, E. coli) = (0.5)(0.4) = 0.2 (20 people).

The “not flu and E. coli” are the 20 individuals who have a fever (from the E. coli) but
not flu. The 20 with both flu and E. coli all have a fever, due to E. coli. Among the 30
with flu but not E. coli, 90% have a fever, i.e., (30)(0.9) = 27 have a fever, so 3 do not.
This 3 is the No fever / Flu entry in the Salad row. The 27 combine with the 20 who had
both illnesses to make 47 who have both flu and a fever in the Salad row.

If we regress Y (flu) on X (food), then we correctly estimate zero effect, but if we
also use Z (fever), then we incorrectly estimate a non-zero effect. If we only look at the
“no fever” group, then there is (appropriately) zero difference: the flu rate for the falafel
eaters is 5/55 = 1/11, identical to the 3/33 = 1/11 for the salad eaters. Mathematically,
these “rates” are estimates of the conditional mean of the binary Y flu variable; e.g.,
5/55 = Ê(Y | falafel, no fever), recalling E(Y ) = P(Y = 1) for binary Y . However, if we
also look at the “fever” group, the flu rate is much higher in the falafel group. In fact,
the falafel group’s flu rate is 45/45 = 100%, whereas the salad group’s flu rate is only
47/(47 + 20) = 70%, substantially lower. Mathematically,

5/55︷ ︸︸ ︷
Ê(Y | X = 1, Z = 0)−

3/33︷ ︸︸ ︷
Ê(Y | X = 0, Z = 0) = 0,

45/45︷ ︸︸ ︷
Ê(Y | X = 1, Z = 1)−

47/67︷ ︸︸ ︷
Ê(Y | X = 0, Z = 1) = 0.30.

(6.17)

This suggests eating falafel causes flu, but this incorrect conclusion is entirely collider
bias.



Exercises

Exercise I.1. Write a Stata do-file as follows. In general, each step corresponds to one
line of code, except where otherwise noted. The data files are available at:
https://drive.google.com/file/d/0B-_LUSJVBv20SjBYd2pwYkYtcnc/view?
resourcekey=0-DMCuTq__SV1c0PxaQ-wTOQ
https://drive.google.com/file/d/0B-_LUSJVBv20U2E2R2tBWnItaU0/view?
resourcekey=0-dkguDqOtIoH5VWJgm-4T4g

a. Include the usual top-of-file items:

i. Make the first line a “comment” (starting with an asterisk) with your name,
the class name, and today’s date.

ii. Clear all variables in memory with clear all
iii. Close any log file that may currently be open, without displaying an error if

none is open, with capture log close
iv. Issue the command set more off so that Stata doesn’t wait for your input if

there’s more than one screen of output.
v. Change the current directory to the one where you have downloaded the raw

data and have saved this do-file, using the cd command.
vi. Start writing a plaintext log to a file with suffix “.log”, replacing the existing

file if applicable (with the replace option).

b. Read into memory the data in file Kaplan_Stata1_fake_data_grades.csv using
the command insheet:
insheet using "Kaplan_Stata1_fake_data_grades.csv" , clear

c. Using a keep if statement, keep only rows for undergraduates, who are identified
by their student type being UG.

d. Create a new variable named cl_grade_num that translates the string variable cl
_grade into the corresponding numeric values. For example, if row 7 contains
cl_grade equal to D, then the new variable should equal one; A=4, B=3, C=2,
D=1, F=0. Note: this step requires multiple lines of code; the first is a generate
command, and the rest are replace commands.
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e. Create (with command generate) another new variable: name it cl_grade_pts,
and store the product of cl_units and cl_grade_num.

f. Collapse (with command collapse) the data to one row per student, calculating
the sum of cl_units and cl_grade_pts.

g. Create a new variable named s_GPA as the quotient of the summed cl_grade_pts
and the summed cl_units; this is the grade point average (GPA), the average of
the grades weighted by the units per class.

h. Drop (with drop) the variables containing the summed cl_grade_pts and summed
cl_units.

i. Sort by s_id.

j. Check whether s_id is a unique identifier: isid s_id.

k. Save the dataset to a new .dta file, replacing the existing version (if applicable):
save "Kaplan_Stata1_fake_data_GPA.dta" , replace

l. Load the data in Kaplan_Stata1_fake_data_parents.csv using insheet.

m. Rename (command rename) the variable student_id to s_id to match the other
file’s convention.

n. Convert the variable s_id from string to numeric, ignoring the leading A in each:
destring s_id, replace ignore("A")

o. Reshape the data to have only one row per student, with variable p_edu1 containing
parent 1’s education and p_edu2 for parent 2: reshape wide p_edu,i(s_id) j(
parent)

p. Make a new variable named p_edu_max that is the maximum of all variables with
prefix p_edu, using the egen command with rowmax (ignoring missing values):
egen p_edu_max = rowmax(p_edu*)

q. Sort by s_id

r. Check that s_id is a unique identifier with isid

s. Merge the data currently in memory 1:1 by s_id with the temporary file with GPA
that you saved earlier.

t. Drop observations containing data only from the parent dataset and not from the
GPA dataset, i.e., when the generated variable _merge equals one.

u. Order the columns in the dataset so that s_id is first, then s_GPA, then other
variables: order s_id s_GPA

v. Print the dataset to the console/log using the list command (with no arguments
or options). (Note: in reality, you would rarely print an entire dataset since they
are usually much bigger than this artifical example.)

w. Save your dataset to a new .dta file.
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x. Close your log file.

After thoroughly debugging, run your file all the way through all at once, and submit
your .log file and .do file electronically through Canvas.

Exercise I.2. Write a Stata do-file as follows. The data are from a New York Times
article on December 28, 1994.

a. Do the usual top-of-file items from Exercise I.1(a).

b. Run ssc install bcuse to ensure command bcuse is installed, and then load the
dataset with bcuse wine, clear

c. View basic dataset info with Stata command describe

d. View the first few rows of the dataset with Stata command list if _n<=5

e. Rename the alcohol column, which measures liters of alcohol from wine (consumed
per capita per year): rename alcohol wine

f. Add a column named id whose value is just 1, 2, 3, 4, 5, etc.: generate id = _n

g. Display the countries with fewer than 100 heart disease deaths per 100,000 people:
list country if heart<100

h. Display the rows for the countries with the 5 lowest death rates, sorted by death
rate: sort deaths followed by (next line) list if _n<=5

i. Add a column with the sum of heart and liver disease deaths per 100,000:
generate heart_plus_liver = heart + liver

j. Generate a variable with the squared death rate: gen deaths_sq = deaths^2

k. Display the sorted death rates: sort deaths followed by list deaths

l. Add a column with the proportion of heart deaths to total deaths with command
generate heart_prop = heart / deaths

m. Create a histogram of liver deaths: histogram liver

n. Create a scatterplot of liver death rates (vertical axis) against wine consumption
(horizontal axis): scatter liver wine

Exercise I.3. Consider the effect of being assigned to a job training program, where
assignment was randomized. The specific program was the National Supported Work
Demonstration in the 1970s in the U.S. Data are originally from LaLonde (1986), via
Wooldridge (2020). You will look at effects on earnings. The train variable indicates
(randomized) assignment to job training if it equals 1, and it equals 0 otherwise.

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse jtrain2 , clear

c. Run describe re78 train and read the variable labels to understand the meaning
and units of measure.
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d. Run ttest re78 , by(train) unequal and explain in words briefly (1 sentence)
what that code does.

e. Run reg re78 train , vce(robust) and explain in words briefly (1 sentence)
what that code does.

f. Rounding to three significant figures (and including units of measure), report the
estimated average effect of being assigned to training, and discuss the estimate’s
economic significance (magnitude).

g. Rounding to three significant figures (and including units of measure), report the
corresponding 95% confidence interval, and discuss what this tells us about uncer-
tainty (be precise).

h. Describe the “potential outcomes” in this example, and explain why the average
treatment effect of assignment to job training seems to be identified.

i. If this job training program were scaled up and offered to every individual in the
country, would you guess the average effect would be higher or lower (due to general
equilibrium effects)? Explain in 1–2 sentences.

Exercise I.4. The data are originally from Card (1995), with individual-level obser-
vations of (log) wages, years of education, and other variables. Note the dataset lacks
variable labels, but they can be found online.1

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse card , clear

c. Create a dummy to compare high-school (12 years education) and college (16 years
education):
gen d_coll = .
replace d_coll=0 if educ==12
replace d_coll=1 if educ==16

d. Regress log wage on years of education reg lwage educ , vce(robust) and ex-
plain one potential source of omitted variable bias along with the direction of bias;
be precise and rigorous in your argument for the direction.

e. Run reg lwage d_coll , vce(robust) and re-phrase your above concern (about
OVB) in terms of why the average treatment effect is not identified (make sure to
define the potential outcomes first).

f. Run reg lwage educ IQ , vce(robust)

i. Explain the conditions under which IQ would be a perfect proxy for unobserved
“ability.”

1http://fmwww.bc.edu/ec-p/data/wooldridge/card.des

http://fmwww.bc.edu/ec-p/data/wooldridge/card.des
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ii. Briefly describe one type of “ability” that IQ does not capture. Given that
IQ is thus not a perfect proxy, explain why you think it’s better or worse (or
neither) to use IQ as a proxy for ability, compared to not using any proxy.

iii. Does the estimated slope change in the direction that suggests reduced OVB?
Explain briefly.

iv. Discuss the economic significance of the estimated slope on educ.
v. Explain what the confidence interval tells us about our uncertainty; be pre-

cise and explicit about whichever population value(s) you refer to, and about
sources of uncertainty, etc.

g. Run reg lwage educ IQ exper expersq black smsa south , vce(robust)
and then briefly compare with previous results, focusing on the returns to
education.

Exercise I.5. Go through the analysis in I.4 but with the nls80 dataset, noting that
now iq is lowercase.

Exercise I.6. Consider the causal effect of being an athlete on a college student’s grades
(GPA). Note the dataset lacks variable labels, but they can be found online.2

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse gpa2 , clear

c. Regress GPA on the athlete dummy: reg colgpa athlete , vce(robust)

i. Interpret the estimated coefficient on athlete in terms of a conditional mean
model.

ii. In terms of structural model Y = β0 + β1X + U (Y is GPA, X is the athlete
dummy, U is the combined effect of unobserved determinants of Y ), explain
one reason why β1 is not identified, and in which direction there is omitted
variable bias. (Feel free to “cheat” and do the next parts first to get an idea!)

iii. Repeat your argument about identification failure, but in terms of a potential
outcomes model and treatment effect.

d. Run reg colgpa athlete female , vce(robust) and explain why this seems to
help (slightly) the omitted variable bias; try tab athlete female too.

e. Run reg colgpa athlete female sat , vce(robust) and explain what sat
helps proxy for and why this helps reduce omitted variable bias.

f. Run reg colgpa athlete female sat verbmath hsperc hsize hsizesq
black white , vce(robust)

2http://fmwww.bc.edu/ec-p/data/wooldridge/gpa2.des

http://fmwww.bc.edu/ec-p/data/wooldridge/gpa2.des
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i. Discuss the economic significance of the estimated coefficient on athlete
and briefly compare with the original estimate from the simple regression

in part (c).
ii. Explain what the confidence interval tells us about our uncertainty; be pre-

cise and explicit about whichever population value(s) you refer to, and about
sources of uncertainty, etc.

Exercise I.7. Consider the causal effect of using a 401(k) retirement plan on net total
financial assets. Variable descriptions are included in the dataset’s variable labels.

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse 401ksubs , clear

c. Regress (net total financial) assets on the 401(k) participation dummy: reg nettfa
p401k , vce(robust)

i. Interpret the estimated coefficient on p401k in terms of a conditional mean
model.

ii. In terms of structural model Y = β0 + β1X + U (Y is assets, X is the 401(k)
dummy, U is the combined effect of unobserved determinants of Y ), explain
one reason why β1 is not identified, and in which direction there is omitted
variable bias. (Feel free to “cheat” and do the next parts first to get an idea!)

iii. Repeat your argument about identification failure, but in terms of a potential
outcomes model and treatment effect.

d. Run reg nettfa p401k inc , vce(robust) and explain why this seems to help
the omitted variable bias; try reg p401k inc too.

e. Run reg nettfa p401k inc marr male age fsize , vce(robust)

i. From the potential outcomes perspective: what is the name and interpretation
of the population object we hope to estimate by the coefficient on p401k?

ii. Discuss the economic significance of the estimated coefficient on p401k and
briefly compare with the original estimate from the simple regression in
part (c).

iii. Explain what the confidence interval tells us about our uncertainty; be pre-
cise and explicit about whichever population value(s) you refer to, and about
sources of uncertainty, etc.

Exercise I.8. Consider the relationship between an infant’s birthweight (which when
too low is associated with other negative health outcomes) and the mother’s cigarette
smoking. Note the dataset lacks variable labels, but they can be found online.3

a. As usual, make sure the command bcuse is installed: ssc install bcuse
3http://fmwww.bc.edu/ec-p/data/wooldridge/bwght.des

http://fmwww.bc.edu/ec-p/data/wooldridge/bwght.des
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b. Load the data: bcuse bwght , clear

c. Create a dummy to compare no smoking to any smoking: gen d_smk = (cigs>0)

d. Regress log birthweight on the amount of smoking reg lbwght cigs , vce(
robust) and explain one potential source of omitted variable bias along with the
direction of bias; be precise and rigorous in your argument for the direction. (Feel
free to “cheat” and look below to get ideas.)

e. Run reg lbwght d_smk , vce(robust) and re-phrase your above concern (about
OVB) in terms of why the average treatment effect is not identified (make sure to
define the potential outcomes first).

f. Run reg lbwght cigs motheduc , vce(robust)

i. Explain mathematically how OVB can be reduced by using motheduc as a
proxy for unobserved mother’s knowledge about prenatal health, even if it is
not a perfect proxy.

ii. Does the estimated slope change (when adding motheduc as a control variable)
in the direction that suggests reduced OVB? Explain briefly.

iii. Discuss the economic significance of the estimated slope on cigs.
iv. Explain what the confidence interval tells us about our uncertainty; be pre-

cise and explicit about whichever population value(s) you refer to, and about
sources of uncertainty, etc.

g. Provide a reason/argument why even conditional on motheduc, d_smk is not (mean)
independent of the potential outcomes.
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Part II

Instrumental Variables
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Introduction

Part II concerns the instrumental variables approach to learn about causal effects. Both
structural and treatment effect models are developed. The topics are similar to Chapter
5 and Section 21.4.3 of Wooldridge (2010).

Beyond being a potential solution to omitted variable bias, instrumental variables can
also address endogeneity due to simultaneity, meaning both X and Y are determined
at the same time through some “economic” process. The classic example is supply and
demand, which was the original motivation for instrumental variable regression, developed
in the early 1900s by Philip and Sewall Wright (father and son) to estimate supply and
demand curves for products like butter. The observe market prices and quantities are
equilibrium values, at the intersection of the supply and demand curves, so if both supply
and demand curves move around, we just see a cloud of different equilibrium points. (Try
drawing a lot of different supply and demand curves on the same graph, and then make
a dot at each crossing point.) Thus, if we simply regress quantity on price, we cannot
estimate the demand curve (or supply curve). However, if we could find a source of
variation that moves the supply curve a lot (but not the demand curve), then it could
help “trace out” the demand curve. (Try graphing a single demand curve and lots of
supply curves, and again draw a dot at each intersection; now connecting the dots [the
observed equilibria] recovers the demand curve.)
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Chapter 7

Local Average Treatment Effect

Unit learning objectives for this chapter

7.1. Describe the identification and estimation of the local average treatment effect, both
mathematically and intuitively. [TLOs 2 and 3]

7.2. Interpret IV results and judge validity of an instrument in real-world examples.
[TLO 4]

This section considers a binary treatment X and binary instrument Z. This setting
is simple, yet rich enough to develop concepts and intuition.

7.1 Wald Estimator and Estimand

The intuition for an instrumental variable (IV) is one that generates “as good as
random” variation in regressor of interest X, without affecting Y through other economic
channels. Thus, we can see how Y varies with Z, and see how X varies with Z, and
attribute the changes in Y to the causal effect of the changes in X. As in Chapters 4
and 5, we will focus on mean effects, which are also effects on the mean (due to the
linearity of expectation).

Beyond Our Scope

Analogous to the quantile treatment effect variation on the average treatment effect
idea, there is a local quantile treatment effect (LQTE) variation of LATE, to
help us learn about treatment effects across the full outcome distribution (not just
the mean). For example, see Section 7.2.2 (“Local Quantile Treatment Effect”) of
Kaplan (2021) and references therein.
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Putting the intuition into a formula, recalling that both X and Z are binary, the
so-called Wald estimator is

θ̂Wald =
Ê(Y | Z = 1)− Ê(Y | Z = 0)

Ê(X | Z = 1)− Ê(X | Z = 0)
. (7.1)

Because X is binary, the denominator is equivalent to P̂(X = 1 | Z = 1) − P̂(X = 1 |
Z = 0). The Wald estimator is equivalent to the IV regression estimator in this binary
setting.

The fundamental population estimand of (7.1) is

E(Y | Z = 1)− E(Y | Z = 0)

E(X | Z = 1)− E(X | Z = 0)
. (7.2)

Consistency follows by applying the appropriate weak law of large numbers and the con-
tinuous mapping theorem. Of course, the denominator cannot be zero; see Section 9.1. In
fact, there are problems even if the denominator is merely “close” to zero; see Section 9.2.

7.2 Types of Individuals

To connect (7.2) with treatment effects, we need both potential outcomes and “potential
treatments.” To fix ideas, imagine Z = 1 means an individual is assigned to be treated,
otherwise Z = 0. However, actual treatment can differ from the assignment: assigned
individuals may refuse the treatment, or unassigned individuals may still get treated.
Parallel to potential outcomes, the potential treatments are the values of X (actual treat-
ment) in the parallel universes where the individual is unassigned (Z = 0) or assigned
(Z = 1), respectively. Notationally, let

Xu ≡ treatment status when “unassigned” (Z = 0),
Xa ≡ treatment status when “assigned” (Z = 1).

(7.3)

The observed actual treatment is thus

X = (1− Z)Xu + ZXa. (7.4)

This implicitly defines four types of individuals based on the pair (Xu, Xa).

A Always-takers: (Xu, Xa) = (1, 1), always treated regardless of Z.

N Never-takers: (Xu, Xa) = (0, 0), never treated regardless of Z.

D Defiers: (Xu, Xa) = (1, 0), always “defy” the assignment Z and do the opposite
(X = 1− Z).

C Compliers: (Xu, Xa) = (0, 1), always “comply” with the assignment and do what it
says, getting treated if Z = 1 but not if Z = 0.
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Table 7.1: Potential treatments and outcomes example.

Type Probability Xu Xa Y u Y t

N 1/3 0 0 10 0
A 1/3 1 1 0 10
D 0 1 0 6 0
C 1/3 0 1 1 7

Table 7.1 shows an example of potential treatments for the four types, along with
mean potential outcomes within each type. We could replace Y u with E(Y u | type), and
replace Y t with E(Y t | type), but the intuition is the same. Note that defiers are assumed
not to exist in this population (zero probability); this turns out to be a critical identifying
assumption.

Discussion Question 7.1. Using Table 7.1, and assuming P(Z = 1 | type) = 0.5 for
each type, compute and interpret the following.

a) E(Y | Z = 0)
b) E(Y | Z = 1)
c) P(X = 1 | Z = 0)
d) P(X = 1 | Z = 1)

7.3 LATE Identification

The local average treatment effect (LATE) is

LATE ≡ E(Y t−Y u | Xa−Xu = 1) = E(Y t | Xa−Xu = 1)−E(Y u | Xa−Xu = 1), (7.5)

where Xa −Xu = 1 refers to (only) the compliers defined in Section 7.2. That is, LATE
is the ATE for the subpopulation of compliers.

There is a long-running debate about the merits of the LATE. It has clear limitations:
like ATE/ATT, it may not refer to the “marginal” population that would be affected by
a particular policy change, and moreover we do not even know who a “complier” is in
the real-world, and “complier” depends on the instrument (so even if two instruments
both satisfy the identifying assumptions, the corresponding IV estimators have different
LATE estimands). However, the identifying assumptions are weaker than those of certain
other causal parameters, and LATE provides clarity and transparency about what the IV
estimator is estimating. As with most econometric debates, it seems LATE has strengths
and weaknesses that complement other approaches to causal identification.

To identify the LATE, in addition to SUTVA and overlap (sort of), we now replace the
treatment independence assumption with instrument independence, as well as assuming
no defiers and assuming the treatment is related to the instrument so that the denominator
is non-zero.
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Assumption A7.1 (“overlap”). The population contains some compliers.

Assumption A7.2 (instrument independence). The instrument is independent of po-
tential outcomes and potential treatments: Z ⊥⊥ (Y u, Y t, Xu, Xa).

Assumption A7.3 (monotonicity / no defiers). There are no defiers, so the potential
treatments are monotonic in the instrument: Xa ≥ Xu. (If Xa ≥ Xu, then just redefine
the instrument as 1− Z.)

Assumption A7.4 (relevance). The instrument is relevant: E(X | Z = 1)−E(X | Z =
0) ̸= 0.

Discussion Question 7.2. Using your calculations from DQ 7.1, compute and interpret

E(Y | Z = 1)− E(Y | Z = 0)

E(X | Z = 1)− E(X | Z = 0)
.

Theorem 7.1 (LATE identification). Under Assumptions A4.1 and A7.1–A7.4, the
LATE is identified and equal to (7.2).

Proof. See Section 7.A if you are interested.

Discussion Question 7.3 (Vietnam draft). Consider a version of the famous Vietnam
War draft lottery, which Angrist (1990) used to estimate the causal effect of having served
in the military on earnings later in life as a civilian (outside the military). During the
war, every American male of a certain age is assigned a random number (based on date of
birth), and if the number is below a certain threshold, military service is required; if not,
military service is optional. In this case, Z = 1 if service is required, otherwise Z = 0;
and X = 1 if the individual actually serves in the military, otherwise X = 0. Let Y be
earnings 15 years after the potential military service.

a) Describe a “defier” (in the IV sense) in this example. Is somebody a “defier” if
their number was below the threshold and yet still refused military service? What
portion of the population would you guess are defiers, and why?

b) Describe a “complier” in this example, as well as never-taker and always-taker.
c) Describe the LATE in this example. How do you think it compares to the ATE for

never-takers? Why?
d) Hypothetically, if Vietnam military service had a negative effect on earnings (as

estimated in the paper), then being drafted (required service) should cause some
individuals to actually serve in the military and then have lower earnings; but then
how can the assumption of instrument independence (A7.2) hold? Explain.
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7.A Proof of LATE Identification

Proof of Theorem 7.1. Starting from the statistical object in (7.2), the identifying as-
sumptions are used to work toward a causal interpretation.

First, we can write the observed Y in terms of potential outcomes and potential
treatments. Rearranging (4.6),

Y = Y u +X(Y t − Y u), (7.6)

and similarly rearranging (7.4),

X = Xu + Z(Xa −Xu). (7.7)

Substituting (7.7) into (7.6),

Y = Y u+[Xu+Z(Xa−Xu)](Y t−Y u) = Y u+Xu(Y t−Y u)+Z(Xa−Xu)(Y t−Y u). (7.8)

For the terms in the numerator of (7.2), plugging in (7.8) and then using A7.2 along
with the linearity of E(·),

E(Y | Z = 1) = E[Y u +Xu(Y t − Y u) + Z(Xa −Xu)(Y t − Y u) | Z = 1]

= E(Y u | Z = 1) + E[Xu(Y t − Y u) | Z = 1]

+ E[Z(Xa −Xu)(Y t − Y u) | Z = 1]

= E(Y u) + E[Xu(Y t − Y u)] + E[(Xa −Xu)(Y t − Y u)],

E(Y | Z = 0) = E[Y u +Xu(Y t − Y u) + Z(Xa −Xu)(Y t − Y u) | Z = 0]

= E(Y u | Z = 0) + E[Xu(Y t − Y u) | Z = 0]

+ E[Z(Xa −Xu)(Y t − Y u) | Z = 0]

= E(Y u) + E[Xu(Y t − Y u)].

Subtracting,

E(Y | Z = 1)− E(Y | Z = 0) = E[(Xa −Xu)(Y t − Y u)].
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Now there are three possible values of Xa −Xu, so we can apply the law of total expec-
tation:

E[(Xa −Xu)(Y t − Y u)] = P(Xt −Xu = 1)E[(1)(Y t − Y u) | Xt −Xu = 1]

+

=0︷ ︸︸ ︷
P(Xt −Xu = 0)E[(0)(Y t − Y u) | Xt −Xu = 0]

+

=0 by A7.3︷ ︸︸ ︷
P(Xt −Xu = −1)E[(−1)(Y t − Y u) | Xt −Xu = −1]

=

=P(complier)︷ ︸︸ ︷
P(Xt −Xu = 1)

LATE︷ ︸︸ ︷
E(Y t − Y u | Xt −Xu = 1) .

For the denominator,

E(X | Z = 1)− E(X | Z = 0) = E(Xa | Z = 1)− E(Xu | Z = 0)

= E(Xa)− E(Xu)

= P(Xa = 1)− P(Xu = 1)

= P(A or C)− P(A or D)

= [P(A) + P(C)]− [P(A) +

=0 by A7.3︷ ︸︸ ︷
P(D) ]

= P(C) = P(Xa −Xu = 1).

Finally, taking the quotient,

E(Y | Z = 1)− E(Y | Z = 0)

E(X | Z = 1)− E(X | Z = 0)
=

P(Xa −Xu = 1)E(Y t − Y u | Xt −Xu = 1)

P(Xa −Xu = 1)

= E(Y t − Y u | Xt −Xu = 1),

which is the LATE.



Chapter 8

IV Regression

Unit learning objectives for this chapter

8.1. Define terms and concepts related to instrumental variables identification and esti-
mation from the structural perspective. [TLO 1]

8.2. Describe IV regression estimators, including their estimands and assumptions, from
the structural perspective, both mathematically and intuitively. [TLOs 2 and 3]

8.3. Judge whether an instrument is valid in real-world examples. [TLO 4]

Optional resources for this chapter

• Reverse causality and simultaneity (Masten video)

This chapter consider the instrumental variables approach from a structural regression
perspective. The instrumental variables approach has the potential to address all sorts
of endogeneity, whether from omitted variable bias, measurement error, or simultaneity.
To briefly formalize the supply and demand example from the introduction to Part II,
consider the demand equation log(Q) = α0−α1 log(P )+Ud that shows how (log) quantity
demanded is determined by (log) price, where Ud is the demand shock and both α0 > 0
and α1 > 0. OLS consistency would require Cov(log(P ), Ud) = 0, meaning the demand
shock is uncorrelated with (log) price; but we know higher demand tends to increase
price, so this seems unrealistic. To see this more concretely, imagine the supply curve
shows how quantity supplied is determined by price, with supply shock Us: log(Q) =
β log(P ) + Us with β > 0. Setting equal the quantity demanded and quantity supplied,
α0−α1 log(P )+Ud = β log(P )+Us, so log(P ) = (α0+Ud−Us)/(α1+ β): the price and
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demand shock are positively related.1

Discussion Question 8.1 (crime and police and crime). Let Y be a city’s crime rate
(per capita) in a given year, and X its number of police officers per capita.

a) Do you think cities consider Y when choosing X? Do you think larger Y would
cause a city to choose larger or smaller X?

b) In which direction would this bias our estimator of the causal effect of X on Y if
we simply regress Y on X and look at the estimated slope coefficient? (Drawing a
scatterplot of (X,Y ) may help.)

8.1 Simple IV Regression

Consider a simple setting with structural model

Y = β0 + β1X + U (8.1)

and scalar instrument Z. Sometimes Z is called an excluded instrument because it
does not appear in the structural model (nor is it related to the structural error, as
formalized below). Imagine X is endogenous, here meaning correlated with U . OLS is
consistent for the linear projection slope coefficient Cov(Y,X)/Var(X), but

Cov(Y,X)

Var(X)
=

Cov(β0 + β1X + U,X)

Var(X)
=

β1Var(X) + Cov(U,X)

Var(X)
= β1 +

Cov(U,X)

Var(X)
.

(8.2)
If X is exogenous in the sense of Cov(U,X) = 0, then the structural slope β1 is identified
and equals the LP slope, but if Cov(U,X) ̸= 0 then there is asymptotic bias.

Generally, the fixed (non-random) structural coefficient β1 in (8.1) does not easily
generalize to an interpretation as the mean of a random coefficient. This is a limitation.
In contrast, the LATE framework allows arbitrary individual-level treatment effects (the
equivalent of random β1). However, there are ways to extend IV regression to allow
random coefficients, although they are beyond our scope.

Beyond Our Scope

One way to use the IV approach in a random coefficients model is to model the
coefficients as non-random functions of a random scalar “rank variable.” The seminal
work of Chernozhukov and Hansen (2005) provides identification results for an IV
quantile regression model that allows the slope coefficient to vary with the individual’s
rank variable value. For example, see Section 7.1 of Kaplan (2021) and references
therein, or try the sivqr Stata command introduced by Kaplan (2022b), based on
Kaplan and Sun (2017).

1https://web.archive.org/web/20230316203221/https://www.ssc.wisc.edu/~ctaber/410/iv.
pdf

https://web.archive.org/web/20230316203221/https://www.ssc.wisc.edu/~ctaber/410/iv.pdf
https://web.archive.org/web/20230316203221/https://www.ssc.wisc.edu/~ctaber/410/iv.pdf
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The following subsections establish identification of β1 using different approaches.
Some approaches help develop intuition, and others generalize better to more complex
models.

The two critical IV regression assumptions are qualitatively similar to the indepen-
dence and relevance conditions from Assumptions A7.2 and A7.4.

Assumption A8.1 (exogeneity). The instrument Z is exogenous in the sense of uncor-
related with the structural error U from (8.1): Cov(Z,U) = 0.

Assumption A8.2 (relevance). The instrument Z is relevant in the sense of correlated
with the regressor X: Cov(Z,X) ̸= 0. This is equivalent to the slope of LP(X | 1, Z)
being non-zero because the slope is Cov(Z,X)/Var(X).

8.1.1 Ratio of Covariances

One way to think of the IV strategy is to separate the “endogenous part” of X from the
“exogenous part”: the instrument Z should vary with X but not U . The intuition is the
same as in Section 7.1: see how Y varies with Z, then see how X varies with Z, and infer
how much variation in Y is caused by X by dividing. This is formalized in Theorem 8.1.

Theorem 8.1 (simple IV identification). Given structural model (8.1), under Assump-
tions A8.1 and A8.2, the structural slope β1 is identified and equals Cov(Z, Y )/Cov(Z,X).

Proof. Starting from the statistical object, whose denominator is non-zero due to As-
sumption A8.2, and plugging in for Y from (8.1) and using the linearity of Cov(·),

Cov(Z, Y )

Cov(Z,X)
=

Cov(Z, β0 + β1X + U)

Cov(Z,X)
=

β1Cov(Z,X) + Cov(Z,U)

Cov(Z,X)
= β1 +

Cov(Z,U)

Cov(Z,X)
,

(8.3)
and the numerator of the second term is zero by Assumption A8.1.

Discussion Question 8.2 (IVs for education). This example is similar to Example 5.1
of Wooldridge (2010). Let Y be log wage and X years of education, with structural model
Y = β0 + β1X + U . For each of the following, discuss why you think it does or does not
satisfy each of Assumptions A8.1 and A8.2.

a) Z: years of education of the individual’s mother
b) Z: last digit of the individual’s Social Security number
c) Z: quarter of birth (Z = 1 if January through March, Z = 2 if April through June,

Z = 3 if July through Sept., else Z = 4); note that many U.S. states require you to
attend school until a certain age (say 16), but the corresponding grade level depends
on which month you were born in
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8.1.2 Ratio of LP Slopes

To develop intuition, consider another derivation of the same IV estimator. Let

LP(X | 1, Z) = δ0 + θZ, R ≡ X − LP(X | 1, Z), (8.4)

and plug the LP in error form into the structural model (8.1):

Y = β0 + β1X + U

= β0 + β1(δ0 + θZ +R) + U

= (β0 + β1δ0) + β1θZ + (β1R+ U). (8.5)

The term β1θ is the slope of LP(Y | 1, Z) because β1R+U is uncorrelated with Z: using
linearity,

Cov(Z, β1R+ U) = β1

=0 by (8.4)︷ ︸︸ ︷
Cov(Z,R)+

=0 by A8.1︷ ︸︸ ︷
Cov(Z,U) = 0. (8.6)

Thus, the structural slope β1 is the ratio of the slope in LP(Y | 1, Z) and the slope in
LP(X | 1, Z): β1θ/θ = β1.

The LP slopes are sometimes called reduced form parameters, meaning they are
just “statistical” parameters (that can usually be estimated consistently, here by OLS).
The ratio-of-slopes estimator is sometimes called the Wald estimator. Note that with
binary X and Z, the ratio of LP slopes equals the expression in (7.1).

Corollary 8.2 (simple IV identification: LP slope ratio). Given structural model (8.1),
under Assumptions A8.1 and A8.2, the structural slope β1 is identified and equals the
ratio of the slope in LP(Y | 1, Z) = ρ0 + Zρ1 and the slope in LP(X | 1, Z) = δ0 + Zθ:
β1 = ρ1/θ.

Proof. The LP slopes can be written in terms of covariances and variances like usual:
ρ1 = Cov(Z, Y )/Var(Z) and θ = Cov(Z,X)/Var(Z). The ratio is thus

Cov(Z, Y )/Var(Z)

Cov(Z,X)/Var(Z)
= Cov(Z, Y )/Cov(Z,X),

which is the expression proved to equal β1 (under these assumption) in Theorem 8.1.

Discussion Question 8.3. Consider how the ratio-of-LP-slopes population object with
binary Z and binary X compares to the population object from (7.2),

E(Y | Z = 1)− E(Y | Z = 0)

E(X | Z = 1)− E(X | Z = 0)
.

Let p ≡ P(Z = 1).
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a) First, show that the numerator E(Y | Z = 1) − E(Y | Z = 0) equals the slope
of LP(Y | 1, Z), which is Cov(Y,Z)/Var(Z). (Hints: use the fact that Var(Z) =
p(1 − p) and Cov(Y, Z) = E(ZY ) − E(Z) E(Y ), as well as E(Z) = p; and write
E(Y ) = pE(Y | Z = 1) + (1− p) E(Y | Z = 0) and E(ZY ) = pE(Y | Z = 1).)

b) Second, similarly, show the denominator E(X | Z = 1) − E(X | Z = 0) equals the
slope of LP(X | 1, Z).

8.1.3 Isolating Exogenous Part of Regressor

Another approach explicitly finds the “exogenous part” of X by projecting it onto the
exogenous instrument Z. More specifically, let

X∗ ≡ LP(X | 1, Z) = δ0 + θZ, (8.7)

using notation from (8.4). If we run OLS with X∗ instead of X, then we can estimate
the slope of

LP(Y | 1, X∗) = γ0 + γ1X
∗.

With V ≡ Y − LP(Y | 1, X∗),

Y = γ0 + γ1X
∗ + V = γ0 + γ1(δ0 + θZ) + V = (γ0 + γ1δ0) + (γ1θ)Z + V. (8.8)

By the LP error property,

0 = Cov(V,X∗) = Cov(V, δ0 + θZ) = θCov(V,Z), (8.9)

and by Assumption A8.2 (relevance), θ ̸= 0, so it must be that Cov(V,Z) = 0. That
is, the RHS of (8.8) is also a linear projection in error form, specifically LP(Y | 1, Z).
Finally, recall from (8.5) that the slope of LP(Y | 1, Z) is β1θ, which must equal the slope
on the RHS of (8.8). Thus, β1θ = γ1θ, which along with A8.2 implies γ1 = β1. That is,
the structural parameter β1 is identified and equal to the slope of LP(Y | 1, X∗), where
X∗ was constructed to be the “exogenous part” of X.

The estimator corresponding to this identification strategy would be first to run OLS
to estimate LP(X | 1, Z), and second to run OLS to estimate LP(Y | 1, X̂), where
X̂ = δ̂0 + θ̂Z. This is the origin of the name two-stage least squares (2SLS), also
sometimes abbreviated TSLS. However, this is not how any modern statistical software
computes the IV regression estimator, nor does it provide intuition that generalizes well
to other settings (like IV quantile regression).

8.1.4 Method of Moments

The most general perspective of IV regression is in terms of moment conditions. Let
Z = (1, Z)′ be the full instrument vector. In this simple model, Z is the only excluded
instrument (because it does not appear in the structural model), and 1 is the only
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included instrument (because it does appear in the structural model, implicitly in the
intercept term; i.e., it’s an exogenous regressor). The exogeneity assumption is that

E(ZU) = 0, (8.10)

which means E(U) = 0 (first element) and E(ZU) = 0 (second element), the latter of
which is equivalent to Cov(Z,U) = 0 given that E(U) = 0. As usual, if E(U) ̸= 0, then
the intercept will be biased by E(U), but the slope coefficients are unaffected.

From (8.10), we can plug in for the structural error U from the structural model (8.1),
and then solve for the corresponding population coefficient vector β ≡ (β0, β1)

′. Also
defining X ≡ (1, X)′,

0 = E[Z(Y −X ′β)] = E(ZY )− E(ZX ′)β (8.11)

using the linearity of expectation. The β can be isolated by moving that term to the
other side and pre-multiplying by the inverse of the matrix E(ZX ′), yielding

β = [E(ZX ′)]−1 E(ZY ). (8.12)

This formula generalizes the covariance ratio from Theorem 8.1. It provides “identifica-
tion” in that the LHS is a structural parameter (causal interpretation), whereas the RHS
is a feature of the joint distribution of observable variables (Y,X,Z).

The first equality in (8.11) is an example of a moment condition. That is, the ex-
pected value of some function of observable variables (here Y , X, and Z) and parameters
(here β) equals zero. This restricts the possible values of the parameter that are consistent
with the population. With enough restrictions, the parameter is uniquely determined, i.e.,
identified. If there are not enough restrictions to determine the parameter’s value, then
the parameter is underidentified (or “unidentified” or just “not identified”). If there
are even more restrictions than we need, the parameter is overidentified. If there are
just enough restrictions for identification, then the parameter is called just-identified
or exactly identified.

Beyond Our Scope

In some cases, there are enough restrictions to narrow down the parameter to a
set of possible values, but not a single value, in which case the parameter is called
partially identified or set identified. For example, see Part VI of Kaplan (2021)
and references therein.

The RHS of (8.12) requires that the matrix inverse indeed exists. This is the required
instrument relevance condition. It is also called a rank condition because a matrix is
invertible if and only if it is full rank.
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Discussion Question 8.4 (simple IV rank condittion). In the simple IV regression
above with X ≡ (1, X)′ and Z ≡ (1, Z)′, what is the relationship between the relevance
condition Cov(Z,X) ̸= 0 from Assumption A8.2 and the rank condition that E(ZX ′)
is invertible (full rank) from Assumption A8.4. Recall that a matrix is invertible iff the
determinant is non-zero, and that a 2 × 2 matrix’s determinant is the product of the
top-left and bottom-right elements minus the product of the top-right and bottom-left
elements.

a) Write out Cov(Z,X) in terms of moments of Z and X.
b) Write out each of the four elements of E(ZX ′).
c) Write out the determinant of E(ZX ′) in terms of moments of Z and X.
d) How does the determinant relate to Cov(Z,X)?

The following assumptions are equivalent to A8.1 and A8.2 in this simple model, but
they generalize more readily.

Assumption A8.3 (exogeneity). Given structural error term U from (8.1), the instru-
ment vector Z = (1, Z)′ satisfies E(ZU) = 0.

Assumption A8.4 (rank condition). The matrix E(ZX ′) is invertible (or equivalently,
full rank).

Theorem 8.3 (simple IV identification by moments). Given structural model (8.1) under
Assumptions A8.3 and A8.4 (and assuming the moments E(ZY ) and E(ZX ′) exist and
are finite), the structural parameter vector β is identified and equals [E(ZX ′)]−1 E(ZY ).

Proof. Repeating the arguments in the text above: combining (8.1) with A8.3 yields
0 = E[Z(Y −X ′β)], and solving for β yields the formula given, which is well-defined
given the finite moments and invertibility of A8.4.

The formula in Theorem 8.3 suggests the sample analog estimator

β̂ = [Ê(ZX ′)]−1 Ê(ZY ). (8.13)

Indeed, assuming the sampling type is such that a weak law of large number holds (and
again assuming the population moments are well-defined and finite), the sample means
converge to population means, and they can be combined by the continuous mapping
theorem.

Asymptotic normality can also be established with an argument very similar to that
for OLS. Plugging in for Y in (8.13),

β̂ = [Ê(ZX ′)]−1 Ê[Z(X ′β + U)] = β + [Ê(ZX ′)]−1 Ê(ZU). (8.14)

Centering and scaling like usual, and writing the last term in summation notation,

√
n(β̂ − β) = [Ê(ZX ′)]−1√n

1

n

n∑
i=1

ZiUi. (8.15)
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We get [Ê(ZX ′)]−1 p→ [E(ZX ′)]−1 by a WLLN, and then the other term is asymptotically
mean-zero normal by a central limit theorem, because E(ZiUi) = 0 by A8.3. Again, the
specific WLLN/CLT depends on the type of sampling; iid sampling is sufficient, but not
necessary.

8.2 IV with One Instrument

The first generalization of Section 8.1 is to allow exogenous regressors. Here are a few
equations, with details saved for Section 8.3.

The structural model is now
Y =X ′β + U, (8.16)

where X ′ = (X1, X2, . . . , Xk) with X1 = 1 (intercept term) and

E(XjU) = 0, j = 1, . . . , k − 1. (8.17)

As usual, if E(U) ̸= 0, then only the intercept term is affected; because the intercept
usually does not have much economic importance, we do not worry about this.

Discussion Question 8.5 (non-zero error mean). With X ′ = (X2, . . . , Xk), consider
the model Y = γ0 +X

′β + Ũ with Cov(Xj , Ũ) = 0 for j = 2, . . . , k − 1 but E(Ũ) ̸= 0.
The below steps show how this can be written in the form of (8.16) and (8.17), with the
same slope coefficients (but different intercept).

a) Show how you can add and subtract E(Ũ) on the RHS to get intercept β0 ≡ γ0 +
E(Ũ) and error term U = Ũ − E(Ũ).

b) Compute the unconditional mean E(U).
c) If Cov(Xj , Ũ) = 0, then compute E(XjU).

The full instrument vector is Z = (X1, . . . , Xk−1, Z)′, including all the exogenous
regressors (including the constant X1 = 1) and the excluded instrument Z.

The excluded instrument Z is assumed to be relevant in the sense that it has a non-
zero coefficient in LP(Xk | X1, . . . , Xk−1, Z). Although not obvious, this is equivalent to
E(ZX ′) being invertible (full rank).

The excluded instrument Z must also be exogenous in the sense of Cov(Z,U) = 0,
which again is equivalent to E(ZU) = 0 given E(U) = 0.

The population coefficient vector can be solved for from the moment condition gen-
erated by the exogeneity assumptions. The corresponding moment condition is 0 =
E(ZU) = E[Z(Y −X ′β)]. Using the linearity of expectation and algebra,

β = [E(ZX ′)]−1 E(ZY ), (8.18)

which is identical to the formula in Theorem 8.3.
Alternatively, extending the 2SLS perspective of Section 8.1.3, let

X∗
k ≡ LP(Xk | X1, . . . , Xk−1, Z) = (X1, . . . , Xk−1)δ + Zθ, R ≡ Xk −X∗

k . (8.19)



8.3. IV WITH MULTIPLE INSTRUMENTS 117

Again, relevance requires θ ̸= 0. The coefficient on X∗
k in LP(Y | X1, . . . , Xk−1, X

∗
k) is

the structural coefficient βk.

8.3 IV with Multiple Instruments

Generalizing further, consider the same structural model where only Xk is endogenous,
but now there are multiple excluded instruments, (Z1, . . . , Zm).

Discussion Question 8.6 (overidentification). Consider the case just described, with k
regressors, only Xk endogenous (the first k − 1 regressors are uncorrelated with U), and
multiple excluded instruments (Z1, . . . , Zm) that are assumed exogenous (uncorrelated
with U).

a) What are the dimensions of the column vector of regressors X and the full instru-
ment vector Z that contains all exogenous variables (both exogenous regressors and
excluded instruments)?

b) What are the dimensions of matrix E(ZX ′)? Can it be invertible? Can we use
(8.18)?

c) If we only use a single excluded instrument Z = Z1, then can we use (8.18)?
d) Does the excluded IV Z = (Z1 + · · · + Zm)/m satisfy the exogeneity property

Cov(Z,U) = 0 if each Zj individually satisfies exogeneity?
e) Thinking about relevance (qualitatively): do you think Z1 or (Z1 + · · · + Zm)/m

would be better?

8.3.1 Some Intuition

It is not obvious how to proceed. The formula in Theorem 8.3 no longer works because
E(ZX ′) is not even a square matrix, so it cannot be invertible.

If we really felt stuck, then we could just ignore (Z2, . . . , Zm) and only use Z1. How-
ever, if we really believe we have multiple valid IVs, then this feels like we are throwing
away information (because we are), which intuitively should make our estimator less “ef-
ficient” (i.e., higher variance of sampling distribution / higher standard errors / more
uncertainty). We could also use something like (Z1 + · · · + Zm)/m as our single instru-
ment. This feels better, but also feels like an arbitrary way to combine our IVs. However,
both Z1 and (Z1 + · · · + Zm)/m are valid instruments (assuming each Zj is valid), in
which case both should yield a consistent IV estimator. If we only cared about con-
sistency, then we would not care which we used. (This is not fully true: recalling the
LATE interpretation, we may worry that different instruments identify different causal
estimands; but we will wait to worry about that more formally in Chapter 9.) But, we
also want the most precise (lowest standard error / uncertainty) estimator possible. The
question is how to combine the m instruments optimally to minimize the (asymptotic)
variance. This question is not fully addressed until Chapter 10.
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Extending (8.7) and (8.19), consider the LP

X∗
k ≡ LP(Xk | X1, . . . , Xk−1, Z1, . . . , Zm) = (X1, . . . , Xk−1)δ + (Z1, . . . , Zm)θ. (8.20)

Again, this X∗
k is a linear combination of exogenous variables (or “instruments”), including

both exogenous regressors (“included instruments”) and excluded instruments. Thus, X∗
k

itself is exogenous (again here meaning uncorrelated with U). That is, the scalar X∗
k is a

valid instrument for the endogenous scalar regressor Xk, so we have reduced the problem
to IV regression with a single instrument, and we can use previous results. For example,
letting Z̃ ≡ (X1, . . . , Xk−1, X

∗
k)

′,

β = [E(Z̃X ′)]−1 E(Z̃Y ), (8.21)

and the sample analog provides a consistent estimator (which can be proved by more
formal arguments).

Although fundamentally the idea is to use X∗
k as an IV (which generalizes to other

contexts like IV quantile regression), in this case there is an equivalence with using X∗
k

as a regressor in a second-stage linear projection. Because each Xj for j = 1, . . . , Xk−1 is
the projection of itself onto Z, we can write

Z̃ ′ = Z ′[E(ZZ ′)]−1 E(ZX ′), Z̃ = E(XZ ′)[E(ZZ ′)]−1Z, (8.22)

so

E{Z̃X ′} = E{

Z̃︷ ︸︸ ︷
E(XZ ′)[E(ZZ ′)]−1ZX ′}

= E(XZ ′)[E(ZZ ′)]−1 E(ZX ′)

= E(XZ ′)[E(ZZ ′)]−1

identity matrix︷ ︸︸ ︷
E(ZZ ′)[E(ZZ ′)]−1 E(ZX ′)

= E{

Z̃︷ ︸︸ ︷
E(XZ ′)[E(ZZ ′)]−1Z

Z̃′︷ ︸︸ ︷
Z ′[E(ZZ ′)]−1 E(ZX ′)}

= E{Z̃Z̃ ′}.

Thus, plugging into (8.21),

β = [E(Z̃X ′)]−1 E(Z̃Y ) = [E(Z̃Z̃ ′)]−1 E(Z̃Y ),

which is the familiar formula for the LPC of LP(Y | Z̃), which is what OLS regression of
Y on Z̃ estimates. This is the origin of the name two-stage least squares, where the
first stage is the linear projection of Xk onto (X1, . . . , Xk−1, Z1, . . . , Zm), and the second
stage is the linear projection of Y onto Z̃, although again this is sort of a coincidence
rather than a fundamental concept, so it does not generalize to other contexts like IV
quantile regression.



8.3. IV WITH MULTIPLE INSTRUMENTS 119

8.3.2 Identification

The following formalizes the above results.

Assumption A8.5 (exogeneity). The regressors (X1, . . . , Xk−1) (with X1 = 1 to include
an intercept) and the excluded instruments (Z1, . . . , Zm) are exogenous in the sense that
E(ZU) = 0, where Z ≡ (X1, . . . , Xk−1, Z1, . . . , Zm)′ and U is the structural error term
from structural model Y =X ′β + U in (8.16).

Assumption A8.6 (rank condition). The matrix E(ZX ′) has full column rank; or equiv-
alently, at least one component of θ is non-zero in the LP in (8.20).

Theorem 8.4 (IV identification). Given structural model (8.16), under Assumptions A8.5
and A8.6 and assuming all elements of E(ZX ′) and E(ZY ) are well-defined and fi-
nite, the structural parameter vector β is identified and equals [E(Z̃X ′)]−1 E(Z̃Y ) where
Z̃ ≡ E(XZ ′)[E(ZZ ′)]−1Z.

Proof. See Section 8.3.1. To summarize: first,

E(Z̃U) = E{E(XZ ′)[E(ZZ ′)]−1ZU} = E(XZ ′)[E(ZZ ′)]−1

=0 by A8.5︷ ︸︸ ︷
E{ZU} = 0.

Thus, plugging in U = Y −X ′β from (8.16),

0 = E[Z̃(Y −X ′β)] = E(Z̃Y )− E(Z̃X ′)β.

Rearranging and solving for β,

β = [E(Z̃X ′)]−1 E(Z̃Y ).

Assumption A8.6 ensures that the matrix inverse indeed exists.

Discussion Question 8.7 (conditional moment restriction). Imagine we find an ex-
cluded instrument Z that is exogenous in the sense that E(U | Z) = 0. Discuss whether
or not each of the following possible excluded instruments is exogenous.

a) Z
b) Z2

c) Z3

d) sin(Z)

8.3.3 Estimation, Inference, and Efficiency

Most of the following details are not important in practice, except to notice that the
asymptotic variance has a “sandwich form” that “collapses” to its smallest possible value
given homoskedasticity in the sense of Var(U | Z) = Var(U). This suggests 2SLS is
“efficient” under homoskedasticity, but there are two important caveats. First, economic
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data usually has heteroskedasticity, which begs the question of a more generally efficient
estimator (which we’ll return to in the context of GMM). Second, we are only considering
estimators based on these particular instruments and these moment conditions; it may be
possible to improve efficiency further by more optimally selecting instruments/moments
(beyond our scope).

Although not particularly important for proper use in practice, the 2SLS estimator
can be written as follows. LetX be the n×k regressor matrix, withX ′

i as row i. Similarly,
let Z be the n×m+ k− 1 matrix of all instruments (exogenous regressors and excluded
instruments), with Z ′

i as row i. Let PZ be the projection matrix Z(Z ′Z)−1Z ′, so the
n× k matrix Z̃ is

Z̃ = PZX. (8.23)

The sample analog of the population β formula in Theorem 8.4 is then

β̂ = [Ê(Z̃X ′)]−1 Ê(Z̃Y )

= {(X ′Z/n)(Z ′Z/n)−1(Z ′X/n)}−1(X ′Z/n)(Z ′Z/n)−1(Z ′Y /n), (8.24)

where Y ≡ (Y1, . . . , Yn)
′. Note all the 1/n cancel out and could be omitted to save space

(as often done).
Assuming the type of sampling admits some WLLN and CLT, the consistency and

asymptotic normality of the IV regression estimator in (8.24) follow readily. All the
sample averages in the formula converge in probability to their corresponding population
means, and assuming all the matrix inverses exist, then the CMT says their limits combine
into the population β. Asymptotic normality follows the same structure of argument as
OLS. That is, we can first plug in Y =Xβ+U , where U ≡ (U1, . . . , Un)

′; centering and
scaling gives the form

√
n(β̂ − β) = {(X ′Z/n)(Z ′Z/n)−1(Z ′X/n)}−1(X ′Z/n)(Z ′Z/n)−1√n(Z ′U/n),

(8.25)
the last term of which is, in summation notation,

1√
n

n∑
i=1

ZiUi, (8.26)

to which we can apply a CLT, noting E(ZiUi) = 0. Again applying a WLLN to the other
terms and combining with the CMT yields the final asymptotic normal distribution. That
is, defining Σ ≡ E[U2ZZ ′], QXZ ≡ E(XZ ′), and QZZ ≡ E(ZZ ′),

√
n(β̂ − β) d→ {QXZQ

−1
ZZQ

′
XZ}−1QXZQ

−1
ZZN(0,Σ), (8.27)

which follows a normal distribution with mean zero and covariance matrix

Ω ≡ {QXZQ
−1
ZZQ

′
XZ}−1QXZQ

−1
ZZΣQ

−1
ZZQ

′
XZ{QXZQ

−1
ZZQ

′
XZ}−1. (8.28)
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Confidence intervals (and confidence sets and hypothesis tests) can be constructed
based on this asymptotic normal distribution, just as you have seen done for LP coeffi-
cients estimated by OLS.

The covariance matrix Ω in (8.28) has a sandwich form, with the general structure
A−1BA−1. This structure usually implies the estimator is not the most efficient possible,
at least in theory. However, if the structural error U is homoskedastic in the sense of
Var(U | Z) = Var(U) ≡ σ2

U , then using iterated expectations

Σ = E[U2ZZ ′] = E[E(U2ZZ ′ | Z)] = E[

=Var(U |Z)=σ2
U︷ ︸︸ ︷

E(U2 | Z) ZZ ′] = σ2
U

QZZ︷ ︸︸ ︷
E(ZZ ′) . (8.29)

Because σ2
U is a scalar, it can move freely throughout Ω, so

Ω = {QXZQ
−1
ZZQ

′
XZ}−1QXZQ

−1
ZZ

Σ︷ ︸︸ ︷
σ2
U QZZQ

−1
ZZ︸ ︷︷ ︸

identity matrix

Q′
XZ{QXZQ

−1
ZZQ

′
XZ}−1

= σ2
U{QXZQ

−1
ZZQ

′
XZ}−1QXZQ

−1
ZZQ

′
XZ{QXZQ

−1
ZZQ

′
XZ}−1︸ ︷︷ ︸

identity matrix

(8.30)

= σ2
U{QXZQ

−1
ZZQ

′
XZ}−1. (8.31)

That is, under homoskedasticity, the sandwich covariance “collapses,” which usually in-
dicates efficiency (within a certain class of estimators). Efficiency is discussed more in
Chapter 10.

8.4 General IV Regression

The most general case of linear IV regression allows both multiple instruments and mul-
tiple endogenous regressors. Perhaps surprisingly, this does not change much from Sec-
tion 8.3, at least in terms of identification and estimation. That is, as long as we have
enough valid excluded instruments to satisfy Assumptions A8.5 and A8.6, then the iden-
tification result holds with the same formula, and we can again use the sample analog as
a consistent, asymptotically normal estimator.

As a sanity check, a necessary (but not sufficient) condition for identification is that
there are at least as many excluded instruments as endogenous regressors. The intuition
for the excluded instruments remains the same as in the simpler settings: they must be
unrelated to the structural error term (other determinants of Y besides X), and they
must be related to the endogenous regressors that they instrument for. For example, if
both X2 and X3 are endogenous, then we hope to have Z1 related to X2 and Z2 related
to X3 (or in principle both IVs could relate to both regressors, but in practice usually
each IV instruments for one particular regressor, at least conceptually).

The biggest difference in this case of multiple endogenous regressors is discuss in
Chapter 9.
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Chapter 9

IV Diagnostics

Unit learning objectives for this chapter

9.1. Define terms and concepts related to assessment of IV model validity. [TLO 1]

9.2. Describe tests for weak instruments and for model misspecification, both mathe-
matically and intuitively. [TLOs 2 and 3]

9.3. Use diagnostic tests to help judge whether an IV model is valid in real-world exam-
ples. [TLO 4]

This chapter discusses common diagnostics of IV identification. Related measures are
reported by the user-contributed ivreg2 Stata command (Baum, Schaffer, and Stillman,
2002), with the help of ranktest (Kleibergen, Schaffer, and Windmeijer, 2007), both
available through SSC.

9.1 Underidentification

Discussion Question 9.1 (underidentification). Consider the simple linear IV regression
with structural model Y = β0 + β1X + U and excluded IV Z. For simplicity, partial out
the intercept to get Ỹ = β1X̃ + Ũ , where Ỹ = Y − E(Y ) is the demeaned outcome,
X̃ = X−E(X) is the demeaned regressor, and Ũ = U −E(U) is the demeaned structural
error term, which equals the original U if indeed E(U) = 0. Let Z ⊥⊥ (X̃, Ũ).

a) Is Z exogenous? Explain.
b) Is Z relevant? Explain.
c) Does the true value β1 satisfy the moment condition E[Z(Ỹ − X̃β1)] = 0? Explain.
d) Consider pre-multiplying the partialled-out model by Z and then taking the expec-

tation: E(ZỸ ) = E[Z(β1X̃ + Ũ)]. How can the RHS be simplified, and why does it
not help us learn about β1? For example, can you find multiple possible values of
β1 that would each solve this equation?

123
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Recall the simple IV regression model of Section 8.1 and its relevance condition (rank
condition). In the linear projection of endogenous X onto (1, Z), the coefficient on Z was
required to be non-zero. That is, with LP(X | 1, Z) = δ0 + Zθ, the relevance condition
holds if and only if θ ̸= 0. If θ = 0, then we have a problem of underidentification:
we do not have enough “information” from the IV to help us learn about the coefficient
on X. Put differently, there are an infinite number of possible values of the structural
slope β1 that could be consistent with the population distribution of observable vari-
ables. From yet another perspective: the denominator in Cov(Z, Y )/Cov(Z,X) is zero,
thus the expression is undefined; recall this came from Cov(Z, Y ) = Cov(Z,X)β1, so if
Cov(Z,X) = 0, the RHS evaluates to zero regardless of β1, so β1 can be any value.

We know how to test the null hypothesis that a linear projection slope is zero, i.e.,
H0 : θ = 0 in the “first stage.” Thus, we can interpret this as a test of underidentification,
where “underidentification” (specifically the violation of relevance) is the null hypothesis,
so the alternative hypothesis is that relevance is satisfied. (The alternative is not that β1
is identified, because it is possible that relevance holds but exogeneity does not, in which
case identification fails for a different reason.)

Because the null hypothesis (relevance failure) is bad news, we are hoping to have a
very small p-value and reject the null. That is, a small p-value suggests the data are not
consistent with θ = 0. Rejection requires relatively strong empirical evidence because
the (frequentist) hypothesis test must control its type I error rate, the probability
of incorrectly rejecting when H0 is actually true. Conversely, if there is just a lot of
uncertainty in the data, then the test will default to non-rejection to avoid making too
many type I errors. Recall that if the null is true and the test incorrectly fails to reject,
then it is a type II error; and power is 100% minus the type II error rate. Because
frequentist tests usually make no claim about type II error rate (power), there may be
cases where the type II error rate is very high (i.e., low power). For example, if there is
a small sample size n, then we have lots of uncertainty, so tests are prone to have type
II errors. Even with large n, if H0 is false but “close” to true, then there can be a high
type II error rate. So, in practice, if the underidentification test rejects, then we have
fairly strong evidence that the IV is relevant, but if it fails to reject, then we should not
necessarily conclude that relevance fails. But, as seen in Section 9.2, have θ “close” to
zero is also problematic.

In the more general IV regression model with a single endogenous regressor but other
exogenous regressors and possibly multiple excluded instruments, the relevance or rank
condition requires at least one non-zero element of the vector θ of coefficients on the
excluded vectors in the “first stage” LP in (8.20). That is, failure of the rank condition is
equivalent to θ = 0. Again, we know how to test such a null hypothesis for LP coefficients
estimated by OLS, using a Wald test.

In the most general case with multiple endogenous regressors, there is not such a
familiar equivalence of the rank condition on E(ZX ′) and LP coefficients. However,
there are other tests that can test for full rank of a matrix. For these tests, too, the null
hypothesis is the failure of the rank condition, so we hope to get a low p-value and reject
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the null. The Kleibergen and Paap (2006) test (KP test) has the null hypothesis that the
rank is equal to k − 1, with alternative hypothesis that the rank is k (full column rank).
In some cases, the test can perform less well if the true rank is actually k− 2 (or less), as
pointed out by Chen and Fang (2019), who propose a rank test that does not suffer such
problems. They also have a Stata command bootranktest.1

As always, you should also consider your prior beliefs when interpreting statistical
results. For example, if you have a set of variables that you don’t think relate to X, but
you just keep running KP tests until you get a low p-value, this does not mean that you
magically found an amazing, valid instrument. Ideally, you should have other real-world
reasons you believe the rank condition (relevance) holds, and then use the statistical tests
to show others that the data are consistent with your arguments.

Discussion Question 9.2 (underidentification testing). Consider a simple linear IV
regression with structural model Y = β0 + β1X +U . You have variables Z1, . . . , Z20 that
you think are exogenous. You think Z1 should be positively correlated with X, but you
doubt the others satisfy the relevance condition. You use OLS to estimate the “first stage”
LP(X | 1, Z1) = γ0 + γ1Z1. You run a level 5% test of H0 : γ1 = 0 against H1 : γ1 ̸= 0.

a) Explain how the null and alternative hypotheses relate to underidentification and
(exact) identification.

b) Interpret a type I error in terms of underidentification and identification.
c) Interpret a type II error in terms of underidentification and identification.
d) Your test rejects the null hypothesis; what does that suggest about Z1 as an instru-

ment?
e) Although this rejection is consistent with your guess about the relevance of Z1, you

notice that γ̂1 < 0, contrary to your guess about the correlation of Z1 and X. Does
this change your interpretation? Explain.

f) Although you don’t think Z2, . . . , Z20 are relevant, you decide to test them anyway
to try to find another instrument. That is, for j = 2, . . . , 20, you estimate LP(X |
1, Zj) = γ0 + γ1Zj and test H0 : γ1 = 0 at level 5%. Your test rejects for Z9 (but
not the others). Given that you already believe Z9 is exogenous, what do you
think about using it as an instrument? Explain. (Hint: recall the jelly bean comic
xkcd.com/882 from Section 3.9.)

9.2 Weak Identification

Discussion Question 9.3. Consider the IV (Wald) estimator β̂1 = λ̂/θ̂ like in Sec-
tion 8.1, where λ is the slope of LP(Y | 1, Z) and θ is the slope of LP(X | 1, Z). Assume
the instrument Z is exogenous.

a) Is β1 identified if θ = 1? If θ = 0? If θ = 0.0001?
b) For a given sample size n, how might the sampling distribution of β̂1 differ across

those values of the true population θ (1, 0, 0.0001)?
1As described here: https://arxiv.org/abs/2108.00511

https://xkcd.com/882
https://arxiv.org/abs/2108.00511
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c) Assume
√
n(θ̂ − θ)

d→ N(0, σ2). Given θ = 0.01, what’s limn→∞ P(θ̂ > 0.005)?
d) Assume θ̂ ∼ N(θ, σ2/n) with σ2 = 1. Given n = 106, can you find a positive value

θ > 0 such that P(θ̂ < 0) > 0.05.

The problem of weak identification occurs when condition(s) for identification are
“close” to being violated. In the IV setting, this is sometimes called the problem of weak
instruments because the weak identification is (roughly speaking) due to the excluded
instrument correlation with the endogenous regressor being too weak. More precisely, if
E(ZX ′) has full column rank k but is “close” to having rank k − 1, then there can be
problems in practice.

Beyond Our Scope

There are sometimes multiple asymptotic frameworks that can be used to study an
estimator, including with IV regression. Under “conventional” asymptotics, we take
the distribution of (Y,X ′,Z ′) as fixed as we let sample size n → ∞. In the simple
IV regression case, for example, if Cov(Z,X) > 0, then as n → ∞, the estima-
tor Cov(Z, Y )/Cov(Z,X) is consistent and asymptotically normal, regardless of how
near zero is Cov(Z,X). But we can see (for example from simulations) that for a
given n in practice we have problems when Cov(Z,X) is near zero. That is, this “con-
ventional asymptotics” fails to capture the real-world performance of the estimator.
A more sophisticated asymptotic framework can succeed in representing the weak in-
strument problem. As initially suggested by Staiger and Stock (1997), the trick is to
set Cov(Z,X) = c/

√
n, where c is a constant, so c/

√
n is a sequence that goes to zero

(at a particular “rate” of n−1/2) as n → ∞. When limits are taken using this weak-
instrument asymptotic framework, they show the effect of the instrument’s strength
(c). That is, this framework provides more accurate approximations of real-world
estimator properties. Other examples of this phenomenon include many-regressors
asymptotics with number of regressors cn proportional to n (or some function of
n) and local-to-unit-root asymptotics where the AR(1)’s autoregressive parameter is
1− c/

√
n.

9.2.1 Consequences of Weak Identification

One consequence of weak identification is bias. That is, even with large n, the IV estima-
tor’s distribution is not centered at the true parameter value if there are weak instruments.
Interestingly, weak IV bias is in the direction of the OLS estimator; when instruments are
totally irrelevant (underidentification), the IV estimator is centered at the OLS estimand
(the linear projection coefficient). Moreover, the (true) standard errors can be particu-
larly large with weak IV because the estimator’s sampling distribution does not collapse
to a single point as n → ∞.
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Another consequence of weak identification is incorrect inference (like confidence inter-
vals) if it is based on asymptotic normality, because the IV estimator is not asymptotically
normal under the weak IV asymptotics. That is, even with large n, a 95% confidence
interval may have actual coverage probability much lower than 95%, a problem called
undercoverage. Often this problem is phrased in terms of size distortion, meaning
that a level 5% hypothesis test rejects a true H0 with probability more than 5% (even
with large n).

9.2.2 Assessing Weak Identification

There are methods to gauge the strength of identification for IV regression. Recall from
Section 9.1 the test of H0 : θ = 0 of the first-stage coefficients on the excluded instruments.
If we construct the F -statistic for this hypothesis, then comparing to the usual critical
value gives us a test of underidentification; but we know that weak identification can still
be a problem even if we can reject underidentification. Thus, intuitively, if we use the
F -statistic (or something like it) to measure instrument strength, we want it to be even
larger than the usual critical value.

There are indeed alternative (higher) critical values that correspond to different levels
of bias and size distortion caused by weak identification. The early “F > 10” rule-of-
thumb was suggested by Staiger and Stock (1997), and it indeed gives a rough sense of
instrument strength in most cases (like if you’re in a seminar and don’t have a detailed
critical value table handy). Stock and Yogo (2005) later tabulated critical values that
depend on the level of bias or size distortion, as well as depending on the number of en-
dogenous regressors and instruments, and even extending to related “k-class” estimators;
see their Tables 5.1–5.4. With multiple endogenous regressors, the F -statistic is replaced
by the more general Cragg–Donald statistic. Roughly, the null hypothesis is like “instru-
ments are weak enough that bias may exceed 20%,” with the alternative hypothesis that
weak IV bias is less than 20%. Some such critical values are reported by Stata commands
like ivreg2.

Note: “bias” in the weak IV context usually means “relative bias,” which means bias
as a percentage of the OLS bias. For example, if OLS bias is 8, then 20% relative bias
would be (8)(20%) = 1.6. Of course, if we have a case where OLS bias is very small, then
it does not actually matter even if we have “80% relative bias,” whereas if OLS bias is
very large then 10% may still be economically significant.

Critical values based on “size” are usually with respect to a 5% level test. For example,
a “10% size” critical value is for the null hypothesis that a conventional 5% level test for
the structural parameter of interest may have type I error rate exceeding 10%. This is
equivalent to the conventional 95% CI having coverage probability below 90%.

More recently, for a single endogenous regressor with multiple excluded instruments,
some experts recommend2 using the Stata command weakivtest (Pflueger and Wang,

2https://web.archive.org/web/20230201022532/https://www.nber.org/sites/default/files/
2020-12/NBERSI2018_Methods%20Lectures_WeakIV1-2_v4.pdf

https://web.archive.org/web/20230201022532/https://www.nber.org/sites/default/files/2020-12/NBERSI2018_Methods%20Lectures_WeakIV1-2_v4.pdf
https://web.archive.org/web/20230201022532/https://www.nber.org/sites/default/files/2020-12/NBERSI2018_Methods%20Lectures_WeakIV1-2_v4.pdf
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2013), available on SSC, based on the work of Montiel Olea and Pflueger (2013).

Discussion Question 9.4 (weak IV test). You run an IV regression in Stata, and
although you were skeptical about the validity of your excluded instrument, Stata reports
a weak IV test p-value of 0.008 using the critical value for “10% size.”

a) What does this low p-value generally suggest about the strength of your instrument?
b) What does “10% size” mean in this context, and (given that) how would you describe

the null and alternative hypotheses?
c) Your conventional 95% CI for β1 is [3.4, 4.1]; how do you interpret it in light of the

weak IV test result? (Hint: is instrument strength the only condition for a valid
instrument?)

9.2.3 Coping with Weak Identification

Failing to reject a weak instrument test does not mean that you should give up on your
research, but it does mean that you should be suspicious of your estimated β̂ and use
special confidence intervals that are robust to weak instruments.

The intuition for the possibility of valid weak-IV-robust inference is that you do not
need to consistently estimate β in order to test a hypothesis about its value, because
the null hypothesis specifies the value for you, like H0 : β = 0. For example, consider
the simple IV regression setting of Corollary 8.2, where LP(Y | 1, Z) = ρ0 + Zρ1 and
LP(X | 1, Z) = δ0 + Zθ, and given a valid instrument Z, the structural slope β1 is
identified with β1 = ρ1/θ. We can have problems estimating β1 if θ is near zero, but
we do not have any problem estimating the linear projection coefficients ρ1 and θ. That
is, OLS estimators ρ̂1 and θ̂ are consistent and jointly asymptotically normal, meaning√
n(ρ̂1−ρ1, θ̂−θ)′ converges in distribution to a bivariate mean-zero normal distribution.

If we want to test whether β1 = 5, then instead of trying to test whether ρ1/θ = 5, we can
rearrange and equivalently test whether H0 : ρ1−5θ = 0. Because of the joint asymptotic
normality, ρ̂1 − 5θ̂ is also approximately normal (because it’s a linear combination of
jointly normal random variables). After deriving the asymptotic variance, we can use
the usual normality-based t-test. This is called the Anderson–Rubin (AR) approach to
hypothesis testing under weak identification, going back to Anderson and Rubin (1949).

Such a hypothesis test can be “inverted” into a confidence interval, a procedure called
test inversion. If we have a level α test, then we can derive a confidence level 1−α CI.
Specifically, the CI collects all possible values of β1 that are not rejected by the test. The
probability that the CI contains the true β1 equals the probability that the true β1 is not
rejected. That is,

P(CI contains β1) = P(β1 not rejected) = 1−
≤α︷ ︸︸ ︷

P(β1 rejected) ≥ 1− α. (9.1)

The CI from inverting the AR test is called an Anderson–Rubin CI. Such a CI can be
unbounded (extend to +∞ and −∞, although it may exclude a finite range of values,
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too), specifically when we cannot reject θ = 0. Generally, the AR CI works well in just-
identified models (same number of excluded instruments as endogenous regressors), but
less well in overidentified models (more excluded instruments than endogenous regressors).

In Stata, as recommended by Isaiah Andrews,3 weak-IV-robust confidence intervals
can be computed by the weakiv command (Finlay, Magnusson, and Schaffer, 2013),
available on SSC.

Discussion Question 9.5 (weak-IV-robust inference). Let β1 = ρ1/θ, a ratio of two LP
slope coefficients. Assume we know ρ1 = 1, and we have estimator θ̂. Imagine our 95%
CI for θ is [−0.001, 0.001].

a) Which possible values of β1 are consistent with the possible values of θ in the CI,
given ρ1 = 1? That is, what is the set B ≡ {b : b = 1/t, t ∈ [−0.001, 0.001]}?

b) Explain why your B is a 95% CI for β1, i.e., P(β1 ∈ B) ≥ 95%.
c) Imagine instead our 95% CI for θ is [0.1, 3.1]. Explain why even though we have

much more uncertainty about θ, we have much less uncertainty about β1.

9.3 Misspecification

This section provides intuition that is later formalized in the more general GMM context
in Section 10.4.2.

There is a type of test sometimes confusingly called an overidentification test,
or J-test, or Sargan–Hansen test (Hansen, 1982; Sargan, 1958), or less-confusingly
called a test of overidentifying restrictions. It is a type of specification test, where
“specification” refers to our structural model and our various identifying assumptions. If
we have more restrictions than we need to estimate the parameter of interest, then we
can test whether the restrictions are all consistent with each other.

If the system is just-identified (exactly identified), then we need all of our restrictions
just to estimate the parameters. For example, in simple IV regression with scalar struc-
tural slope β1, if we have one valid excluded instrument then we have one “restriction”
Cov(Z,U) = 0, which is just enough to estimate β1. But then we have exhausted all the
information (all the moment conditions) we have.

If the model is overidentified, then we can use the extra identifying restrictions to test
the assumptions we’ve made, broadly speaking. For example, continuing the simple IV
regression example, imagine we now have two excluded instruments, Z1 and Z2, and we
think/hope both are uncorrelated with the structural error U ≡ Y − β0 − Xβ1. Even
without Z2, we can estimate the parameters and construct residuals

Ûi = Yi − β̂0 −Xiβ̂1 (9.2)

for each observation i = 1, . . . , n. If Z1 is indeed valid, then in large samples, the esti-
mators should (with high probability) be very close to the true values, because they are

3https://web.archive.org/web/20230201022416/https://www.nber.org/sites/default/files/
2020-12/robustinference_openissues.pdf

https://web.archive.org/web/20230201022416/https://www.nber.org/sites/default/files/2020-12/robustinference_openissues.pdf
https://web.archive.org/web/20230201022416/https://www.nber.org/sites/default/files/2020-12/robustinference_openissues.pdf
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consistent: (β̂0, β̂1)
p→ (β0, β1). Thus, the residual Ûi should be very close to the true

unobserved structural error term Ui. If Z2 is exogenous (uncorrelated with the true U),
then the sample Z2i should be approximately uncorrelated with the residuals Ûi. Given
the asymptotic normality of the estimators, test statistics can be derived with a known
asymptotic distribution, so we can compute the corresponding p-values.

Note that if the model is exactly identified, like if we only had Z1 in the running
example, then we cannot learn anything from the sample correlation of Z1i and Ûi because
it is set to be zero (exactly) by the estimator (β̂0, β̂1). So, our test statistic would always
be zero. Indeed, in that case ivreg2 reports the Hansen J-statistic equal to 0.000, and
the output also notes “equation exactly identified.”

The interpretation of the null hypothesis depends on how confident you are about
different parts of your model. For example, if you are confident about Z1, then you could
interpret this as a test of Z2. Or if you are confident that both Z1 and Z2 are independent
of variables besides X that affect Y , then you could interpret this as a test of the linear
functional form of your structural model Y = β0 +Xβ1 + U . That is, if U also contains
terms like X2, then Z1 and Z2 may be correlated with this U even if they are independent
of all variables other than X. Most generally, we can interpret the null hypothesis as
saying that all of our assumptions are correct, against the alternative hypothesis that at
least one of our assumptions is wrong. For this reason, tests of overidentifying restrictions
are often called omnibus tests, meaning it’s a single test that tests everything mixed
together.

Because the null is correct specification, we hope to have a high p-value and not reject
the null. If instead the p-value is small, then it suggests our model is not consistent with
the observed data, so we should interpret our results cautiously. However, as Box (1979,
p. 2) famously wrote, “All models are wrong but some are useful,” so we do not necessarily
want to throw away our results just because of the specification test’s rejection. This is
especially true if our sample size n is very large, which gives the test high power: even
a very small deviation from our model can be detected by the test, leading to rejection.
Conversely, if the sample size is small, then the test has low power (high type II error
rate) even against larger violations of the model, so non-rejection does not necessarily tell
us much about our model specification.

As another caveat to interpretation, recall the LATE of Section 7.3: different instru-
ments may identify different causal parameters. So, possibly we have two instruments for
education that are both valid, but they identify a different causal parameter, like the re-
turn to education for the 12th year of education vs. for the 16th year of education. If those
population parameters differ, then the J-test may reject even though each instrument is
valid, just for a different causal parameter.

Yet another caveat is that two instruments may both be invalid yet “identify” the
same parameter, in which case the J-test will probably not reject. For example, imagine
a simple linear IV regression with demeaned (mean-zero) Y and X in structural model
Y = Xβ + U . Imagine β = 0 but E(Z1U) = E(Z2U) = 1 ̸= 0. Imagine also E(ZjY ) =
E(ZjX) = 1 for j = 1, 2. Multiplying both sides by one of the instruments and taking
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expectations, E(Z1Y ) = E(Z1X)β+E(Z1U) and E(Z2Y ) = E(Z2X)β+E(Z2U); plugging
in the values, both equations give 1 = β+1, hence β = 0. However, the moment conditions
are E[Zj(Y −Xβ)] = 0 for j = 1, 2, which are both simultaneously solved by β = 1, even
though this is not the true value. This example is rather contrived, but it is at least
possible for a J-test to not reject even if all IVs are invalid (even in large samples).

In Stata, the ivreg2 output show’s the p-value (and test statistic value, labeled
“Hansen J statistic”) for a J-test. (Alternatively, after running ivregress you could
run estat overid, but it seems better and easier to just run ivreg2.)

Discussion Question 9.6 (J-test). Imagine you are using survey data and have one
endogenous regressor and three possible excluded instruments, (Z1, Z2, Z3). The first two
(Z1 and Z2) are from the main survey and are non-missing for 99% of the sample; the
third (Z3) is from a supplemental survey and only available for 10% of the observations
in your sample. You run the J-test three times: with Z1 only, with Z1 and Z2, and with
Z1 and Z3. The Z1 test statistic equals zero. The (Z1, Z2) test statistic is much larger,
with a p-value of 0.04. The (Z1, Z3) test statistic is in between, with p = 0.17. How do
you interpret these results? What do you learn about the models?
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Chapter 10

Generalized Method of Moments

Unit learning objectives for this chapter

10.1. Define terms and concepts related to GMM. [TLO 1]

10.2. Describe the GMM estimator mathematically and intuitively. [TLO 3]

This chapter provides a relatively brief overview of the generalized method of moments
(GMM). GMM is defined very generally and includes other estimators (like 2SLS) as a
special case. Unlike linear IV regression, the asymptotic arguments are qualitatively
different than those for OLS.

I recently found some lecture notes by Bent Sørensen that provide many mathematical
details while also providing intuition.1 For even more details, see Chapters 12 and 14
of Wooldridge (2010), or the classic GMM Handbook of Econometrics chapter by Newey
and McFadden (1994).

10.1 Basic Setting and Notation

Generally, let D (for “data”) denote a vector containing all the observable variables (out-
come, regressors, instruments, etc.), and let the parameter vector of interest be θ ∈ Θ,
where Θ is the parameter space (like Rk or some subset of Rk). Similar to Section 8.1.4,
our identifying assumptions lead to moment conditions of the form

E[g(D,θ)] = 0, (10.1)

where the moment function g(·) is a vector-valued function. (Sometimes the mean of
g is called the moment function, but see top page 2116 of Newey and McFadden (1994).)

1http://web.archive.org/web/20230201194603/https://uh.edu/~bsorense/EconometricsII_
GMM_2016.pdf
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http://web.archive.org/web/20230201194603/https://uh.edu/~bsorense/EconometricsII_GMM_2016.pdf
http://web.archive.org/web/20230201194603/https://uh.edu/~bsorense/EconometricsII_GMM_2016.pdf
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Assume that θ is point identified by these moment conditions, meaning the true value is
the only value in Θ that satisfies (10.1) by setting all moment conditions equal to zero.

Discussion Question 10.1 (GMM notation for IV). Consider the linear IV regression
model from Theorem 8.4, in particular the moment conditions. Re-write it in the notation
of (10.1). That is, in (10.1), what are g(·), D, and θ?

10.2 Simple Examples

Consider the following contrived but insightful example. Continuing the notation from
Section 10.1, let D = (X,Y )′, two independent random variables (without the usual
connotation of “Y ” as a dependent variable or “X” as an independent variable). We
assume that X and Y have the same mean, which is also our parameter of interest, scalar
θ. The moment function is g(D, t) = (X − t, Y − t)′, where t is a generic possible value
of the parameter (a “dummy variable” in the math sense but not econ sense). Thus, our
moment conditions are

E[g(D, θ)] = E

[(
X − θ
Y − θ

)]
=

(
0
0

)
. (10.2)

Why bother with Y when we could easily just estimate θ = E(X)? Generally: why
bother with extra overidentifying restrictions when we could simply estimate the just-
identified model? Indeed, it does not help with identification, nor with consistency; the
goal is to improve estimation “efficiency.” This is equivalent to improving the estimator’s
“precision,” or decreasing the standard error, or decreasing the (asymptotic) variance.

Consider trying to set θ̂ to solve the sample analog of (10.2),

0 = Ê[g(D, θ̂)] = Ê

[(
X − θ̂

Y − θ̂

)]
=

[
Ê(X)− θ̂

Ê(Y )− θ̂

]
, (10.3)

where Ê(X) and Ê(Y ) are the respective sample means, also written Ê(X) = X̄ =
1
n

∑n
i=1Xi and Ê(Y ) = Ȳ = 1

n

∑n
i=1 Yi. In (10.3) we have two equations with one

unknown, θ. Solving the top equation yields θ̂ = Ê(X). But plugging this into the
bottom equation yields Ê(Y ) = θ̂ = Ê(X). Even if in the population E(Y ) = E(X), it is
unlikely (zero probability if X and Y are continuous) that in the sample Ê(X) = Ê(Y ).

Instead of setting Ê[g(D, θ̂)] equal to zero exactly, we can try to make it “close”
to zero. A common measure of “close” is Euclidean distance; how close a vector c =
(c1, c2, . . .)

′ is to zero can be measured by the Euclidean norm, also called the L2 norm,
∥c∥2 ≡

√
c21 + c22 + · · · =

√
c′c. Because it is equivalent to minimize the square (because

all values are non-negative), this proposal is to set

θ̂ = argmin
t

Ê[g(D, t)]′ Ê[g(D, t)]. (10.4)
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Discussion Question 10.2 (GMM for overidentified mean). Continue the example with
θ = E(X) = E(Y ) and X ⊥⊥ Y , and assume iid sampling. Solve (10.4) for θ̂:

θ̂ = argmin
t

Ê[(X − t, Y − t)] Ê[(X − t, Y − t)′] = argmin
t

(X̄ − t, Ȳ − t)(X̄ − t, Ȳ − t)′

= . . . .

(Hint: the SOC holds, so just solve the FOC.)
a) What is θ̂?
b) Sanity check: does this seem reasonable?
c) Show that X̄, Ȳ , and θ̂ are all unbiased.
d) What is the variance of θ̂ compared to the variances of X̄ and Ȳ ?
e) Among X̄, Ȳ , and θ̂, which estimator has the best MSE? (Recall Section 3.10.2.)

More generally, we can add a weight matrix in the middle of (10.4), which gives the
GMM criterion function (also called the GMM objective function)

θ̂ = argmin
t

Ê[g(D, t)]′Ŵ Ê[g(D, t)], (10.5)

where the “hat” on Ŵ indicates it can (optionally) be computed using the data. This
Ŵ is assumed symmetric and positive definite; it can be relaxed to positive semidefinite
under certain conditions (and extra complication), but the intuition is the same.

Discussion Question 10.3 (weights with exact identification). Consider an exactly-
identified model. To be concrete (and more familiar), consider the linear IV model with
one endogenous regressor and one excluded IV, so g(D, t) = Z(Y −X ′t).

a) In principle, what’s the smallest possible numerical value of the quadratic form on
the RHS of (10.5)?

b) Is there any θ̂ that can achieve that value? (If so, how?)
c) How does the weight matrix change your answers?

Discussion Question 10.4 (weights with overidentified mean). Continue from DQ 10.2.
Further assume Var(X) = 1 and Var(Y ) = 4, and assume both X and Y are normal, still
with mean E(X) = E(Y ) = θ. Let n = 1.

a) Explain why the sampling distributions of the separate mean estimators are X̄ ∼
N(θ, 1) and Ȳ ∼ N(θ, 4).

b) Explain intuitively whether you would prefer X̄ or Ȳ (if you had to pick only one
or the other), and whether this agrees with the mean squared error (MSE) criterion
in this case.

c) Intuitively, if we take a weighted average θ̂ = (1 − w)X̄ + wȲ , should we want
w > 0.5, w = 0.5, or w < 0.5? Why?

d) Mathematically, given θ̂ = (1−w)X̄ +wȲ , show Var(θ̂) = 5w2 − 2w+ 1 and solve
for the w that minimizes the variance.



136 CHAPTER 10. GENERALIZED METHOD OF MOMENTS

Discussion Question 10.5 (GMM weights with overidentified mean). Continue the
setup of DQ 10.4. Consider the GMM estimator defined in (10.5) with

Ŵ =

(
1− w 0
0 w

)
.

a) Show that the GMM estimator simplifies to θ̂ = argmint(1−w)(X̄−t)2+w(Ȳ −t)2,
and that solving the FOC yields θ̂ = (1− w)X̄ + wȲ .

b) What’s the “optimal” weighting matrix Ŵ (with this diagonal form) that minimizes
the MSE of θ̂? (Use DQ 10.4.)

The weight matrix allows the GMM estimator to improve efficiency, at least asymptot-
ically (but usually in practice, too). Note that the optimal weighting matrix in Discussion
Question 10.5 depends on unknown population values, specifically Var(X) and Var(Y ),
but those values can be estimated consistently. That is, letting W denote the optimal
weight matrix (with the true population values),

Ŵ
p→W . (10.6)

It turns out that the estimation error in Ŵ does not appear in the (first-order) asymptotic
normal distribution of the GMM estimator, at least in the most common cases, so it is
generally better to try to use the optimal weight matrix.

Often the estimated weights require an estimate of θ itself (the parameter of interest).
This sounds circular. However, recall that all this weighting is only to improve efficiency,
not to achieve consistency. That is, we could simply use the identity matrix as Ŵ to get
an initial consistent estimator θ̌, then use θ̌ to compute an efficient Ŵ , and use that Ŵ
to compute our “real” estimator θ̂. This is known as the two-step GMM estimator.
The Stata command ivreg2 has a gmm2s option to automatically compute the two-step
GMM estimator.

This begs the question: why not three-step? Or four-step? Indeed, you could keep
iterating to compute an iterative GMM estimator, but it does not affect the first-order
asymptotic distribution and does not seem to make much improvement in practice, either.
There is also a continuously updated estimator (CUE) that solves for θ̂ accounting
for the dependence of Ŵ on θ̂. This is more difficult to solve, and it does not improve
the asymptotic distribution, but there is some evidence that it improves finite-sample
properties in some settings. That said, two-step GMM is a practical default choice.

10.3 2SLS as GMM

Note: you do not need to know any of these details to successfully use 2SLS or GMM in
practice; I may move most/all of this section to an appendix in the future.

This section shows how 2SLS is a GMM estimator with a particular weight matrix that
is efficient under homoskedastic structural errors. Because the 2SLS moment function is
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linear in the parameter vector, we can explicitly solve for the parameter, which simplifies
the asymptotic theory (basically like OLS). Nonlinear models are included in the general
treatment in Section 10.4.

From Assumption A8.5, the full instrument vector Z is assumed to satisfy the moment
conditions E(ZU) = 0, where U = Y −X ′β is the structural error (where β is the true
value). To put this into GMM notation, let

D ≡ (Y,X ′,Z ′)′, g(D, b) = Z(Y −X ′b), (10.7)

where b is a generic possible value of the parameter vector whose true population value
is β. Let Z be the matrix with n rows whose row i equals Z ′

i, and similarly let X be the
matrix with n rows whose row i equals X ′

i. Let Y = (Y1, . . . , Yn)
′. As in (10.5),

β̂ = argmin
b

Ê[g(D, b)]′Ŵ Ê[g(D, b)]

= argmin
b

Ê[Z(Y −X ′b)]′Ŵ Ê[Z(Y −X ′b)]

= argmin
b

Ê[Z(Y −X ′b)]′Ŵ Ê[Z(Y −X ′b)]

= argmin
b

[Z ′(Y −Xb)/n]′Ŵ [Z ′(Y −Xb)/n]. (10.8)

The 1/n can be removed without changing the minimizer. The second-order condition is
satisfied, so the minimizer β̂ solves the first-order condition. Using

∂

∂b′
[Z ′(Y −Xb)]′ = −Z ′X (10.9)

and applying the generic vector calculus derivative ∂x′ax
∂x = (a + a′)x, along with the

assumed symmetry of Ŵ such that Ŵ + Ŵ
′
= 2Ŵ , and applying the chain rule, the

derivative of the GMM criterion function is

∂

∂b′
{[Z ′(Y −Xb)]′Ŵ [Z ′(Y −Xb)]}

= [Z ′(Y −Xb)]′(Ŵ + Ŵ
′
)(−Z ′X)

= −2[Z ′(Y −Xb)]′ŴZ ′X. (10.10)

Setting the transpose of (10.10) to zero and solving,

0 = {−2[Z ′(Y −Xβ̂)]′ŴZ ′X}′ = −2X ′ZŴ [Z ′(Y −Xβ̂)],
X ′ZŴZ ′Y =X ′ZŴZ ′Xβ̂,

β̂ = (X ′ZŴZ ′X)−1X ′ZŴZ ′Y . (10.11)

A special case of (10.11) with Ŵ = (Z ′Z/n)−1 is. . . 2SLS! That is, the formula
reduces to (8.24).
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Because we have a closed-form expression for β̂ in terms of sample moments, the
asymptotic theory follows the same type of arguments as for OLS, nearly identical to
the derivations in Section 8.3.3 but with general weight matrix Ŵ instead of (Z ′Z/n)−1.
That is, we can insert 1/n in the right places and plug in Y =Xβ+U from the structural
model to get

β̂ = β + (X ′ZŴZ ′X)−1X ′ZŴZ ′U (10.12)
√
n(β̂ − β) = (n−1X ′ZŴn−1Z ′X)−1n−1X ′ZŴn−1/2Z ′U

d→ {QXZWQ′
XZ}−1QXZWN(0,Σ), (10.13)

using the notation from (8.27). That is, altogether
√
n(β̂ − β) converges in distribution

to a mean-zero normal distribution with covariance matrix

Ω ≡ {QXZWQ′
XZ}−1QXZWΣWQ′

XZ{QXZWQ′
XZ}−1. (10.14)

The special case of 2SLS in (8.28) is the same but with Q−1
ZZ instead of W .

If W = Σ−1, then the covariance “sandwich” collapses:

{QXZΣ
−1Q′

XZ}−1QXZΣ
−1

cancels︷ ︸︸ ︷
ΣΣ−1Q′

XZ{QXZΣ
−1Q′

XZ}−1 = {QXZΣ
−1Q′

XZ}−1.
(10.15)

It can be shown that (in general) such “collapsed” covariance matrices are “smaller” than
the corresponding sandwich form, in the sense that the sandwich matrix minus the col-
lapsed matrix is positive semidefinite; for example, see the claim on the top of page 218 of
Wooldridge (2010). That is, the collapsed version corresponds to a more efficient (better)
estimator.

To achieve W = Σ−1, in practice we use Ŵ = Σ̂−1. Recall Σ = E[U2ZZ ′]. If we
have any consistent estimator (even if not efficient) β̌, then we can compute residuals
Ûi = Yi −X ′

iβ̌, and with iid sampling use

Σ̂ =
1

n

n∑
i=1

Û2
i ZiZ

′
i

p→ Σ. (10.16)

With other types of sampling, we would need variations on this estimator that appro-
priately account for dependence in order to achieve consistency. There are usually such
options in Stata (or R, etc.), where your job is to choose the most appropriate type of
sampling given your empirical setting, and then Stata will use the appropriate formula.

Finally, note that with “homoskedasticity” in the sense of

Var(U | Z) = Var(U), (10.17)
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the original 2SLS estimator is efficient. Recalling also that E(U) = 0, Var(U) = E(U2),
so homoskedasticity can also be written as E(U2 | Z) = E(U2). Using this,

E[U2ZZ ′] = E[E(U2ZZ ′ | Z)] = E[

=E(U2)︷ ︸︸ ︷
E(U2 | Z)ZZ ′] = E(U2) E[ZZ ′] ≡ σ2

UQZZ .
(10.18)

Thus, noting σ2
U is a scalar that can move freely around,

Ω = {QXZWQ′
XZ}−1QXZW

Σ︷ ︸︸ ︷
σ2
UQZZWQ′

XZ{QXZWQ′
XZ}−1

= σ2
U{QXZWQ′

XZ}−1QXZWQZZWQ′
XZ{QXZWQ′

XZ}−1, (10.19)

so simply setting W = Q−1
ZZ collapses the sandwich, implying Ŵ = (Z ′Z/n)−1, which

(again) makes (10.11) simplify to the 2SLS estimator in (8.24).
Conversely, with heteroskedasticity, 2SLS is not efficient, so we may improve asymp-

totic efficiency by using two-step GMM. In Stata, the gmm2s option does just that. (The
center option also seems useful to use in that case.)

10.4 General Estimator

Unlike in Section 10.3, where the parameter vector enters the moment function linearly
and allows a closed-form expression of the estimator, if the parameter vector does not
enter linearly, then there is generally not a closed-form expression for the GMM estimator.
That is, we cannot write the estimator as a function of various sample moments, but only
as the solution to a minimization problem. This makes the asymptotic theory much
different, so it is worth describing, although this is not a central focus of this class.

Additionally, in Section 10.4.2 more details are given about testing overidentifying
restrictions.

You do not need to know any of these details to successfully use GMM in practice; I
may move most/all of this section to an appendix in the future.

10.4.1 Asymptotic Theory

The general GMM estimator was defined in (10.5) as the minimizer of a quadratic form
of the sample moments with weight matrix Ŵ . We can think of the quadratic form as a
function of generic vector t:

Q̂(t) ≡ Ê[g(D, t)]′Ŵ Ê[g(D, t)], (10.20)

so the GMM estimator is θ̂ = argmint Q̂(t).
Without a closed-form expression for θ̂, in order to learn about the asymptotic prop-

erties of θ̂ we must learn about the asymptotic properties of the function Q̂(·). This is
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more challenging because Q̂(·) is a function, rather than a vector like the OLS or 2SLS
estimators.

The general idea is to show that the GMM criterion function converges to the cor-
responding population criterion whose unique solution is the true parameter value, in
order to show consistency; and then given consistency, an expansion around the true
value provides a linear approximation that facilitates the asymptotic normal distribution.
Such results are more readily obtained if the moment function is “smooth,” for example
if g(Di, t) is continuous in t for any Di and further is continuously differentiable in a
(small) neighborhood around the true value θ. However, such smoothness assumptions
can be relaxed (with extra work in the proofs). Similarly, iid sampling is a sufficient con-
dition that simplifies proofs, but it is not necessary for either consistency or asymptotic
normality.

The other general point to notice is that the GMM estimator’s asymptotic covariance
matrix depends on the (plim of the) weighting matrix used and in general has a “sand-
wich” form. Similar to the introduction of the two-step GMM estimator in Section 10.2,
in this general case we can follow a two-step approach in which we first get any consistent
estimator of θ and use it to estimate the efficient weighting matrix that causes the sand-
wich to “collapse.” As before, this “efficiency” is only within the scope of choosing different
weighting matrices; it assumes we are stuck with using whichever moment conditions we
have. More generally, it may be possible to improve efficiency further by using different
moment conditions themselves, but that is beyond our scope. For example, see Section
14.4.3 of Wooldridge (2010) regarding optimal instruments (moment conditions) when we
assume the stronger conditional-mean form of exogeneity, E(U | Z) = 0 instead of the
weaker E(ZU) = 0.

Some technical details are in the appendix, if you are curious (not required).

10.4.2 Testing Overidentifying Restrictions

This section generalizes the idea introduced in Section 9.3, of using the “extra” informa-
tion from additional moment conditions (if there is overidentification) to test the overall
model specification. The intuition and interpretation is the same here, so only some
mathematical details are provided.

Consider iid sampling, to allow the following simplifications, but remembering that
iid sampling is not necessary to test overidentifying restrictions. Given iid sampling, and
recalling E[g(Di,θ)] = 0, the usual CLT applies to

1√
n

n∑
i=1

g(Di,θ)
d→ N(0,Ω), Ω ≡ E[g(D,θ)g(D,θ)′], (10.21)

like in (10.31). As in (10.32), a consistent estimator of Ω is

Ω̂ = Ê[g(D, θ̂)g(D, θ̂)′] =
1

n

n∑
i=1

g(Di, θ̂)g(Di, θ̂)
′.
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Let θ̂ be the two-step GMM estimator, and as above Ω̂
p→ Ω. Then, under the null

hypothesis E[g(D,θ)] = 0, the test statistic

Ĵ ≡ n Ê[g(D, θ̂)]′Ω̂−1 Ê[g(D, θ̂)]
d→ χ2

m−k, (10.22)

a chi-squared distribution with degrees of freedom m − k, where m − k is the degree
of overidentification (m moment conditions, k parameters). Note when there is exact
identification with m = k, then m = k = 0, and the χ2

0 is a degenerate distribution with
all probability at value zero, i.e., P(Ĵ = 0) = 1. That is, the estimator θ̂ will perfectly
set all sample moments equal to zero, so Ĵ = 0 and we cannot learn anything about
possible misspecification. Only if m > k (overidentification) can we learn something
about misspecification here.

See also Section 9.5 (“Tests for overidentifying restrictions”) of Newey and McFadden
(1994).
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Appendix to Chapter 10

10.A Technical Details: GMM Consistency

This section shows technical details for deriving consistency of the GMM estimator, con-
tinuing from Section 10.4.1.

The population criterion function corresponding to (10.20) is

Q(t) ≡ E[g(D, t)]′W E[g(D, t)], (10.23)

simply replacing sample expectations with population expectations, and replacing the
sample weight matrix with its probability limit. The identification assumption is that
only the true value θ sets the moment conditions all equal to zero; thus if W is positive
definite, Q(t) = 0 iff t = θ. (Again, this can be weakened to positive semidefinite if
W E[g(D, t)] ̸= 0 for all t ̸= θ, but this point is usually not helpful in practice.) In
nonlinear models, it can be difficult to provide conditions for such (global) identification.
That is, it’s possible to show that the true θ satisfies all the moment conditions, but it’s
difficult to show that no other possible values also solve the moment conditions. GMM
identification is further discussed in Section 2.2.3 of Newey and McFadden (1994), also
a practical summary would be their statement, “A practical ‘solution’ to the problem of
global GMM identification. . . is to simply assume identification” (p. 2127).

The function Q̂(·) must converge uniformly in probability to the population Q(·),
meaning

sup
t∈Θ

|Q̂(t)−Q(t)| = op(1). (10.24)

This type of result is called a uniform (weak) law of large numbers (ULLN). While
iid sampling is a sufficient condition that makes it easier to establish a ULLN, as in Lemma
2.4 of Newey and McFadden (1994, p. 2129), ULLNs can also hold with dependent data
(under certain restrictions, of course). Results like Theorem 5.7 of van der Vaart (1998)
prove that this uniform convergence in probability of the sample criterion function to
the population criterion function is sufficient for the sample minimizer to converge to the
population minimizer, also assuming the population function cannot get arbitrarily close
to zero (except in a neighborhood of the true θ). Theorem 2.1 of Newey and McFadden
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(1994) is also a (slightly less) general consistency result based on uniform convergence,
which is condition (iv) of their theorem.

Newey and McFadden (1994) provide lower-level conditions that essentially imply
(10.24), which in turn implies consistency. The following is a slightly simplified version
of Theorem 2.6 of Newey and McFadden (1994). Another slight variant is Theorem 14.1
of Wooldridge (2010).

Theorem 10.1 (GMM consistency). If i) data Di are sampled iid; ii) Ŵ p→ W as in
(10.6), where both matrices are symmetric and positive definite; iii) the moment conditions
are uniquely solved by the true θ that satisfies E[g(D,θ)] = 0; iv) the parameter space
Θ is a compact set; v) the moment function g(D, ·) is continuous given any D; vi) the
elements of E[g(D, t)] are all finite for every t ∈ Θ; then the GMM estimator in (10.5)
is consistent: θ̂ p→ θ.

Proof. See page 2132 of Newey and McFadden (1994).

Example 10.1 (2SLS consistency). Consider the conditions of Theorem 10.1 for the 2SLS
estimator. Condition (i) is iid sampling, unrelated to the particular estimator; again, iid is
sufficient but not necessary here. For 2SLS, Ŵ = 1

n

∑n
i=1ZiZ

′
i

p→ E[ZZ ′] =W given the
assumed iid sampling, and also assuming Z has a finite second moment. Condition (iii) is
the identification assumption that only θ solves all the moment conditions, which is true
given instrument exogeneity and relevance (rank condition). Condition (iv) requires us to
limit the possible parameter values to a compact (finite) set, not allowing any value in Rk

(again a sufficient but not necessary condition); this is often reasonable because it does not
require Θ to be small, just bounded. For example, if θ2 is the return to education, then we
should feel comfortable with −999 ≤ θ2 ≤ 999. Condition (v) requires that Z(Y −X ′θ)
is continuous, which clearly it is. Condition (vi) requires finite E[Z(Y −X ′θ)], which
holds if Z, Y , and X all have finite second moments.

Discussion Question 10.6 (IVQR GMM). Consider the IV quantile regression model
based on moment conditions E[Z(1{Y ≤X ′θ} − τ)] = 0.

a) Write the moment function g(·, ·).
b) Explain why the moment function is not continuous in θ, for any values of Z, Y ,

and X.
c) Does this violation imply that the corresponding GMM estimator is not consistent?

Why/not? (Hint: recall Chapter 2.)
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Beyond Our Scope

There are ways to prove consistency and asymptotic normality of quantile estimators,
including IV quantile regression, whose g(·) includes an indicator function and thus
violates the usual smoothness assumptions. One approach is to replace the indicator
function with a sequence of smooth functions that approaches the indicator func-
tion asymptotically. However, this takes some “manual” labor (not just invoking an
existing theorem); see de Castro, Galvao, Kaplan, and Liu (2019).

10.B Technical Details: GMM Asymptotic Normality

This section shows technical details for deriving asymptotic normality of the GMM esti-
mator, given that consistency has already been established.

The derivation of the asymptotic distribution uses the fact that (given consistency) the
estimator is asymptotically within a small neighborhood of the true value with probability
approaching one. Because of this, the asymptotic behavior of θ̂ (the asymptotic sampling
distribution) depends only on the behavior of the criterion function “locally” (near the
true value). This makes the theory easier: we do not need the asymptotic distribution of
the entire sample criterion function, only the function evaluated at the true θ, for which
often a standard CLT applies.

To develop intuition, first consider the exactly identified model for which the (G)MM
estimator solves Ê[g(D, θ̂)] = 0. Define

M̂(t) ≡ Ê[g(D, t)], M(t) ≡ E[g(D, t)], ∇M̂(θ) ≡ ∂

∂t′
M̂(t)

∣∣∣∣
t=θ

, (10.25)

where each row of ∇M̂(θ) refers to a different element of the column vector M̂(θ) and
each column of ∇M̂(θ) refers to a different element of θ. Consider the mean value
expansion

0 = M̂(θ) + (Ṁ)(θ̂ − θ), (10.26)

where matrix Ṁ contains the derivatives evaluated at the “mean values” θ̃(1), θ̃(2), . . .
that are all on the line segment between θ̂ and θ,

Ṁ ≡

∇M̂1(θ̃(1))

∇M̂2(θ̃(2))
...

, (10.27)

where M̂j refers to element j in the vector. Because θ̂ p→ θ, the mean values are also
converging in probability to the true θ, so (given enough “smoothness”)

Ṁ
p→ ∇M(θ). (10.28)



146 CHAPTER 10. GENERALIZED METHOD OF MOMENTS

Rearranging (10.26) and solving for the centered and scaled estimator,
√
n(θ̂ − θ) = −[∇M(θ)]−1√nM̂(θ). (10.29)

Recall the last term (including the
√
n) can be written

1√
n

n∑
i=1

g(Di,θ), (10.30)

to which a CLT applies under the usual (relatively weak) sampling dependence and finite-
moment conditions, because E[g(Di,θ)] = 0. With iid sampling, more specifically

√
nM̂(θ)

d→ N(0,Ω), Ω ≡ E[g(D,θ)g(D,θ)′]. (10.31)

If we have any consistent estimator θ̂, then we can estimate Ω by

Ω̂ = Ê[g(D, θ̂)g(D, θ̂)′] =
1

n

n∑
i=1

g(Di, θ̂)g(Di, θ̂)
′. (10.32)

This is useful for computing both standard errors and the two-step GMM estimator (see
below). If sampling is not iid, then this particular formula is not correct, but in Stata
you can simply tell it the appropriate type of sampling and it has the proper formulas
implemented.

Combining (10.26) and (10.28), recalling that notation Xn
p→ c is equivalent to Xn =

c+ op(1), we can also write

√
n(θ̂ − θ) = −[Ṁ ]−1√nM̂(θ) = −[∇M(θ) + op(1)]

−1

=Op(1)︷ ︸︸ ︷√
nM̂(θ)

= −[∇M(θ)]−1 1√
n

n∑
i=1

g(Di,θ) + op(1) =
1√
n

n∑
i=1

ψ(Di) + op(1) (10.33)

given ψ(Di) ≡ −[∇M(θ)]−1g(Di,θ). An estimator that (when centered and scaled)
can be written with this structure is called asymptotically linear, and this form is
also called the influence function representation, where here ψ(·) is the influence
function. For more, see for example page 2142 and (3.3) of Newey and McFadden (1994).

Newey and McFadden (1994) provide a general GMM asymptotic normality result in
their Theorem 3.2 (p. 2145). The idea is similar to above but with a mean value expansion
of the GMM first-order condition, which is complicated by more terms but retains the
same intuition. The following is a slightly simplified version. Another slight variation is
Theorem 14.2 on page 527 of Wooldridge (2010).

Theorem 10.2. If i) the GMM estimator in (10.5) is consistent, θ̂ p→ θ; ii) Ŵ p→W as
in (10.6), where both matrices are symmetric and positive definite; iii) the true parameter
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value θ is in the interior of parameter space Θ; iv) the sample function M̂(·) in (10.25)
is continuously differentiable in a (small) neighborhood of the true θ; v) a CLT holds:
√
nM̂(θ)

d→ N(0,Ω); vi) the sample Jacobian matrix converges in probability to the
population Jacobian, in that ∇M̂(t)

p→ ∇M(t) uniformly over a neighborhood of θ,
where the limiting function is continuous in t; vii) defining G ≡ ∇M(θ), the matrix
G′WG is invertible; then the GMM estimator in (10.5) is asymptotically normal

√
n(θ̂ − θ) d→ N(0,Σ), Σ ≡ (G′WG)−1G′WΩWG(G′WG)−1.

Proof. See page 2145 of Newey and McFadden (1994).

The covariance matrix in Theorem 10.2 has the familiar sandwich form, and it “col-
lapses” if W = Ω−1. That is, if we can consistently estimate the asymptotic covariance
matrix from condition (v) by Ω̂

p→ Ω, then we can use its inverse as our weighting ma-
trix, Ŵ = [Ω̂]−1. This achieves efficiency among all possible weighting matrices, in the
sense of minimizing the GMM estimator’s asymptotic variance (in the matrix sense of
a ≤ b meaning a−b is negative semidefinite). This is exactly what the two-step GMM
estimator does, as introduced in Section 10.2. That is, we can use any positive definite
matrix (like the identity matrix) as Ŵ to get an initial consistent estimator θ̌, then use
θ̌ to compute the efficient Ŵ = [Ω̂]−1, and use that Ŵ to compute our two-step GMM
estimator θ̂.
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Exercises

In Stata, the ivreg2 command (Baum, Schaffer, and Stillman, 2002), available on SSC,
runs the IV regression estimator and helps automatically run weak identification and over-
identification tests, with the help of ranktest (Kleibergen, Schaffer, and Windmeijer,
2007), as well as GMM estimators (and yet other estimators). If you have a single
endogenous regressor, then you can also use weakivtest (Pflueger and Wang, 2013)
for the weak identification testing, with the help of avar (Baum and Schaffer, 2013);
weakivtest provides a somewhat different test statistic than ivreg2 as well as different
critical values (in terms of maximal relative bias instead of size distortion), so it is helpful
to look at both sets of results. Finally, you can use weakiv (Finlay, Magnusson, and
Schaffer, 2013) to compute weak-IV-robust AR confidence intervals. You can install all
of these from SSC with:
ssc install ranktest
ssc install ivreg2
ssc install avar
ssc install weakivtest
ssc install weakiv

Exercise II.1. This exercise looks at the impact of participation in a 401(k) retirement
plan (dummy variable p401k) on an individual’s net total financial assets (nettfa), using
401(k) eligibility (dummy variable e401k) as an instrument.

a. For this example, describe an individual’s potential outcomes.

b. For this example, describe who is a “complier” and who is a “never-taker.”

c. As usual, make sure the command bcuse is installed: ssc install bcuse

d. Load the data (and look at variable labels to see descriptions and units of measure):
bcuse 401ksubs , clear

e. Regress net total financial assets on 401(k) participation
reg nettfa p401k , vce(robust)
and explain one potential source of omitted variable bias along with the direction
of bias; be precise and rigorous in your argument for the direction.
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f. Regress net total financial assets on 401(k) eligibility:
reg nettfa e401k , vce(robust) and interpret the estimated coefficient on
e401k

g. Explain what it would mean for 401(k) eligibility to satisfy the instrument indepen-
dence assumption (A7.2), and a potential (real-world) reason it may not.

h. Compute the IV estimator, CI, and corresponding tests:
ivreg2 nettfa (p401k = e401k) , robust

i. Describe the IV estimand in this example.
ii. Discuss the economic significance of the estimate.
iii. Explain why you are or are not worried about weak instruments in this case;

in addition to the ivreg2 output, run weakivtest and refer to specific output
(and how to interpret it). Note: you can ignore the LIML column and just
focus on TSLS (two-stage least squares).

iv. Run weakiv and explain which confidence interval you think is more appro-
priate (AR is Anderson–Rubin; Wald is the conventional one) as well as what
that CI tells us about our uncertainty about the true population value; be
precise and explicit.

v. Explain what the J-test results suggest about the model.

i. Run
ivreg2 nettfa (p401k=e401k) , robust gmm2s center
gmm (nettfa - p401k*{p401k} - {_cons}) , instruments(e401k) nolog
vce(robust) twostep

and briefly compare with the estimate/CI from part (h).

j. Run ivreg2 nettfa (p401k = e401k) inc age marr fsize , robust and say
briefly if the change (compared to above without control variables) in the estimated
effect is economically significant, as well as if/how this changes our uncertainty
about the true population value.

Exercise II.2. The following analyzes data originally from Graddy (1995). The goal
is to estimate the demand curve for a particular type of fish (whiting) in a particular
(large) fish market in New York City. Prices and quantities are in logs (so the slope is
approximately an elasticity); specifically, the (average) daily price was measured in dollars
per pound of fish, and the daily quantity in pounds sold, and the natural log was taken
of each. The weather is used as the (hopefully) exogenous supply shifter: bad weather
(specifically wind and waves) makes it more difficult to fish, which moves the supply curve
inward. (Not needed for this exercise, but if you’re curious, see Graddy’s fish papers on
her website,2 like page 210 “How the Market Worked at Fulton Street” of her 2006 JEP
paper.)

2https://www.kathryngraddy.org/research#pubfish

https://www.kathryngraddy.org/research#pubfish
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a. Load the data with (remove line break)
use https://raw.githubusercontent.com/kaplandm/stata/main/data/
fishdata.dta , clear

b. Rename variables to be more intuitive3:
rename price lnp
rename qty lnq

c. Run reg lnq lnp and explain why this estimator of the demand curve is not con-
sistent.

d. Explain what it would mean for the weather to be an “exogenous” instrument, and
a potential (real-world) reason it may not be exogenous.

e. Compute the IV estimator and corresponding tests:
ivreg2 lnq (lnp=stormy mixed) , robust

i. Describe the IV estimand in this example.
ii. Discuss the economic significance of the estimate.
iii. Explain why you are or are not worried about weak instruments in this case;

in addition to the ivreg2 output, run weakivtest and refer to specific output
(and how to interpret it). Note: you can ignore the LIML column and just
focus on TSLS (two-stage least squares).

iv. Run weakiv and explain which confidence interval you think is more appropri-
ate (AR is Anderson–Rubin; Wald is the conventional one; don’t worry about
the others) as well as what that CI tells us about our uncertainty about the
true population value; be precise and explicit.

v. Explain what the J-test results suggest about the model.

f. Run ivreg2 lnq (lnp=windspd) , robust and briefly compare with the previous
IV results (slope estimate, weak IV test, J-test).

g. Run
ivreg2 lnq (lnp=stormy mixed) , robust gmm2s center
gmm (lnq - lnp*{lnp} - {_cons}) , instruments(stormy mixed) nolog
vce(robust) twostep

and briefly compare with the slope estimate/CI from part (e).

h. What do you think about a model with a constant slope in this case? That is, a
model where the shock/error shifts the demand curve up and down but does not
change its slope?

Exercise II.3. The data are originally from Card (1995), with individual-level obser-
vations of (log) wages, years of education, and other variables. Note the dataset lacks

3Unfortunately, there are no variable labels, so there is no way to know these are in logs unless you
look back at the original paper.
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variable labels, but they can be found online.4 This is the same dataset as previously in
Exercise I.4.

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse card , clear

c. Create a dummy to compare high-school (12 years education) and college (16 years
education):
gen d_coll = .
replace d_coll=0 if educ==12
replace d_coll=1 if educ==16

d. Regress log wage on years of education reg lwage educ , vce(robust) and ex-
plain one potential source of omitted variable bias along with the direction of bias;
be precise and rigorous in your argument for the direction.

e. Explain what it would mean for nearc4 to be an “exogenous” instrument, and a
potential (real-world) reason it may not be exogenous.

f. Run ivreg2 lwage (educ = nearc4 nearc2 ) , robust

i. Describe the IV estimand in this example.
ii. Discuss economic significance of the estimated slope (“returns to education”).
iii. Explain why you are or are not worried about weak instruments in this case;

in addition to the ivreg2 output, run weakivtest and refer to specific output
(and how to interpret it). Note: you can ignore the LIML column and just
focus on TSLS (two-stage least squares).

iv. Run weakiv and explain which confidence interval you think is more appropri-
ate (AR is Anderson–Rubin; Wald is the conventional one; don’t worry about
the others) as well as what that CI tells us about our uncertainty about the
true population value; be precise and explicit.

v. Explain what the J-test results suggest about the model.

g. Run ivreg2 lwage (educ = nearc4 ) , robust and briefly compare with the
previous IV results (slope estimate, weak IV test, J-test).

h. Run
ivreg2 lwage (educ = nearc4) , gmm2s center robust
ivreg2 lwage (educ = nearc4 nearc2) , gmm2s center robust
and comment on differences among these and previous estimates of the return to
education.

i. Run gmm (lwage - educ*{educ} - {_cons}) , instruments(nearc4 nearc2)
nolog vce(robust) twostep and compare with the corresponding estimate/CI

from part (h).
4http://fmwww.bc.edu/ec-p/data/wooldridge/card.des

http://fmwww.bc.edu/ec-p/data/wooldridge/card.des
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j. Run ivreg2 lwage (d_coll = nearc4 nearc2 ) , robust

i. Describe the IV estimand in this example.
ii. Discuss economic significance of the estimated coefficient on d_coll.
iii. Explain why you are or are not worried about weak instruments in this case;

in addition to the ivreg2 output, run weakivtest and refer to specific output
(and how to interpret it). Note: you can ignore the LIML column and just
focus on TSLS (two-stage least squares).

iv. Run weakiv and explain which confidence interval you think is more appropri-
ate (AR is Anderson–Rubin; Wald is the conventional one; don’t worry about
the others) as well as what that CI tells us about our uncertainty about the
true population value; be precise and explicit.

v. Explain what the J-test results suggest about the model.

Exercise II.4. This is another “returns to education” example but with parents’ edu-
cation as the instrument. Note the dataset lacks variable labels, but they can be found
online.5

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse mroz , clear

c. Regress log wage on years of education reg lwage educ , vce(robust) and ex-
plain one potential source of omitted variable bias along with the direction of bias;
be precise and rigorous in your argument for the direction.

d. Explain what it would mean for motheduc to be an “exogenous” instrument, and a
potential (real-world) reason it may not be exogenous.

e. Run ivreg2 lwage (educ = motheduc fatheduc) , robust

i. Describe the IV estimand in this example.
ii. Discuss economic significance of the estimated slope (“returns to education”).
iii. Explain why you are or are not worried about weak instruments in this case;

in addition to the ivreg2 output, run weakivtest and refer to specific output
(and how to interpret it). Note: you can ignore the LIML column and just
focus on TSLS (two-stage least squares).

iv. Run weakiv and explain which confidence interval you think is more appropri-
ate (AR is Anderson–Rubin; Wald is the conventional one; don’t worry about
the others) as well as what that CI tells us about our uncertainty about the
true population value; be precise and explicit.

v. Explain what the J-test results suggest about the model.

5http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.des

http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.des
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f. Run ivreg2 lwage (educ = motheduc fatheduc) exper expersq , gmm2s
center robust and briefly compare the estimate and CI for the coefficient on
education with the previous estimates/CIs above.

g. Run gmm (lwage - educ*{educ} - exper*{exper} - expersq*{expersq} -
{_cons}) , instruments(motheduc fatheduc exper expersq) nolog vce(
robust) twostep and compare with the estimate/CI from part (f).

Exercise II.5. The following IV analysis uses cigarette prices to instrument for how much
a mother smoked while pregnant, in hopes of estimating the causal effect of cigarette
smoking on birthweight (which when too low is associated with other negative health
outcomes for infants). Note the dataset lacks variable labels, but they can be found
online.6

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse bwght , clear

c. Run reg lbwght cigs male parity lfaminc , vce(robust) and explain one
potential source of omitted variable bias along with the direction of bias; be precise
and rigorous.

d. Explain what it would mean for cigprice to be an “exogenous” instrument, and a
potential (real-world) reason it may not be exogenous.

e. Run ivreg2 lbwght (cigs=cigprice) male parity lfaminc , robust

i. Describe the IV estimand in this example.
ii. Discuss the economic significance of the estimated slope on cigs.
iii. Explain why you are or are not worried about weak instruments in this case;

in addition to the ivreg2 output, run weakivtest and refer to specific output
(and how to interpret it). Note: you can ignore the LIML column and just
focus on TSLS (two-stage least squares).

iv. Run weakiv and explain which confidence interval you think is more appro-
priate (AR is Anderson–Rubin; Wald is the conventional one) as well as what
that CI tells us about our uncertainty about the true population value; be
precise and explicit.

v. Explain what the J-test results suggest about the model.

f. Run ivreg2 lbwght (cigs=cigprice) male parity lfaminc , robust gmm2s
center and briefly compare with your previous estimate and CI.

g. Run gmm (lbwght - cigs*{cigs} - male*{male} - parity*{parity} -
lfaminc*{lfaminc} - {_cons}) , instruments(cigprice male parity
lfaminc) nolog vce(robust) twostep and briefly compare with your previous
estimates/CIs.

6http://fmwww.bc.edu/ec-p/data/wooldridge/bwght.des

http://fmwww.bc.edu/ec-p/data/wooldridge/bwght.des
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Exercise II.6. The following example uses data from Blackburn and Neumark (1992),
specifically a cross-section of men in the year 1980, originally from the National Longitu-
dinal Survey (NLS). The analysis uses birth order (1 means first-born in family / oldest
child in family; 2 means second-born / second-oldest child in family; etc.) to instrument
for how much education someone gets, in hopes of estimating the causal effect of education
on (log) wage. Note the dataset lacks variable labels, but they can be found online.7

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse wage2 , clear

c. Run reg lwage educ exper exp2 married , vce(robust) and explain one po-
tential source of omitted variable bias (for the coefficient on education) along with
the direction of bias; be precise and rigorous in your argument for the direction.

d. Explain what it would mean for brthord to be a helpful “proxy” variable, and a
potential (real-world) reason it may not be.

e. Explain what it would mean for brthord to be an “exogenous” instrument, and a
potential (real-world) reason it may not be exogenous.

f. Run ivreg2 lwage (educ=brthord) c.exper##c.exper married , robust

i. Describe the IV estimand in this example.
ii. Discuss the economic significance of the estimated slope on educ.
iii. Explain why you are or are not worried about weak instruments in this case;

in addition to the ivreg2 output, run weakivtest and refer to specific output
(and how to interpret it). Note: you can ignore the LIML column and just
focus on TSLS (two-stage least squares).

iv. Run weakiv and explain which confidence interval you think is more appro-
priate (AR is Anderson–Rubin; Wald is the conventional one) as well as what
that CI tells us about our uncertainty about the true population value; be
precise and explicit.

v. Explain what the J-test results suggest about the model.

g. How many of your previous answers would change if we used two-step GMM esti-
mation (instead of IV/2SLS regression)? Explain. (Feel free to re-run the ivreg2
command with additional options gmm2s center to check.)

h. Run gen expersq = exper^2 and then gmm (lwage - educ*{educ} -
exper*{exper} - expersq*{expersq} - married*{married} - {_cons}) ,
instruments(brthord exper expersq married) nolog vce(robust) twostep
and briefly compare with your previous estimates/CIs.

7http://fmwww.bc.edu/ec-p/data/wooldridge/wage2.des

http://fmwww.bc.edu/ec-p/data/wooldridge/wage2.des
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Introduction

One common way economists try to avoid omitted variable bias is with panel data, in
which the same “individuals” (firms, counties, etc.) are observed in different time periods.
Essentially, if there are omitted variables that are constant over time, then we can control
for them even without observing them.

Again, concepts and intuition are developed in both a potential outcomes framework
as well as a structural model framework. Identification is the focus, although some topics
in estimation and inference (like cluster-robust standard errors) are also mentioned.

159



160



Chapter 11

Difference-in-Differences

Unit learning objectives for this chapter
11.1. Define and discuss the difference-in-differences approach to identification in the

potential outcomes framework, both mathematically and intuitively, along with
related concepts. [TLOs 1–3]

11.2. Judge whether or not the key identifying assumptions hold in specific real-world
examples. [TLO 4]

This chapter describes the difference-in-differences (DiD) approach to causal iden-
tification with panel data, where the same individuals are observed across multiple time
periods. The “canonical” DiD model consists of many individuals split into two groups
and two time periods: nobody is treated in the first period, and (only) everyone in the
treated group is treated in the second period.

Optional resources for this chapter

• Stata: commands csdid (Callaway, Rios-Avila, and Sant’Anna, 2021) and
drdid (Naqvi, Rios-Avila, and Sant’Anna, 2021) available through SSC

• R: package did (Callaway and Sant’Anna, 2021a)

• Difference-in-differences (Masten video)

• Parallel trends (Masten video)

• Parallel trends example: immigration and unemployment (Masten videos)

• Diff-in-diff example: immigration and unemployment (Masten videos)

• Diff-in-diff example: minimum wage (Masten video)

• Diff-in-diff example: posting calorie counts (Masten video)
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https://www.youtube.com/watch?v=tO99T1GQ6SY
https://www.youtube.com/watch?v=6d64Vy2-peY
https://www.youtube.com/watch?v=jJoMEqVRk2I
https://www.youtube.com/watch?v=xniasePiSd8
https://www.youtube.com/watch?v=L-wgpJ-OnZo
https://www.youtube.com/watch?v=fPXrMSkGR84
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11.1 Panel Data Basics

This section contains some terms and notation related to panel data generally.

11.1.1 Basic Terms and Notation

The phrase panel data (same as longitudinal data) refers to observations of the same
individuals in multiple time periods. As usual, these “individuals” could be firms, counties,
hospitals, etc., and are labeled as i = 1, . . . , n. The time periods t = 1, . . . , T could be
years, months, weeks, or other periods of time; for example, t = 1 could mean the year
2019, t = 2 mean 2020, etc. Sometimes n is called the cross-sectional dimension of
the data, and T the time-series dimension of the data. A balanced panel has exactly
T observations for all n individuals, whereas an unbalanced panel has T observations
for some individuals but fewer than T for others. For simplicity, I only consider balanced
panel data, but in practice you should be aware if you have an unbalanced panel and how
that might influence your results. With a balanced panel, there are nT total observations
because each of the n individuals has T observations. A representative value is written
like Yit for the value of outcome variable Y for individual i at time t, or similarly Xit or
Uit.

Terms from time series apply to the time dimension. For the outcome variable Yit,
the first lag or lagged outcome is Yit−1, i.e., the value for the same individual in the
previous time period. The first difference is ∆Yit ≡ Yit−Yit−1. The time-series average
for individual i is Ȳi =

1
T

∑T
t=1 Yit, sometimes also written Ȳi·.

For identification, at least in the fixed-T microeconometric setting, instead of simply
writing Y as a representative individual in the population, with panel data we usually
write Yt to denote a particular period (but the i remains implicit). That is, we imagine
sampling individuals from the population like before, but now instead of each individual
being represented by (Y,X ′), each individual is represented by (Y1, . . . , YT ,X

′
1, . . . ,X

′
T ).

11.1.2 Asymptotic Frameworks

There are multiple possible asymptotic frameworks for panel data. Recall from Sec-
tion 9.2 the weak-instrument asymptotic framework that can provide more accurate ap-
proximations of estimators’ finite-sample properties when IVs are weak. Similarly, dif-
ferent asymptotic frameworks can provide more accurate approximations of estimators’
finite-sample properties depending on the features of the panel dataset. For example, in
macroeconomics, we may have quarterly data from 1960Q1 through 2019Q4 for Canada,
Mexico, and the US; with relatively large T = 240 but only n = 3, the most accurate
asymptotic approximations take T → ∞ while holding n = 3 fixed. That is, we treat
this type of panel data essentially as multiple time series. Alternatively, we may have a
couple years of daily stock return data for a few hundred stocks; with n and T similarly
in the hundreds, it may be best to use joint asymptotics with n → ∞ and T → ∞
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together, written n, T → ∞, or (usually less accurate but mathematically simpler) se-
quential asymptotics where first n → ∞ with T fixed and then T → ∞ (or vice-versa).
In applied microeconomics, often n is large but T is as small as T = 2, in which case
the most accurate asymptotic approximation takes n → ∞ while holding T fixed. This
framework is the focus of this textbook. Asymptotics with n → ∞ are often called “large-
n” asymptotics, and similarly T → ∞ is called “large-T ,” whereas keeping n fixed is called
either “small-n” or “fixed-n” asymptotics, or similarly “small-T ” or “fixed-T ” if T does not
change asymptotically. Because n and/or T goes to infinity asymptotically, it suffices
to say fixed-T asymptotics without explicitly saying “and large-n,” and similarly it
suffices to say fixed-n asymptotics without explicitly saying “and large-T .”

With large-T asymptotics, we must explicitly model and make assumptions about
the time-series properties, whereas with small-T asymptotics, we do not need to. That
is, although potentially it could improve efficiency to explcitly model the time-series
properties, with small-T asymptotics we can still achieve identification, consistency, and
valid confidence intervals without such assumptions, so often they are avoided.

Still, the idea of serial correlation (or autocorrelation) is often discussed, meaning
statistical correlation of values across time within the same individual. This is a com-
mon property of economic variables like monthly employment status, annual earnings,
quarterly inflation rate, etc.

11.2 Some Intuition

=⇒ Kaplan video: Diff-in-Diff Intuition

This section is largely from Section 9.7 of Kaplan (2022a), although with different
notation.

Imagine some individuals were exposed to some “treatment,” like a training program
or law or other policy, whose causal effect we want to learn. The treatment wasn’t
randomized, but there’s a group of untreated individuals whose outcomes can be used to
form a counterfactual: what’s the mean outcome of treated individuals in the parallel
universe where they weren’t treated?

If there is a plausible way to create such a counterfactual, to get an “as good as
randomized” comparison, then such setups are sometimes called natural experiments
or quasi-experiments. Generally, without randomization, it’s invalid to simply compare
treated and untreated outcomes, as seen in Section 11.2.1. However, we assume there is
enough randomness that a valid comparison can be found, with some additional work.

Example 11.1 introduces a running example used throughout this section.

Example 11.1 (Kaplan video). Let Y be annual labor income, and we are interested
in the effect of minimum wage. Imagine our city recently implemented a large minimum
wage increase. The goal is to learn the effect of this particular minimum wage increase
on Y (income), for individuals in our city. Notationally, X = 1 if the individual lives in

https://youtu.be/sUtunK9162g
https://youtu.be/hz-pgwyGI7U
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our city (and X = 0 otherwise), and t = 2 if the observation is from the year after the
minimum wage increase (and t = 1 if before the increase).

Notationally, X = 1 is the “treated group” and X = 0 the “untreated group”; t = 1 is
the time period “before” treatment and t = 2 is “after.”

11.2.1 Bad Approaches

One bad approach is to use only data from the treated group, comparing before and after.
That is, we could try to estimate E(Y2 | X = 1)−E(Y1 | X = 1), where Yt is the observed
outcome in time period t. Part of this mean difference is indeed due to the effect of the
treatment. However, there are almost always other important determinants of Y that
change over time. In that case, there is omitted variable bias: the mean difference is a
combination of the treatment effect plus many other effects, so it is wrong to interpret
the mean difference as only the effect of the treatment.

Example 11.2 (Kaplan video). Continuing the minimum wage example (Example 11.1),
one bad approach is to use only data from our city, before and after the minimum wage
increase. Coincidentally, there may have been a national (or global) recession right after
the minimum wage law was passed. This may make everybody’s income lower in the year
after. It would look like the minimum wage hurt incomes, but really it was the recession.
Alternatively, there may have been great national (macroeconomic) conditions that made
incomes go up, which would make us incorrectly conclude that the law increased incomes
greatly.

Another bad approach is to use only data from the “after” period, comparing the
treated group to an untreated group. That is, we could try to estimate E(Y2 | X =
1) − E(Y2 | X = 0). Part of this mean difference is indeed due to the effect of the
treatment. However, there are almost always other important determinants of Y that
differ between the treated and untreated groups. In that case, there is again omitted
variable bias.

Example 11.3 (Kaplan video). Again continuing the minimum wage example (Exam-
ple 11.1), this bad approach compares incomes in our city and another city, in the year
after our law passed. By using the other city as a sort of control group, we avoid the
problem of misinterpreting macroeconomic changes as treatment effects. However, it’s
hard to know which other city to pick. We could pick one that has the same population,
for example, but our city may still have much higher (or lower) income for reasons other
than our minimum wage. For example, San Francisco and Columbus, OH have very sim-
ilar populations, but they have (and have for a while had) very different incomes. If San
Francisco happens to have a higher minimum wage, it is wrong to attribute the entire
mean difference in income as a causal effect of their higher minimum wage. There may
indeed be a minimum wage effect, but it’s mixed with the effects of education, industry
types, geography, etc.

https://youtu.be/hz-pgwyGI7U
https://youtu.be/hz-pgwyGI7U


11.2. SOME INTUITION 165

Discussion Question 11.1 (bad panel approaches: Mariel boatlift). Consider the basic
setup from Card (1990). Due to a seemingly random/exogenous political decision, Cubans
were temporarily permitted to immigrate to the U.S. for a few months in 1980. About
half settled in Miami, FL, while the other half went to live in other cities around the U.S.

a) We could compare wages of native-born workers in Miami in 1979 (before boatlift)
vs. 1981 (after). Explain why this change in average wage would not be a good
estimate of the causal effect of the Mariel boatlift on native worker wage. (Hint:
are 1979 Miami and 1981 Miami the same except for how many Cubans live there,
or might something else have changed?)

b) We could compare 1981 wages of native workers in Miami vs. Houston, TX, a city
that did not receive a large influx of Cuban immigrants in 1980. Explain why this
difference (Miami minus Houston) in average wage would not be a good estimate
of the causal effect of the Mariel boatlift on native worker wage. (Hint: are 1981
Miami and Houston the same except for how many Cubans live there, or might there
be other differences between the cities that might cause omitted variable bias?)

Discussion Question 11.2 (bad panel approaches: fracking). This is based loosely on
the setting of Street (2022), who of course uses much better approaches. For counties in
the U.S. state of North Dakota, let Y denote crime rate. “Fracking” was a new technology
that allowed extraction of certain underground oil and natural gas reserves that were
previously infeasible or unprofitable to extract.

a) We could compare the crime rate among counties that eventually started fracking
activity, before vs. after the fracking started. Explain why this before/after change
in crime would not be a good estimate of the causal effect of the fracking activity
on crime rate.

b) We could compare the “after” crime rates in North Dakota counties with fracking vs.
those without fracking. Explain why this difference (fracking minus non-fracking)
in crime would not be a good estimate of the causal effect of fracking on crime rate.

11.2.2 Counterfactuals and Parallel Trends

The difference-in-differences idea is to combine the before vs. after comparison with the
treated vs. untreated comparison.

Conceptually, the goal is to construct a counterfactual (link to pronunciation), like
what our city’s mean income would have been if there were not a minimum wage increase.
Thinking of the potential outcomes framework, the counterfactual is the parallel universe
where the treatment never happened.

The key identifying assumption for DiD is called parallel trends. Conceptually, in
the running example, parallel trends says that without the minimum wage law, our city’s
mean income would have increased by exactly the same amount as the other city’s mean
income. Mathematically, with

mt(x) ≡ E(Yt | X = x), (11.1)

https://www.google.com/search?q=Dictionary#dobs=counterfactual
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the other city’s mean income increase (i.e., “after” minus “before”) is

m2(0)−m1(0) = E(Y2 | X = 0)− E(Y1 | X = 0). (11.2)

Parallel trends assumes that adding this increase to the “before” mean income in our city,
m1(1) = E(Y1 | X = 1), gives us the counterfactual income for our city in the “after” time
period.

Given parallel trends, we can learn about causality by comparing
actual (our city, after)︷ ︸︸ ︷
E(Y2 | X = 1) vs.

counterfactual︷ ︸︸ ︷
E(Y1 | X = 1)︸ ︷︷ ︸
our city, before

+E(Y2 | X = 0)− E(Y1 | X = 0)︸ ︷︷ ︸
increase in other city over time

,

(11.3)

actual︷ ︸︸ ︷
m2(1)−

counterfactual︷ ︸︸ ︷
{m1(1) + [m2(0)−m1(0)]} =

difference-in-differences︷ ︸︸ ︷
[m2(1)−m1(1)]− [m2(0)−m1(0)] . (11.4)

Figure 11.1 visualizes this effect. Note the notation is from Kaplan (2022a, §9.7),
where m(a, b) translates to mb+1(a) in our notation. We can think of constructing the
counterfactual outcome, and then subtracting it from the actual outcome; or equivalently
we can think of taking the before/after difference for our city and subtracting off the
before/after difference in the other city.

m(0,0)

m(0,1)

before after

other city
m(1,0)

actual=m(1,1)

“tr
ea

ted
” c

ity

counterfactual m(1,0)+[m(0,1)-m(0,0)]

Diff-in-diff = 
m(1,1) - 
{m(1,0)+[m(0,1)-m(0,0)]}
= [m(1,1)-m(1,0)]
  -[m(0,1)-m(0,0)]

m(0,1)-m(0,0)

Figure 11.1: Difference-in-differences.

11.3 ATT Identification

This section formalizes the above intuition, within the potential outcomes framework.
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We need to define treated and untreated potential outcomes in both the before and
after periods. To avoid confusion with time period t, now superscript 1 denotes the treated
potential outcomes, and superscript 0 for untreated; and the t subscript denotes the time
period. That is, period t treated and untreated potential outcomes are respectively Y 1

t

and Y 0
t . Thus, the period t ATT is

ATTt ≡ E(Y 1
t − Y 0

t | X = 1). (11.5)

Assumption A11.1 (parallel trends). The parallel trends assumption is that

E(Y 0
2 | X = 1)− E(Y 0

1 | X = 1)

= E(Y 0
2 | X = 0)− E(Y 0

1 | X = 0).
(11.6)

Discussion Question 11.3 (before-before trends). Imagine you also observe the period
before the “before” period, t = 0. In your data, when you compare the change in average
Y from the before-before period to the before period, you notice that the eventually-
treated group changes by almost exactly the same amount as the untreated group (and
confidence intervals are very short/precise). That is, Ê(Y1 | X = 1) − Ê(Y0 | X = 1) ≈
Ê(Y1 | X = 0)− Ê(Y0 | X = 0).

a) Why is this related to parallel trends (A11.1)?
b) Why does this not prove that the parallel trends assumption holds true (approxi-

mately)?

Theorem 11.1 (DiD identification). Under Assumptions A4.1 and A11.1 and notation
from (11.1), the ATT at t = 2 defined in (11.5) is identified by

ATT2 = [m2(1)−m1(1)]− [m2(0)−m1(0)].

Proof. Starting from (11.5) and using linearity,

ATT2 ≡ E(Y 1
2 − Y 0

2 | X = 1) = E(Y 1
2 | X = 1)− E(Y 0

2 | X = 1)

=

=m2(1)︷ ︸︸ ︷
E(Y2 | X = 1)−E(Y 0

2 | X = 1), (11.7)

using the fact that we observe Y2 = Y 1
2 given X = 1. Rearranging (11.6),

E(Y 0
2 | X = 1) = E(Y 0

1 | X = 1) + E(Y 0
2 | X = 0)− E(Y 0

1 | X = 0)

= E(Y1 | X = 1) + E(Y2 | X = 0)− E(Y1 | X = 0)

= m1(1) +m2(0)−m1(0),

using the fact that the untreated potential outcome is the observed outcome for everyone
in t = 1 and for X = 0 in t = 2. Plugging back into (11.7),

ATT2 = m2(1)− E(Y 0
2 | X = 1) = m2(1)− [m1(1) +m2(0)−m1(0)]

= [m2(1)−m1(1)]− [m2(0)−m1(0)].
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Discussion Question 11.4 (DiD with targeted treatment). Let Y = 1 if an individual
is employed sometime during the month, otherwise Y = 0. Imagine there is a job training
program, but it has zero effect on anybody, so untreated and treated potential outcomes
are equal to each other and thus equal to the observed outcome: Y 0

t = Y 1
t = Yt for t = 1, 2.

Assume that “after” outcomes are independent of “before” outcomes, Y2 ⊥⊥ Y1. Finally,
imagine the program targets unemployed individuals, so that everyone with Y1 = 0 then
receives treatment while everyone with Y1 = 1 does not.

a) Explain why Assumption A11.1 fails.
b) Will the DiD estimator have positive or negative bias? Why?
c) How would such bias affect our policy decision if we falsely assume our DiD estimator

is accurate? Specifically, will we be more likely to continue this ineffective program,
or will it actually help us realize the program doesn’t work?

11.4 Estimation by Regression

=⇒ Kaplan video: Fully Saturated Model Interpretation

The statistical object from Theorem 11.1 can be estimated by OLS. This section is
largely from Section 9.3 of Kaplan (2022a).

Notationally, let Xit1 be the treatment group dummy with Xit1 = 1 if individual i is
in the treated group and Xit1 = 0 otherwise, and let Xit2 = 1{t = 2} be a time dummy
with Xit2 = 1 in period t = 2 and Xit2 = 0 otherwise (in period t = 1).

Consider the following CMF model in error form,

Yit =

≡m(Xit1,Xit2)︷ ︸︸ ︷
β0 + β1Xit1 + β2Xit2 + β3Xit1Xit2+Vit, E(Vit | Xit1, Xit2) = 0. (11.8)

This is an example of a fully saturated model because it is flexible enough to allow a
different CMF value for each value of (X1, X2), so the linear-in-parameters functional form
is not restrictive. Logically, having the same number (four) of possible values of (X1, X2)
as βj parameters is necessary but not sufficient for the model to be fully saturated.

Interpretation of the coefficients requires writing them in terms of different CMF
values. First, each CMF value can be written in terms of the βj :

m(x1, x2) = β0 + (β1)(x1) + (β2)(x2) + (β3)(x1)(x2),

m(0, 0) = β0 + (β1)(0) + (β2)(0) + (β3)(0)(0) = β0, (11.9)
m(0, 1) = β0 + (β1)(0) + (β2)(1) + (β3)(0)(1) = β0 + β2, (11.10)
m(1, 0) = β0 + (β1)(1) + (β2)(0) + (β3)(1)(0) = β0 + β1, (11.11)
m(1, 1) = β0 + (β1)(1) + (β2)(1) + (β3)(1)(1) = β0 + β1 + β2 + β3. (11.12)

https://youtu.be/ZMpMQO_TIHg
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From (11.9)–(11.12) and their differences,

(11.9)︷ ︸︸ ︷
β0 = m(0, 0), (11.13)

β1 =

(11.11) minus (11.9)︷ ︸︸ ︷
(β0 + β1)− β0 = m(1, 0)−m(0, 0), (11.14)

β2 =

(11.10) minus (11.9)︷ ︸︸ ︷
(β0 + β2)− β0 = m(0, 1)−m(0, 0), (11.15)

β3 = [β2 + β3]− [β2] =

(11.12) minus (11.11)︷ ︸︸ ︷
[(β0 + β1 + β2 + β3)− (β0 + β1)]−

(11.10) minus (11.9)︷ ︸︸ ︷
[(β0 + β2)− (β0)]

=

difference-in-differences︷ ︸︸ ︷
difference︷ ︸︸ ︷

[m(1, 1)−m(1, 0)]−
difference︷ ︸︸ ︷

[m(0, 1)−m(0, 0)] (11.16)
= [m(1, 1)−m(0, 1)]− [m(1, 0)−m(0, 0)] (11.17)

=

(11.12) minus (11.10)︷ ︸︸ ︷
[(β0 + β1 + β2 + β3)− (β0 + β2)]−

(11.11) minus (11.9)︷ ︸︸ ︷
[(β0 + β1)− (β0)] .

This shows the same difference-in-differences structure seen in (11.4) and Figure 11.1.
Using (11.13)–(11.17), the four βj in (11.8) have the following interpretations.

• β0 = m(0, 0) is the mean Y in the subpopulation with X1 = 0 and X2 = 0 (untreated
group, before period). Caution: generally β0 ̸= E(Y ).

• β1 = m(1, 0) − m(0, 0) is the mean Y difference between X1 = 1 and X1 = 0
individuals (treated vs. untreated group) within the X2 = 0 subpopulation (before
period). Caution: generally β1 ̸= E(Y | X1 = 1) − E(Y | X1 = 0); it additionally
conditions on X2 = 0.

• β2 = m(0, 1) − m(0, 0) is the mean Y difference between X2 = 1 and X2 = 0
individuals (after vs. before) within the X1 = 0 subpopulation (untreated group).
Caution: generally β2 ̸= E(Y | X2 = 1)− E(Y | X2 = 0); it additionally conditions
on X1 = 0.

• β3 = [m(1, 1) − m(1, 0)] − [m(0, 1) − m(0, 0)] is the mean Y difference associated
with X2 in the X1 = 1 subpopulation minus the mean Y difference associated with
X2 in the X1 = 0 subpopulation, i.e., the mean before/after difference in the treated
group minus the mean before/after difference in the untreated group.

• β3 = [m(1, 1)−m(0, 1)]− [m(1, 0)−m(0, 0)] is also the mean Y difference associated
with X1 in the X2 = 1 subpopulation minus the mean Y difference associated with
X1 in the X2 = 0 subpopulation, i.e., the mean treated/untreated difference in the
after period minus the mean treated/untreated difference in the before period.
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Discussion Question 11.5 (diff-in-diff CMF). Consider the running minimum wage
example, where Yit is annual labor income of individual i in year t (in dollars), Xit1 = 1 if
the individual lives in our city with the minimum wage increase (and Xit1 = 0 if they live
in the other city without the minimum wage change), and Xit2 = 1{t = 2} is the after-
period time dummy. Consider the estimated CMF m̂(x1, x2) = β̂0+ β̂1x1+ β̂2x2+ β̂3x1x2.

a) Interpret β̂0.
b) Interpret β̂1.
c) Interpret β̂2.
d) Interpret β̂3.



Chapter 12

Fixed Effects Regression

Unit learning objectives for this chapter

12.1. Describe the fixed effects approach to solving OVB with panel data, both mathe-
matically and intuitively. [TLOs 1–3]

12.2. Judge whether or not the key identifying assumptions hold in specific real-world
examples. [TLO 4]

This chapter describes the fixed effects (FE) regression approach with panel data,
to identify structural coefficients in the presence of a particular type of omitted variable
bias.

Optional resources for this chapter

• Stata: built-in commands xtset and xtreg

• R: package plm (Croissant and Millo, 2008) with function plm(), where argu-
ment index=c('id','year') specifies the individal and year identifier vari-
ables (i and t), model='pooling' runs pooled OLS, and model='within'
runs FE, with time effects most easily added by argument effect='twoways
'; and cluster-robust SE can be computed through the vcovHC() function in
the sandwich package (Zeileis, 2004) with for example cluster='group' and
method='arellano' (and type='HC0', although they differ from Stata’s by a
degree-of-freedom adjustment (Stata’s are slightly larger); or you can just use
Stata and it’s just one line of code with zero packages.
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12.1 Structural Model

Consider the following structural model, with notation as in Section 11.1.1:

Yt = β0 +X
′
tβ +

unobserved︷ ︸︸ ︷
C + Vt , (12.1)

where (unlike in Parts I and II) regressor vector Xt does not include an intercept term.
Assume the idiosyncratic error term Vt is exogenous (where “idiosyncratic” refers to
it varying across both individuals and time), so the only threat to identification is C.
This model allows omitted variable bias through the unobserved C, but it imposes other
restrictions: the model is linear-in-parameters, C is additive (not interacting with Xt),
and C is constant over time (no t subscript). More precisely: the structural error term
Vt includes any deviations from linearity, additive separability of C, or time-invariance
of C, which may make exogeneity less plausible. More optimistically, even if we don’t
fully believe these conditions, small violations may not introduce much bias; for example,
maybe C is not literally time-invariant, but it varies very slowly over decades, and we
have a three-year sample. As before, we could also add an i subscript to each random
variable in (12.1), with the same meaning. The goal is to identify and estimate structural
parameter vector β, despite the OVB caused by C.

Discussion Question 12.1 (FE: wage model). Consider the structural model (12.1)
where Y is log wage, X includes years of education and experience (as well as their
squares and interaction/product), and C aggregates unobserved abilities (beyond those
gained through education) that determine wage, like social skills, perseverance, etc.

a) Explain one real-world reason we might think C interacts withX, rather than being
additively separable.

b) What do you think about the assumption that C is time-invariant in this example?
Explain.

Model (12.1) has a variety of names. It could be called an unobserved effects
model, as in Wooldridge (2010, Ch. 10). Besides “unobserved effect,” C can also be called
unobserved heterogeneity (a more general term of which this form is a special case) or
individual-specific heterogeneity or individual effects or a fixed effect, or it can be seen as
a random intercept, using the terminology of random coefficient models (Section 4.2.2).
Sometimes (12.1) is called a fixed effects regression model, but “fixed effects” refers more
specifically to assumptions about C rather than the structural model itself. To any of
these names may be added any subset of the additional terms “panel,” “panel data,” and
“regression.”



12.2. POOLED OLS AND RANDOM EFFECTS 173

Beyond Our Scope

What of the constant β is replaced by a vector of random coefficients (Section 4.2.2)?
Under certain conditions, the FE approach can still identify the mean (across indi-
viduals) of the individual-specific coefficient vector βi. For example, see Section 11.7
of Wooldridge (2010) and references therein, as well as Carlson and Joshi (2022) who
additionally allow for sample selection.

12.2 Pooled OLS and Random Effects

What happens if we simply run OLS regression to estimate (12.1)? We can use our OVB
results from Theorem 6.1 and Corollary 6.2, where here γ = 1 and Q = C. Those results
say we have asymptotic bias if and only if C is correlated with Xt, Cov(C,Xt) ̸= 0.

To think about such correlation, recall each individual in the population is represented
by (C,X ′

1, . . . ,X
′
T , Y1, . . . , YT ). For example, with scalar X for simplicity, if individuals

with high C tend to have high X1 and generally high Xt, and individuals with low C
tend to have low Xt, then Cov(C,Xt) > 0. That is, we are thinking about correlation in
the cross-sectional dimension, because C is time-invariant.

Conversely, if C affects Y but is not correlated withX, then the structural coefficients
equal LP coefficients that OLS can estimate consistently.

The pooled OLS (POLS) estimator simply uses all the Yit and Xit observations
together, without regard for the i or t value, and can be written in the following notation.
First, rewrite the structural model (12.1) as

Yit =X
′
itβ +

≡Uit︷ ︸︸ ︷
Ci + Vit, (12.2)

where now each Xit includes 1 as the first element (so the first element of β is the
intercept). Let

Y ≡ (Y11, Y12, . . . , Y1T , Y21, . . . , Y2T , . . . , YnT )
′,

an nT × 1 column vector, and define U in the same order. Let

Xi = (Xi1, . . . ,XiT )
′

be the n× dim(β) regressor matrix for individual i that stacks the row vectors X ′
it with

t = 1, . . . , T , and stacking these Xi gives

X ≡

X1
...
Xn

.
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Given these definitions, the pooled OLS estimator has the familiar form

β̂POLS = (X ′X)−1X ′Y . (12.3)

Assumption A12.1 (contemporaneous exogeneity). The error term Ut is contempo-
raneously exogenous in the sense that E(XtUt) = 0 for each t = 1, . . . , T , where
“contemporaneous” refers to having the same time period t subscript on both the X and
U inside the expectation.

Proposition 12.1 (pooled OLS). Given structural model (12.2), if Assumption A12.1
holds, then the structural β is also the vector of linear projection coefficients in LP(Yt |
Xt) (assuming they are well-defined), which can be estimated under relatively general
conditions (like iid sampling of individuals from the population) by OLS regression of Yit
on Xit.

Proof. See Section 12.A.

The random effects (RE) estimator makes even stronger assumptions than POLS,
so it is not discussed here. For example, see Assumption RE.1 (p. 292) of Wooldridge
(2010), which assumes the stronger “strict exogeneity” condition (Assumption A12.2 be-
low) instead of the weaker contemporaneous exogeneity condition of Assumption A12.1.
If the assumptions hold, then the RE estimator is more efficient than POLS (or other
estimators), but if not, then the RE estimator is not even consistent. In line with this text-
book’s focus on identification, the focus below is instead on how to identify the structural
coefficients under weaker assumptions than required by POLS.

12.3 Two-Period Case

Now assume the unobserved heterogeneity C causes OVB. Let T = 2 for intuition and to
connect with Chapter 11.

Because C is time-invariant and enters the structural model (12.1) additively, we can
first-difference the model to remove it, i.e., subtract the model for t = 1 from the model
for t = 2. It is also very important that β is time-invariant. Using the notation from
Section 11.1.1 like ∆Yt = Yt − Yt−1, and noting we only observe the first-differences at
t = 2 (because we do not observe t = 0), the model becomes

∆Y2 = (β0 − β0) + ∆X ′
2β + (C − C) + ∆V2 = ∆X ′

2β +∆V2. (12.4)

This looks promising: the troublesome C is gone, and the vector β is the same structural
coefficient from our original model in (12.1). The natural question is: what if we simply
regress ∆Y2 on ∆X2 by OLS? As usual, the OLS estimand is fundamentally the linear
projection coefficient vector, so our identification question reduces to whether or not ∆V2

satisfies the LP error property in (12.4).
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Beyond Our Scope

The elegant removal of C in (12.4) does not work for “nonlinear” panel models such as
quantile regression (and other non-quantile models, too). Essentially, unlike for the
mean, the difference of medians does not equal the median difference, and similarly
for other quantiles. If we try to control for C by including a dummy variable for each
individual i, then we have n (or n − 1) such dummies and n − 1 parameters, which
is problematic if we only have T = 2 and thus 2n total observations, although letting
T → ∞ allows us to estimate the individual FE values themselves (the individual
dummy coefficients). And, for quantile models, there are yet further complications;
for example, see Section 7.3 of Kaplan (2021) and references therein.

The desired LP error property is

0 = E[∆X2∆V2] = E[(X2 −X1)(V2 − V1)]

= E(X2V2)− E(X2V1)− E(X1V2) + E(X1V1). (12.5)

The contemporaneous exogeneity in Assumption A12.1 makes the first and last terms
zero, but it does not restrict the middle two terms. That is, even if the idiosyncratic
error Vt is contemporaneously exogenous, the first-differenced model may not be a linear
projection. Thus, we need a stronger type of exogeneity called strict exogeneity that
requires the regressors and idiosyncratic errors uncorrelated across any two time periods.
(Sometimes it is defined more strongly in terms of a conditional mean restriction rather
than correlation.)

Assumption A12.2 (strict exogeneity). The error term Vt is strictly exogenous in the
sense that E(XsVt) = 0 for any combination of s = 1, . . . , T and t = 1, . . . , T .

Discussion Question 12.2 (exogeneity example). Let Y be a grocery store’s weekly
sales revenue in dollars, and let X be the store’s weekly average discount percentage (like
X = 10 if every product is on sale all week with a 10% discount). The structural model
from (12.1) is Yt = β0 + β1Xt + C + Vt.

a) Explain why a grocery store’s V1 value (i.e., week t = 1 sales shock) might affect
their X2 (week t = 2 discounts), specifically why a negative V1 might cause the
store to choose larger X2. (Hint: for example, consider perishable items that spoil
after 2 weeks in the store.)

b) How does your argument relate to strict exogeneity (A12.2)?
c) Assume the Vt are iid, the Xt are only determined by Vt−1, and β1 = 0 and C = 0.

Explain why if V1 is very negative, then we tend to see high (positive) Y2−Y1 values
and high X2 −X1. (A similar argument should suggest that if V1 is very positive,
then we’ll tend to see negative Y2 − Y1 and negative X2 −X1.)

d) Given that, if we regress ∆Y2 on ∆X2, what type of bias do we expect for our
estimator of the true structural β1 = 0?
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The other OLS/LP assumption (rank condition) that is usually innocuous requires
more thought here. In the basic cross-sectional linear projection model with Y and X,
the rank condition is that matrix E(XX ′) is invertible, so that the LPC [E(XX ′)]−1XY
is well-defined. This essentially requires that no regressor is “redundant” in the formal
sense of being a linear combination of other regressors; for example, we cannot have X1

in miles and X2 = 0.6X1 the same variable in kilometers. In the first-differenced model,
this is violated by any regressor that is time-invariant for all individuals, Xi1 = Xi2 for
all i = 1, . . . , n. For example, if our sample includes older adults whose years of education
is no longer changing, then we cannot include education, and we certainly cannot learn
about the original intercept β0 from (12.1). Intuitively, first-differencing not only removes
the time-invariant C effect, but also any other time-invariant effects, so we cannot learn
about the causal effect of any time-invariant regressor. Additionally, if our model includes
a time dummy for period t = 2, then its first-differenced value is 1 for all individuals, so
we cannot include any other regressor that automatically increases by 1 every period for
every individual. For example, if t is in years, then we cannot include an individual’s age
in years as a regressor, because age increases by 1 for all individuals between t = 1 and
t = 2. Intuitively, we cannot distinguish between the effect of the world changing from
t = 1 to t = 2 and the the effect of everyone being one year older.

One “exception” is that we can learn about how the coefficient on a time-invariant
regressor changes across time periods. This is not actually an “exception” because we
can’t learn about the actual level/value of the coefficient, only it’s relative value across
different t. To do this, we can interact the time-invariant regressor with time dummies.
For example, in our T = 2 case, we can include Wit ≡ Xi 1{t = 2} as a regressor because
it is time-varying: its value is Wi1 = 0 in the first period (for all i), whereas generally
Wi2 ̸= 0.

Assumption A12.3 (FD rank condition). The matrix E(∆X2∆X ′
2) is invertible.

The estimator running OLS on (12.4) is called the first-difference estimator (FD
estimator), and the related fixed effects estimator (FE estimator) is equivalent with
T = 2 but differs with T > 2. Before running OLS, instead of applying the FD transfor-
mation to the structural model, the FE estimator applies the within transformation
(or fixed effects transformation), demeaning each observation by its within-individual
average (across t = 1, . . . , T ). Recall such averages are denoted Ȳi, X̄i, etc.; with T = 2,
they are simply Ȳi = (Y1 + Y2)/2, etc. The demeaned Y values are

Yi2 − Ȳi = Yi2 −
Yi1 + Yi2

2
=

Yi2 − Yi1
2

Yi1 − Ȳi = Yi1 −
Yi1 + Yi2

2
=

Yi1 − Yi2
2

= −(Yi2 − Ȳi).

Similarly,

Xi2 − X̄i =
Xi2 −Xi1

2
, Xi1 − X̄i = −(Xi2 − X̄i).
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That is, for both Y and X, the t = 1 demeaned values are exactly the negative of the
t = 2 demeaned values, so they do not provide any additional data. Note also that the
t = 2 values are simply the first-differenced values divided by 2, so in this T = 2 case,
regressing the demeaned Yit − Ȳi on the demeaned Xit − X̄i is identical to regressing
the first-differenced versions, so Theorem 12.2 applies equally to each. Later sections will
distinguish the two in the general T setting.

Theorem 12.2 (two-period panel identification). Under Assumptions A12.2 and A12.3,
the structural slope coefficient vector β in the structural model (12.1) is identified and
equal to the linear projection coefficient vector of LP(∆Y2 | ∆X2):

β = [E(∆X2∆X
′
2)]

−1 E(∆X2∆Y2).

Proof. From (12.5), the linear projection error property holds in the first-differenced
model if

0 = E(X2V2)− E(X2V1)− E(X1V2) + E(X1V1),

all four of which equal zero by Assumption A12.2. The linear projection coefficients are
well-defined because of Assumption A12.3.

This model can be more explicitly connected to the DiD model in Chapter 11. Con-
tinue with T = 2. Let Dit = 1 if individual i is treated in period t, otherwise Dit = 0.
Let Wit = 1{t = 2} be a time dummy for the “after” period. Let Git = Di2, so Git = 1
in both periods if individual i is ever treated, otherwise Git = 0 in both periods; that is,
Git is the group dummy. The DiD model had Yit = β0+β1Git+β2Wit+β3Dit+Vit with
E(Vit | Git,Wit) = 0, noting that GitWit = Dit. Noting Git does not depend on t, nor does
Wit depend on i, we can write this equivalently as Yit = β0 + β1Gi + β2Wt + β3Dit + Vit.
This is almost a special case of (12.1), except groups of individuals have the same Gi

rather than everyone having (potentially) a different fixed effect Ci. First-differencing
and using ∆W2 = W2 −W1 = 1− 0 = 1,

∆Yi2 = β2 + β3∆Di2 +∆Vi2,

where ∆Di2 = 1 for treated individuals and ∆Dit = 0 for untreated individuals. So
the FD/FE estimator can also estimate the ATT parameter β3. Recalling results for
simple regression with a single binary regressor like in Section 6.3.2 of Kaplan (2022a),
β2 = E(∆Y2 | ∆D2 = 0) and β2+β3 = E(∆Y2 | ∆D2 = 1). Noting ∆D2 = 1 is equivalent
to being in the treated group G = 1, and using linearity, E(∆Y2 | ∆D2 = 0) = E(Y2−Y1 |
G = 0) = E(Y2 | G = 0)− E(Y1 | G = 0), which is the same as β2 from Chapter 11, and

E(∆Y2 | ∆D2 = 1) = E(Y2 − Y1 | G = 1) = E(Y2 | G = 1)− E(Y1 | G = 1),

the before/after mean difference for the treated group. Subtracting β2 yields β3 and the
same “difference-in-differences” interpretation: the before/after mean difference for the
treated group minus the before/after mean difference for the untreated group.
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12.4 Two-Way Fixed Effects

With any T ≥ 2, the two-way fixed effects (TWFE) estimator is essentially the FE
estimator when time effects (dummies for each time period) are included. That is, the
“two ways” are 1) individual effects and 2) time effects. More precisely, there must be
T − 1 time dummies (not T ) to avoid violating the rank condition (i.e., to avoid perfect
multicollinearity), but as usual Stata will drop the extra one if you accidentally include
it, so you don’t need to worry too much about this. Usually the t = 1 dummy is excluded,
so t = 1 is interpreted as the base period or reference period, unless some other t is more
salient (like the period before a major policy change). In the large-n, fixed-T framework,
including time effects does not require any special consideration like the individual effects
do (FE or FD transformation); you simply include the corresponding time dummies.

The FE and FD estimators are the same as in the T = 2 case of Section 12.3. That
is, FD runs OLS on the first-differenced model, regressing ∆Yit on ∆Xit for t = 2, . . . , T
(and i = 1, . . . , n); and FE runs OLS on the within-transformed model, regressing Yit− Ȳi
on Xit − X̄i, using all combinations of i = 1, . . . , n and t = 1, . . . , T .

Note that strict exogeneity is sufficient for FD identification, though somewhat stronger
than necessary. With general T , we need the same condition as in (12.5), but replacing
the subscript values 1 and 2 with t− 1 and t:

0 = E(∆Xt∆Vt) = E(XtVt)− E(XtVt−1)− E(Xt−1Vt) + E(Xt−1Vt−1).

These terms all equal zero if

E(XsVt) = 0, |s− t| ≤ 1, (s, t) ∈ {1, . . . , T}2, (12.6)

whereas strict exogeneity says this must hold for any (s, t), not only |s− t| ≤ 1.

Assumption A12.4 (FD rank condition). Using notation ∆Xt ≡Xt−Xt−1, the matrix∑T
t=2 E(∆Xt∆X

′
t) is invertible (full rank).

Assumption A12.5 (FE rank condition). Using notation X̄ ≡ 1
T

∑T
t=1Xt, the matrix∑T

t=1 E[(Xt − X̄)(Xt − X̄)′] is invertible (full rank).

Theorem 12.3 (FE/FD identification). Given the structural model in (12.1) with coef-
ficient vector β, let strict exogeneity Assumption A12.2 hold. i) If additionally Assump-
tion A12.4 holds, then β is identified and equal to

β =

[ T∑
t=2

E(∆Xt∆X
′
t)

]−1 T∑
t=2

E(∆Xt∆Yt).

ii) If Assumption A12.5 holds instead of A12.4, then β is identified and equal to

β =

{ T∑
t=1

E[(Xt − X̄)(Xt − X̄)′]

}−1 T∑
t=1

E[(Xt − X̄)(Yt − Ȳ )],

using notation Ȳ ≡ 1
T

∑T
t=1 Yt and X̄ ≡ 1

T

∑T
t=1Xt.
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Proof. i) Applying the first-difference transformation to the structural model in (12.1)
yields ∆Yt = ∆X ′

tβ + ∆Vt, and plugging that into the expression provided in Theo-
rem 12.3,

[ T∑
t=2

E(∆Xt∆X
′
t)

]−1 T∑
t=2

E(∆Xt∆Yt)

=

[ T∑
t=2

E(∆Xt∆X
′
t)

]−1 T∑
t=2

E[∆Xt(∆Xt′β +∆Vt)]

= β +

[ T∑
t=2

E(∆Xt∆X
′
t)

]−1 T∑
t=2

E[∆Xt∆Vt]. (12.7)

For any t = 2, . . . , T ,

E[∆Xt∆Vt] = E[(Xt −Xt−1)(Vt − Vt−1)]

= E[XtVt −XtVt−1 −Xt−1Vt +Xt−1Vt−1]

= E[XtVt]− E[XtVt−1]− E[Xt−1Vt] + E[Xt−1Vt−1]

= 0− 0− 0+ 0

by Assumption A12.2. Plugging this back into (12.7), the far-right term is zero, which
zeroes out that entire term assuming the matrix inverse indeed exists (as in Assump-
tion A12.4), leaving only the structural β as desired.

ii) Applying the “within transformation” to the structural model in (12.1) yields

Yt − Ȳ = (Xt − X̄)′β + (Vt − V̄ ),

and plugging that into the expression provided in Theorem 12.3,

{ T∑
t=1

E[(Xt − X̄)(Xt − X̄)′]

}−1 T∑
t=1

E[(Xt − X̄)(Yt − Ȳ )]

=

{ T∑
t=1

E[(Xt − X̄)(Xt − X̄)′]

}−1 T∑
t=1

E{(Xt − X̄)[

=Yt−Ȳ︷ ︸︸ ︷
(Xt − X̄)′β + (Vt − V̄ )]}

= β +

{ T∑
t=1

E[(Xt − X̄)(Xt − X̄)′]

}−1 T∑
t=1

E[(Xt − X̄)(Vt − V̄ )]. (12.8)

Expanding the final summand (for any t = 1, . . . , T ) and using the linearity property of
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the expectation operator,

E[(Xt − X̄)(Vt − V̄ )] = E[(Xt −
1

T

T∑
s=1

Xs)(Vt −
1

T

T∑
s=1

Vs)]

=

=0︷ ︸︸ ︷
E(XtVt)−

1

T

T∑
s=1

=0︷ ︸︸ ︷
E(XtVs)−

1

T

T∑
s=1

=0︷ ︸︸ ︷
E(XsVt)

+
1

T 2

T∑
r=1

T∑
s=1

=0︷ ︸︸ ︷
E(XrVs)

= 0,

where all the zeros are due to Assumption A12.2. Plugging this back into (12.7), the far-
right term is zero, which zeroes out that entire term assuming the matrix inverse indeed
exists (as in Assumption A12.5), leaving only the structural β as desired.

The derivation of asymptotic properties (consistency and asymptotic normality) is
complicated somewhat by the multiple time periods, but the general strategy is the same
as for OLS: write the centered (or centered and scaled) estimator, then use exogeneity
to apply a WLLN or CLT to the term involving the idiosyncratic error Vit. Because T
is finite and does not change with n, we just need to sum over t but otherwise use the
standard WLLN/CLT as n → ∞.

12.5 Other Approaches

The main alternative to the FE approach is the correlated random effects (CRE)
approach, going back (at least) to Mundlak (1978). As with FE, CRE allows C to be
correlated withX. However, unlike FE, the dependence is restricted in some way, often by
assuming a particular model of the dependence that can be estimated. This is particularly
helpful with “nonlinear” models for which the FE or FD transformation cannot be used
to remove the unobserved C from the model. It can also be used to allow time-invariant
regressors, unlike FE/FD.

The Hausman and Taylor (1981) model can also allow for some time-invariant regres-
sors as long as they are uncorrelated with the fixed effect; for example, see Section 11.3
of Wooldridge (2010).

12.6 Other Considerations

There have been many methodological papers recently about two-way fixed effects and
difference-in-differences. One consideration is what to do when there is a binary treatment
but different individuals begin treatment in different periods, as addressed by Callaway
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and Sant’Anna (2021b). If you end up using TWFE/DiD for research, you would want to
learn more about the latest developments. Thankfully, many authors now provide Stata
and/or R packages implementing their methodology, such as the Stata package csdid
by Callaway, Rios-Avila, and Sant’Anna (2021) or the R package did by Callaway and
Sant’Anna (2021a).

12.7 Cluster-Robust Standard Errors

With panel data, you almost always want to use cluster-robust standard errors.
Similar to heteroskedasticity-robust standardard errors, this means you want standard
errors that are still accurate even when you have clusters of related observations, like for
all the time periods for a given individual. Other related terms include “clustering your
standard errors” or “clustered standard errors,” or “clustered sampling.” Unfortunately,
“clustering” has a completely different meaning in the world of statistics and machine
learning (Wikipedia link here).

12.7.1 Types of Sampling

=⇒ Kaplan video: Types of Sampling

For intuition, imagine we want to estimate the population mean using a sample of four
observations. It helps me to think of four empty buckets; our sampling procedure with
fill each bucket with a single number (realization) from the population. If we have iid
sampling, then each bucket takes a realization from the full population, without regard
for the other buckets or their values.

If we have stratified sampling, then before sampling we label each bucket with the
name of a particular group (like undergraduate or graduate student), and each bucket
takes a realization from the corresponding subpopulation (stratum; plural strata), not
the full population. Compared with iid, we could still sample independently, but these
bucket labels violate the “identically distributed” property, assuming our variable has a
different distribution in the two subpopulations (like GPA for undergraduate and graduate
students). The benefit is that we can better enforce that the sample is representative of
the population, at least in terms of group proportions, or we can “over-sample” certain
groups who may be difficult to study if we simply took an iid sample; for example, if we
randomly sample 50 people in Columbia then we may have zero unhoused individuals,
which is not helpful if our research question pertains to that subpopulation.

If we have clustered sampling, then before sampling we might label buckets 1 and
2 as coming from the same individual (in different time periods) and label buckets 3 and
4 as coming from another individual (in different periods). That is, before sampling, we
do not know which individual will be sampled for buckets 1 and 2, but we know that it
will be the same individual, so the buckets are linked together.

https://en.wikipedia.org/wiki/Cluster_analysis
https://youtu.be/3u8dm9_MfkA
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The following examples are modified from Section 3.2 of Kaplan (2022a), which in-
cludes additional discussion of iid, stratified, and clustered sampling.

Example 12.1 (Kaplan video). Imagine randomly picking a Mizzou student ID number,
then randomly picking a 2nd, then 3rd, then 4th. The corresponding Yi are both inde-
pendent and identically distributed (iid). They are independent because each ID number
is randomly drawn without any consideration of how the other numbers are drawn, and
without any consideration of the other observed Yi values. They are identically distributed
because each ID number is drawn from the same population (anyone who has a Mizzou
student ID).

Example 12.2 (Kaplan video). The following procedure illustrates stratified sampling.
Each Mizzou student is classified as either a resident of Missouri (“in-state”) or not (“non-
resident”). Imagine buckets 1 and 2 say “in-state,” while buckets 3 and 4 say “non-resident”:
observations Y1 and Y2 are from in-state students, while Y3 and Y4 are from non-resident
students. For most variables, the in-state distribution differs from the non-resident distri-
bution, so the distribution of Y1 and Y2 (in-state) differs from the distribution of Y3 and
Y4 (non-resident). Thus, sampling is not identically distributed. The observations could
still be independently sampled, although they may not be.

Example 12.3 (Kaplan video). The following procedure illustrates clustered sampling
with panel data. Imagine randomly picking two Mizzou students (like with random ID
numbers), then observing them this semester and next semester. For example, imagine
bucket 1 contains the first student’s GPA this semester, bucket 2 contains the same
student’s GPA next semester, and buckets 3 and 4 contain the other student’s GPAs
from this semester and next semester. Buckets 1 and 2 (Y1 and Y2) are probably both
high or both low, rather than one high and one low, and similarly for buckets 3 and 4 (Y3
and Y4). That is, buckets 1 and 2 are correlated, and 3 and 4 are correlated.

Example 12.4 (Kaplan video). The following procedure illustrates clustered sampling
without panel data. Imagine randomly picking a class (like my intro econometrics class)
at Mizzou, and filling the first two buckets (Y1 and Y2) with two random students from
that class; then randomly picking another class (like intro philosophy), and another two
students for the other buckets (Y3 and Y4). Observations are identically distributed (be-
cause each Yi has the same probability of getting any particular student in the population)
but probably not independent. For example, dependence may come from students in the
same class being similarly affected by their shared experience. Here, buckets 1 and 2 are
correlated, and 3 and 4 are correlated, but not 1 and 3, nor 2 and 4, etc.

Discussion Question 12.3 (sampling types). For each of the following, explain why
you think sampling is clustered, stratified, iid, or something else or not sure.

a) To decrease the per-respondent survey cost, a survey team in a rural area randomly
selects five villages and then surveys each individual within that village.

https://youtu.be/45lkFUSLfjk
https://youtu.be/45lkFUSLfjk
https://youtu.be/45lkFUSLfjk
https://youtu.be/45lkFUSLfjk
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b) In a survey of 1000 respondents, to help the sample be representative of the full US
population, a survey team decides to have the first 19 individuals randomly sampled
from Missouri, and the other 981 randomly sampled from other states.

c) When you load a survey dataset with n = 20 individuals, you notice exactly half
are female.

d) You randomly select 40 firms from the Fortune 500 and track their monthly sales
revenue over one calendar year.

12.7.2 SE for Panel Regression

Below, first intuition is developed in the simplest intercept-only model; then POLS and
FE/FD results are given. The goal is not to memorize all the formulas, but rather to let
the math help you understand why an estimator’s asymptotic variance is different (and
often larger) with clustered sampling compared to iid sampling.

Notation reminder: because we have iid sampling across individuals, the i subscript is
dropped when writing population random variables. For example, in the population, we
have Yt and Y = (Y1, . . . , YT ). Because sampling is iid over i, for any i, E(Yit) = E(Yt),
and similarly E(Yi) = E(Y ). However, we do not have iid across t, so dropping the t
subscript has a different meaning. Specifically, it refers to aggregating observations of
t = 1, . . . , T into a single vector or matrix. For example, Yi = (Yi1, . . . , YiT )

′ stacks
individual i’s Yit values, or Xi = (Xi1, . . . ,XiT )

′ stacks individual i’s regressor vectors
X ′

it.

Intercept-Only Model

To develop intuition, first consider POLS with Xit = 1, meaning we are simply trying to
estimate the population mean µ ≡ E(Y ), assuming it is the same for each t = 1, . . . , T ,
meaning E(Yit) = µ for each t (and i). The estimator is

µ̂ =
1

nT

n∑
i=1

T∑
t=1

Yit =
1

n

n∑
i=1

1

T

T∑
t=1

Yit. (12.9)

Centering and scaling,

√
n(µ̂− µ) =

1√
n

n∑
i=1

1

T

T∑
t=1

(Yit − µ). (12.10)

As we continue to use the fixed-T asymptotics (with n → ∞), for simplicity let T = 2, so

√
n(µ̂− µ) =

1√
n

n∑
i=1

1

2
[(Yi1 − µ) + (Yi2 − µ)]. (12.11)

To connect more explicitly with familiar results, we can define a mean-zero random
variable indexed only by i (not t). Specifically, let Zi ≡ (Yi1 − µ) + (Yi2 − µ), and recall
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that we (assume we) sample individuals i iid from the population. Thus, regardless of
correlation of Yit across t, the Zi are iid with mean zero. Dropping the i subscript to
write Z as the representative population individual,

E(Z) = E[(Y1 − µ) + (Y2 − µ)] =

=µ︷ ︸︸ ︷
E(Y1)−µ+

=µ︷ ︸︸ ︷
E(Y2)−µ = 0. (12.12)

Thus, we can apply the Lindeberg–Lévy CLT. Keeping the 1/T = 1/2 outside to
better parallel regression results later:

√
n(µ̂− µ) =

1

2

1√
n

n∑
i=1

Zi
d→ 1

2
N
(
0,Var(Z)

) d
= N(0,Var(Z)/4), (12.13)

Var(Z) = E(Z2) = E
{
[(Y1 − µ) + (Y2 − µ)]2

}
= Var(Y1) + Var(Y2) + 2Cov(Y1, Y2). (12.14)

If sampling is iid across both i and t, then the covariance Cov(Y1, Y2) is zero, so the
asymptotic variance Var(Z)/4 simplifies to Var(Yt)/2, where the 1/2 is because earlier
we only scaled by

√
n even though total we have 2n observations. But with panel data,

usually Cov(Y1, Y2) > 0, in which case iid-based standard errors are too small (and thus
confidence intervals too short, making it seem like less uncertainty than there really is).

To estimate Var(Z) = E(Z2), we can plug in our estimator µ̂ to get

V̂ar(Z) = Ê(Z2) =
1

n

n∑
i=1

Z2
i =

1

n

n∑
i=1

[(Yi1 − µ̂) + (Yi2 − µ̂)]2. (12.15)

We could also think of this in terms of residuals in the model Yit = µ+Vit. The error
term is Vit = Yit − µ, so the residuals are V̂it = Yit − µ̂, and the variance estimator is
equivalently

V̂ar(Z) =
1

n

n∑
i=1

(V̂i1 + V̂i2)
2 =

1

n

n∑
i=1

( 2∑
t=1

V̂it

)2
. (12.16)

For general T , we can write results more compactly in vector notation if we also ex-
plicitly write the “regressor” Xit = 1. Let Vi ≡ (Vi1, . . . , ViT )

′ andXi ≡ (Xi1, . . . , XiT )
′ =

(1, . . . , 1)′. Note

Zi =

T∑
t=1

Vit =X
′
iVi = V

′
iXi.

Thus, the variance (second moment) of Z and its estimator are

Var(Z) = E{

=
∑T

t=1 Vit︷ ︸︸ ︷
X ′V V ′X︸ ︷︷ ︸

=
∑T

t=1 Vit

}, V̂ar(Z) = Ê(Z2) =
1

n

n∑
i=1

=
∑T

t=1 V̂it︷ ︸︸ ︷
X ′

iV̂i V̂ ′
iXi︸ ︷︷ ︸

=
∑T

t=1 V̂it

. (12.17)

Because Zi is a scalar, we could write the expressions in multiple equivalent ways, but
X ′

iViV
′
iXi parallels the more general regression case below.
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POLS Regression

The intercept-only results generalize to POLS. Details of the proof are in Section 12.C.
The main point of Theorem 12.4 is to see that the asymptotic variance includes terms of
the form E[UsUtXsX

′
t] for s ̸= t. If sampling is iid across time, then these terms are all

zero, but with clustered sampling, generally they are not zero and often positive.

Theorem 12.4 (panel POLS asymptotic normality). Let LP(Yit | Xit) = X ′
itβ and

Uit ≡ Yit − LP(Yit | Xit). Assume individuals i are sampled iid from the population, but
dependence across t is not restricted. Assuming the needed population moments are finite
and that the matrix inverse exists,

√
n(β̂POLS − β) d→ N(0,Σ),

Σ ≡
[ T∑
t=1

E(XtX
′
t)

]−1

E

[( T∑
t=1

XtUt

)( T∑
t=1

XtUt

)′][ T∑
t=1

E(XtX
′
t)

]−1

.

Proof. Details are in Section 12.C. From (12.19),

√
n(β̂POLS − β) =

[
p→
∑T

t=1 E(XtX′
t) by (12.20)︷ ︸︸ ︷

1

n

n∑
i=1

T∑
t=1

XitX
′
it

]−1

d→N(0,Ω) by (12.21)︷ ︸︸ ︷
1√
n

n∑
i=1

T∑
t=1

XitUit
d→ N(0,Σ),

with Σ as defined in Theorem 12.4.

FE/FD Regression

FE/FD regression is essentially the same as POLS, except after the within transformation
or first-difference transformation. That is, we get the same result as Theorem 12.4, but
either replacing Xt with Xt − X̄ and replacing Ut with Vt − V̄ (for FE), or replacing Xt

with ∆Xt and replacing Ut with ∆Vt and replacing
∑T

t=1 with
∑T

t=2 (for FD). Practically,
the main point is that correlation across t adds terms to the asymptotic variance that
would be zero if we have independence across t (iid over it), so it is important to use
cluster-robust standard errors with FE/FD.

Stata

If you have already run xtset to tell Stata your panel variables (i and t variables),
then adding vce(robust) to any regression command computes analytic cluster-robust
standard errors, using the i variable as the cluster variable. You can also specify a different
cluster variable (or if xtset has not been run) with vce(cluster clustervar).
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Beyond Our Scope

The analytic cluster-robust SE in Stata may not be accurate if there are few and/or
very different (heterogeneous) clusters, and sometimes you may need “two-way” (or
multi-way) clustering in multiple dimensions. In that case, there are other methods
that can perform better, like randomization inference (permutation tests) or various
bootstraps. On Colin Cameron’s website,a there are some very detailed slides from
November 2022 about many different aspects of clustered standard errors (including
some Stata commands), and there is a corresponding survey paper with Doug Miller
coming in 2023(?).

ahttps://cameron.econ.ucdavis.edu/research/papers.html

https://cameron.econ.ucdavis.edu/research/papers.html


Appendix to Chapter 12

12.A Pooled OLS Asymptotic Theory

Proof of Proposition 12.1. Plugging (12.2) into (12.3) and using notation above,

β̂POLS = (X ′X)−1X ′Y

= (X ′X)−1X ′(Xβ +U)

= β + (X ′X)−1X ′U

= β + (X ′X/n)−1 1

n

T∑
t=1

n∑
i=1

XitUit.

As in the rest of this chapter, use the fixed-T asymptotic framework that lets n → ∞ while
keeping T constant. To emphasize this, while averaging over n (to apply WLLN/CLT),
we simply sum over t because no WLLN/CLT is used in the time dimension. Centering,

β̂POLS − β =

[ T∑
t=1

p→E(XtX′
t)︷ ︸︸ ︷

1

n

n∑
i=1

XitX
′
it

]−1 T∑
t=1

p→E(XtUt)=0︷ ︸︸ ︷
1

n

n∑
i=1

XitUit

p→
[ T∑
t=1

E(XtX
′
t)

]−1 T∑
t=1

0

= 0,

so the POLS estimator is consistent.
For asymptotic normality, scaling by

√
n like usual,

√
n(β̂POLS − β) =

[ T∑
t=1

p→E(XtX′
t)︷ ︸︸ ︷

1

n

n∑
i=1

XitX
′
it

]−1 T∑
t=1

d→N(0,Σt)︷ ︸︸ ︷
1√
n

n∑
i=1

XitUit
d→ N(0,Ω), (12.18)
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where the asymptotic covariance matrix depends on the E(XtX
′
t) as well as both Σt ≡

E(U2
tXtX

′
t) (assuming iid across i, or else a different formula depending on the depen-

dence across i) and the serial correlation across t of the XtUt vectors, which is generally
non-zero. Section 12.7 further discusses how to account for such correlation when com-
puting standard errors.

12.B Efficiency

The identification advantage of FE/FD over POLS (allowing C to be correlated with
regressors) generally comes at the price of efficiency. FE and FD use only the within
variation, i.e., the within-individual variation of Yit and Xit over time. POLS uses
within variation as well as between variation, i.e., the variation of Yit and Xit across
individuals. In the extreme, as discussed, for regressors that have only between variation
and not within variation (i.e., time-invariant regressors), FE and FD cannot identify
their effect, whereas there is at least some hope of learning about their effect from cross-
sectional variation. Less extreme, maybe the variables are not constant over time but have
very little variation over time (within individual) compared with the amount of between
variation. In that case, the FE and FD estimators have a lot of uncertainty, similar to
how the simple regression estimator of the linear projection slope Cov(Y,X)/Var(X) has
a lot of uncertainty (all else equal) if Var(X) is near zero.

In fact, recalling Section 3.10.2, it is possible to have real-world applications where
POLS is biased but its variance is so much smaller than FE/FD’s that the POLS mean
squared error is smaller than FE/FD’s. However, in that case the POLS confidence
intervals would not be valid (even approximately), whereas the FE confidence intervals
would be. That is, FE/FD’s lower efficiency may mean wider confidence intervals, but
they are still valid (asymptotically). Generally, economists tend to use FE or FD because
usually the threat of OVB (due to unobserved C) is perceived as the most important
consideration.

With T > 2, either FE or FD may be more efficient depending on the properties of the
idiosyncratic error. Essentially, if the idiosyncratic error is highly serially correlated, like
a random walk in the extreme case, then FD is more efficient, whereas if the idiosyncratic
error has low serial correlation, like iid in the extreme case, then FE is more efficient.
For example, see Assumptions FE.3 (p. 304) and FD.3 (p. 318) of Wooldridge (2010),
although note that even his exogeneity assumption (FE.1) is stronger (conditional mean
restrictions) than Assumption A12.2 here.

However, beyond efficiency, FE and FD can also differ in bias, which again is usu-
ally what economists are more concerned about. Specifically, if only contemporaneous
exogeneity holds (not strict exogeneity), then generally the FE bias is smaller than FD
bias, at least for larger T . Formal results under some additional assumptions are given
on pages 322–323 of Wooldridge (2010), showing that the FE bias is O(1/T ) and thus
decreasing to zero as T increases, whereas the FD bias is O(1) and thus not decreasing
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with T . However, if the idiosyncratic error is a unit-root process like a random walk, then
actually FD tends to be better than FE, even in terms of bias.

12.C POLS Cluster-Robust Standard Errors

Consider the POLS estimator and notation from Section 12.2. Here we assume Uit is a
linear projection error and β is the linear projection coefficient vector; whether or not β
also has a causal interpretation is irrelevant for the following. The centered and scaled
estimator was given in (12.18). Swapping the summations over i and t,

√
n(β̂POLS − β) =

[
1

n

n∑
i=1

T∑
t=1

XitX
′
it

]−1 1√
n

n∑
i=1

T∑
t=1

XitUit. (12.19)

As in the intercept-only case, given that T is fixed as n → ∞, we can think of∑T
t=1XitX

′
it as a single matrix-valued random variable associated with i, to which a

WLLN applies when we average over i = 1, . . . , n. That is, with Xt the representative
population individual’s period-t regressor vector,

1

n

n∑
i=1

T∑
t=1

XitX
′
it

p→ E

( T∑
t=1

XtX
′
t

)
=

T∑
t=1

E(XtX
′
t). (12.20)

Similarly, we can think of Zi ≡
∑T

t=1XitUit as a mean-zero random vector that
depends only on i (not t) and is thus iid and admits a CLT. This is the generalization of
Zi =

∑T
t=1 Vit from the intercept-only model (i.e., where Xit = 1). Thus,

1√
n

n∑
i=1

T∑
t=1

XitUit =
1√
n

n∑
i=1

Zi
d→ N(0,Ω), (12.21)

Ω = Var(Z) = E(ZZ ′) = E

[( T∑
t=1

XtUt

)( T∑
t=1

XtUt

)′]
. (12.22)

For example, with T = 2, this would be

E(X1X
′
1U

2
1 ) + E(X1X

′
2U1U2) + E(X2X

′
1U2U1) + E(X2X

′
2U

2
2 ). (12.23)

If we erroneously assume independence across t, then the middle two terms zero out. Thus,
if we only use heteroskedasticity-robust standard errors (that allow heteroskedasticity but
still assume independence across each observation), generally our confidence intervals will
not have the desired coverage probability, even with large samples (asymptotically).

As in the intercept-only case, we can estimate Ω by first computing residuals Ûit =
Yit −X ′

itβ̂ and then plugging into the sample version of the formula for Ω (replacing E

with Ê).
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The expressions for Ω and Ω̂ can be written more compactly with matrix notation.
Let

Ui ≡ (Ui1, . . . , UiT )
′, Xi ≡ (Xi1, . . . ,XiT )

′. (12.24)

Thus,
Zi =X

′
iUi, ZiZ

′
i =X

′
iUiU

′
iXi, (12.25)

and

Ω = E(X ′UU ′X), Ω̂ =
1

n

n∑
i=1

X ′
iÛiÛ

′
iXi. (12.26)



Chapter 13

Dynamic Panel Models

Unit learning objectives for this chapter

13.1. Define concepts and terms related to dynamic panel models, both mathematically
and intuitively. [TLOs 1–3]

13.2. Judge whether or not identifying assumptions hold in specific real-world examples.
[TLO 4]

This chapter introduces the idea of a dynamic panel data regression model, the failure
of the FE approach in Chapter 12, and a related approach that can work.

A dynamic panel model includes the lagged outcome Yit−1 as a regressor. (It
could include additional lags, too.) This contrasts with the static panel model from
Chapter 12.

The inclusion of Yit−1 violates strict exogeneity, so we need another type of exogeneity.
Although weaker, this exogeneity still gives us moment conditions that we can use to
estimate the structural parameters.

13.1 Types of Exogeneity

Besides contemporaneous exogeneity and strict exogeneity (A12.1 and A12.2), there is
also sequential exogeneity. Recall that “contemporaneous” only requires that Vt is
uncorrelated with the same time period’s Xt, whereas “strict” requires that Vt is uncorre-
lated with all past, present, and even future Xs, s = 1, . . . , T . Sequential is in between,
requiring that Vt is uncorrelated with past and present but not future Xs, s = 1, . . . , t.
This is useful in cases where we may suspect that next periods Xt+1 is chosen partly in
consideration of this period’s Vt, possibly through the effect of Vt on Yt. This is directly
the case with a dynamic panel, where Xt+1 includes Yt, which is clearly affected by Vt.

191
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Assumption A13.1 (sequential exogeneity). Error term Vt is sequentially exogenous:
E(XsVt) = 0 for any t = 1, . . . , T and any s = 1, . . . , t.

Discussion Question 13.1 (panel exogeneity). Consider the three types of exogeneity:
contemporaneous (A12.1), strict (A12.2), and sequential (A13.1).

a) Using the notation/terms of Section 2.1, write the relationships among the three
assumptions in terms of =⇒ and (separately) in terms of “weaker than.”

b) Practically, what do these relationships mean, in terms of when we can apply result
in practice? For example, if I have two estimators, one of which requires strict
exogeneity and one of which requires sequential exogeneity, then what’s the rela-
tionship between empirical settings in which the first estimator is valid vs. settings
in which the second is valid?

c) Recall that POLS required a contemporaneous exogeneity assumption (A12.1),
whereas FE required a strict exogeneity assumption (A12.2). Does this mean POLS
can be used in more settings than FE? Explain.

Consider the AR(1) model Yt = ρYt−1+Vt, Vt
iid∼ N(0, 1), where Vt is independent of all

past values Yt−1, Yt−2, . . ., and |ρ| < 1. Define Xt ≡ Yt−1. Contemporaneous exogeneity
(Assumption A12.1) holds because

E(XtVt) =

use Yt−1⊥⊥Vt︷ ︸︸ ︷
E(Yt−1Vt) = E(Yt−1)

=0︷ ︸︸ ︷
E(Vt) = 0. (13.1)

Discussion Question 13.2 (AR(1) exog). Continuing from above, show the following
mathematically (verbal explanation optional).

a) Does sequential exogeneity (Assumption A13.1) hold? Why/not?
b) Does strict exogeneity (Assumption A12.2) hold? Why/not?

Even with a static panel model, sequential exogeneity may seem more plausible than
strict exogeneity, like in Example 13.1.

Example 13.1 (exogeneity: R&D). Imagine Yt is the number of patents granted to a
firm in year t, Xt is their R&D spending in year t − 1 (assuming some lag between the
expenditure and the tangible product), and Vt is idiosyncratic shocks to patents. If we
think that having a positive Vt makes a firm want to invest more in R&D, then even if Vt

is unrelated to past R&D spending (sequential exogeneity holds), it could be correlated
with future spending, which violates strict exogeneity.

13.2 FE/FD Failure in Simple Model

Consider the simple model from DQ 13.2,

Yt = ρXt + Vt, Xt = Yt−1, t = 1, . . . , T, (13.2)
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where Vt is independent of all past values Yt−1, Yt−2, . . . and thus all current and past
Xt, Xt−1, . . .. Note we observe Y0 so that we can observe Xt for all t = 1, . . . , T . Recall
Ȳ ≡ 1

T

∑T
t=1 Yt, X̄ ≡ 1

T

∑T
t=1Xt, and V̄ ≡ 1

T

∑T
t=1 Vt. The FE estimator regresses Yt− Ȳ

on Xt − X̄, based on the within-transformed model

Yt − Ȳ = ρ(Xt − X̄) + (Vt − V̄ ). (13.3)

For ρ to be the linear projection coefficient, Vt− V̄ must satisfy the linear projection error
property

0 = E[(Xt − X̄)(Vt − V̄ )] = E

[(
Yt−1 −

1

T

T∑
s=1

Ys−1

)(
Vt −

1

T

T∑
s=1

Vs

)]
. (13.4)

However, this includes terms like

E(Y1V1) = E[(ρY0 + V1)V1] = ρ

=0︷ ︸︸ ︷
E(Y0V1)+E(V 2

1 ) = Var(V1) > 0. (13.5)

In general, for any s ≥ t, E(YsVt) ̸= 0.
Intuitively, the problem is that the within transformation includes all the Vt (t =

1, . . . , T ) and most of the Yt (t = 0, . . . , T −1) on the RHS, so it requires strict exogeneity
to zero out all the cross-terms.

The FD transformation has a less egregious version of the same problem. Again with
Xt = Yt−1,

E[∆Xt∆Vt] = E[(Xt −Xt−1)(Vt − Vt−1)]

= E(XtVt)− E(XtVt−1)− E(Xt−1Vt) + E(Xt−1Vt−1)

=

=0︷ ︸︸ ︷
E(Yt−1Vt)−

̸=0︷ ︸︸ ︷
E(Yt−1Vt−1)−

=0︷ ︸︸ ︷
E(Yt−2Vt)+

=0︷ ︸︸ ︷
E(Yt−2Vt−1)

= −E(Yt−1Vt−1) = −Var(Vt−1) < 0 (13.6)

using (13.5). Thus, both the standard FE and FD approaches fail to identify the structural
β for dynamic models that include Yt−1 as a regressor.

13.3 Moment Conditions

Although we cannot use the standard FD “moment conditions”

0 = E(∆Xt∆Vt) = E[∆Xt(∆Yt −∆X ′
tβ)] (13.7)

due to the failure of strict exogeneity in dynamic panel models, we can use sequential
exogeneity to find alternative moment conditions. Then, as in Chapter 10, we can use
GMM for estimation and inference.
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Initial work on this approach came from Anderson and Hsiao (1982), Holtz-Eakin,
Newey, and Rosen (1988), and Arellano and Bond (1991).

We first use the FD transformation to remove the fixed effects, then see which moment
conditions are implied by sequential exogeneity. These are written in terms of ∆Vt, which
in practice is replaced by ∆Yt −∆X ′

tβ to get moment conditions in terms of only model
parameters and observable variables.

Consider which regressors are uncorrelated with the period t = 2 first-differenced
idiosyncratic error, ∆V2 = V2 − V1. Recall that sequential exogeneity (A13.1) says
E(XsVt) = 0 for any s ≤ t, so E(X1V2) = 0 and E(X1V1) = 0, but E(XsV1) for
s > 1 are not assumed to be zero. Thus, the only moment condition for ∆V2 is

E(X1∆V2) = E[X1(V2 − V1)] =

=0︷ ︸︸ ︷
E(X1V2)−

=0︷ ︸︸ ︷
E(X1V1) . (13.8)

At t = 3, there are more moment conditions:

E[X1∆V3] =

=0︷ ︸︸ ︷
E(X1V3)−

=0︷ ︸︸ ︷
E(X1V2) = 0, (13.9)

E[X2∆V3] =

=0︷ ︸︸ ︷
E(X2V3)−

=0︷ ︸︸ ︷
E(X2V2) = 0, (13.10)

E[∆X2∆V3] =

=0︷ ︸︸ ︷
E(X2V3)−

=0︷ ︸︸ ︷
E(X2V2)−

=0︷ ︸︸ ︷
E(X1V3)+

=0︷ ︸︸ ︷
E(X1V2) = 0. (13.11)

The larger t is, the more Xs and ∆Xs there are uncorrelated with ∆Vt, due to the
nature of sequential exogeneity. Generally, for any t ≥ 3,

0 = E(Xs∆Vt) = E(Xs−1∆Vt) = E(∆Xs∆Vt), s = 2, . . . , t− 1. (13.12)

To think about interpreting this structure of moment condition, recall the linear pro-
jection and IV regression moment conditions. For LP,

0 = E[XV ] = E[X(Y −X ′β)],

which yields the usual LPC formula when solved for β. If X includes endogenous regres-
sors that are replaced by excluded instruments in the full instrument vector Z, then the
moment conditions become

0 = E[ZV ] = E[Z(Y −X ′β)].

Compare this structure with one of the moment conditions in (13.12) like

0 = E[Xs∆Vt] = E[Xs(∆Yt −∆X ′
tβ)].

Compared to the IV moment conditions, Xs plays the role of the IV Z that intruments
for the regressor vector ∆Xt in the regression of ∆Yt on ∆Xt. Indeed, this approach to
estimating dynamic panel models is sometimes called FD–IV.
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Considering the above can also help us think about which of the many available
moment conditions are most helpful for estimation. Recall from Section 9.2 that problems
with both estimation and inference can arise with weak instruments or generally weak
identification. Given the above interpretation, we want our “instruments” likeXs or ∆Xs

to be strongly correlated with “regressors” ∆Xt. Usually as t− s grows, this correlation
weakens, so even if technically E(X1∆V9) = 0, we may not want to include that moment
condition in practice. Further, if Xt is strongly persistent, then ∆Xs may be a relatively
weak “instrument.” For example, in the extreme case where scalar Xt is a random walk,
the first difference ∆Xt is an iid (or white noise) sequence of random variables, in which
case ∆Xt−1 is independent of ∆Xt and is thus not a “relevant” instrument. Often it is
reasonable to use (only)Xt−1 andXt−2 in the moment conditions involving ∆Vt, although
other strategies may be better given knowledge about a particular empirical setting.

In Stata, for many typical dynamic panel models, xtabond will suffice. It also supports
two-step estimation with option twostep and (bias-corrected) cluster-robust standard
errors with option vce(robust).
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Exercises

Exercise III.1. You will analyze data on driving laws and fatal accident rates, originally
from Freeman (2007). In particular, you’ll compare weekend driving fatality (death) rates
for states that adopted a 0.08 blood alcohol content (BAC) law and states that didn’t,
comparing rates before and after the law adoption.

a. Load the data with (remove the line break)
use https://raw.githubusercontent.com/kaplandm/stata/main/data/
driving.dta , clear

and read the variable labels (including units of measure): describe

b. Keep only years 1980 and 1990: keep if year==1980 | year==1990

c. Create an “after” period dummy variable: gen after = (year==1990)

d. Create variable bac equal to 1 if there’s any BAC law that year:
gen bac = (bac08 + bac10 >= 1)

e. Drop states that already had a BAC law in the “before” period (1980), leaving only
states that never had the law or adopted it between 1980 and 1990:
generate dropflag = ((!after) & bac)
bysort state : egen dropst = max(dropflag)
drop if dropst

f. Create a treatment dummy equal to 1 for states that adopted a BAC law by 1990:
bysort state : egen treat = max(bac)

g. Run a difference-in-differences regression with the intercept, “after” dummy, treat-
ment dummy, and interaction term. Below, the ## automatically generates the
desired interaction term: reg wkndfatrte treat##after , vce(robust)

h. To see how the OLS coefficient estimates relate to the conditional means (CMF
estimates), compute the sample mean weekend driving fatality rate within each of
the four groups defined by the time period and “treatment” status:
tabulate treat after , summarize(wkndfatrte) means missing

i. Display the CMF-based replication of the OLS estimates:
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collapse (mean) wkndfatrte , by(treat after)
display wkndfatrte[1]
display wkndfatrte[3]-wkndfatrte[1]
display wkndfatrte[2]-wkndfatrte[1]
display (wkndfatrte[4]-wkndfatrte[3])-(wkndfatrte[2]-wkndfatrte[1])

j. Repeat part (g) but with a different outcome variable to replace wkndfatrte, like
the weekend fatalities per 100 million miles driven (instead of population), or the
total fatality rate (not just weekends), etc.

k. Repeat parts (d)–(g) but replacing your bac treatment variable created in part (d)
with a treatment dummy equal to 1 if perse (a different driving law) equals 1 (and
equal to 0 otherwise).

Exercise III.2. The dataset here has an observation for each state (plus DC) in the U.S.
(i = 1, . . . , 51) in years 1987, 1990, and 1993 (t = 1, 2, 3). The dependent variable mrdrte
is the number of murders per 10,000 people (in state i during year t). The d90 and d93
are time dummies to include year effects. The two regressors are the unemployment rate
(in state i, year t) and the number of executions in state i in years t − 2, t − 1, and
t combined. (Note: this is not intended to be a sophisticated, definitive analysis upon
which you should base your beliefs.)

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse murder , clear

c. Run reg mrdrte d90 d93 exec unem , vce(cluster state)

d. Run xtset id year

e. Run xtreg mrdrte d90 d93 exec unem, fe cluster(id)

f. Report the pooled OLS and FE estimated coefficients on exec, and explain (both
mathematically and in real-world terms) what this suggests about the relationship
between exec and the unobserved state effects.

g. Discuss the economic significance of the FE estimated coefficient.

h. Explain what the corresponding confidence interval tells us about our uncertainty
about the true population value; be precise and explicit.

i. Think of one additional (unobserved) time-varying variable that might also be corre-
lated with exec. Explain which sign (positive or negative) you think the correlation
might have, and in which direction this would bias the FE estimator.

Exercise III.3. The following dataset is not a panel but a repeated cross-section that
includes years 1978 and 1981 (t = 1, 2), between which a new garbage incinerator was
built in a particular neighborhood. Interest is in the causal effect on house prices; variable
lrprice has log real house prices. Note y81 is a dummy for year 1981, and nearinc is
a dummy for being “near” the incinerator’s location (even if it’s 1978 and the incinerator
itself does not yet exist).
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a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse kielmc , clear

c. Run reg lrprice nearinc if y81 , vce(robust) and say what population ob-
ject that code most fundamentally estimates, as well as a specific real-world reason
you think this cannot be interpreted as a causal effect of being near the incinerator
on housing price.

d. Run reg lrprice y81 if nearinc , vce(robust) and say what population ob-
ject that code most fundamentally estimates, as well as a specific real-world reason
you think this cannot be interpreted as a causal effect.

e. Run reg lrprice nearinc##y81 , vce(robust)

i. Report the number that is the difference-in-differences estimator of the effect
of interest, as well as the units of measure.

ii. What is the fundamental descriptive (“statistical”) population estimand of this
diff-in-diff estimator? Provide both math and real-world description.

iii. What is the hoped-for causal population estimand of this diff-in-diff estimator?
Provide both math and real-world description (including definitions of the
potential outcomes).

iv. Discuss the economic significance of the estimate (without worrying about
causality/identification for this part).

v. Explain what the confidence interval tells us about our uncertainty about the
true population value; be precise and explicit.

vi. Recall that here we only have a repeated cross-section (not panel), and house
prices are only observed when a house is sold. Assume conditions are relatively
normal, so houses not near the incinerator (nearinc=0) are essentially sold at
random (somebody gets a job in another state, somebody moves into a retire-
ment home, etc.), so our dataset has a random sample of such house prices, and
similarly in 1978 for all houses. Why might the 1981 near-incinerator prices
not be a random sample, i.e., why might those houses not just be sold ran-
domly? In which direction might this bias the diff-in-diff estimator? (There are
many possible aspects to consider, but if you’re having trouble getting started:
imagine usually 5% of houses in a neighborhood sell in a typical year; 20% of
homeowners are extremely opposed to living near a garbage incinerator while
80% don’t care at all; recall basic supply and demand, how price responds to
an increase in supply that shifts the supply curve; etc.)

Exercise III.4. The following analyzes county-year level crime data from North Carolina.
The variable descriptions can be found online.1 (Some of the descriptions are still vague;
for research you would want to understand the variables much better, but we’ll focus on
other issues for now.)

1http://fmwww.bc.edu/ec-p/data/wooldridge/crime4.des

http://fmwww.bc.edu/ec-p/data/wooldridge/crime4.des
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a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse crime4 , clear

c. Run xtset county year

d. Run reg lcrmrte lpolpc if year==87 , vce(robust) and explain one specific
reason you don’t think the slope coefficient can be interpreted as a causal effect;
say in which direction you think it is biased, and why.

e. Run reg lcrmrte lpolpc d8* , vce(robust) and explain why this does not ad-
dress your above concern (or if it does, come up with a different reason you don’t
think the coefficient on lpolpc can be interpreted as a causal effect).

f. Run xtreg lcrmrte lpolpc d8* , fe cluster(county)

i. Explain what type of omitted variable (bias) the county-level fixed effects
capture.

ii. Discuss the economic significance of the estimated coefficient on lpolpc (with-
out worrying about causality/identification for this part).

iii. Explain what the corresponding confidence interval tells us about our uncer-
tainty about the true population value; be precise and explicit.

iv. Explain why this FE model still does not identify a causal effect in this example,
including the direction of bias. (Hint: feel free to try reg lpolpc lcrmrte
d8* while you’re thinking.)

Exercise III.5. The following analyzes data on manufacturing scrap rates for firms that
did or did not receive grant money to improve. The variable descriptions can be found
online.2

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse jtrain , clear

c. Run xtset fcode year

d. Run reg grant L.lscrap and briefly say what this suggests about which firms
receive a grant. (Note: for real research, you would want to read about the grant
program itself, not just run a simple regression.)

e. Run reg lscrap L.lscrap and briefly say what this suggests about firms’ scrap
rates over time.

f. Run reg lscrap grant grant_1 if year==1989 , vce(robust) and explain
one specific reason you don’t think the slope coefficient can be interpreted as a
causal effect; say in which direction you think it is biased, and why. (Hint: think
about your previous two results.)

g. Run xtreg lscrap grant grant_1 d88 d89 , fe cluster(fcode)
2http://fmwww.bc.edu/ec-p/data/wooldridge/jtrain.des

http://fmwww.bc.edu/ec-p/data/wooldridge/jtrain.des
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i. Explain what type of omitted variable (bias) the firm-level fixed effects capture.
ii. Discuss the economic significance of the FE estimated coefficients on grant

and grant_1 (without worrying about causality/identification for this part).
iii. Explain what the corresponding confidence intervals tell us about our uncer-

tainty about the true population values; be precise and explicit.
iv. Explain what would need to be true for strict exogeneity to be satisfied here.

h. Run lincom grant + grant_1 to get the estimate and confidence interval for the
sum of these coefficients; how do you interpret this sum economically?

i. Run reg D(lscrap grant grant_1 d89) , vce(cluster fcode) to compute
the FD estimator and briefly compare with the FE results.

Exercise III.6. The following analyzes crime data from Norway. The “clear-up percent-
age” is how many reported crimes were resolved by charging an individual with the crime
(most commonly), which may be a deterrent to future crime. The variable descriptions
can be seen in the variable labels.

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse norway , clear

c. Run xtset district year , delta(6) noting that the delta(6) tells it to treat
year 1972 as t = 1 and 1978 as t = 2.

d. Run reg lcrime clrprc1 clrprc2 if year==78 , vce(robust) and explain
one specific reason you don’t think the slope coefficient can be interpreted as a
causal effect; say in which direction you think it is biased, and why.

e. Run xtreg lcrime clrprc1 clrprc2 d78 , fe cluster(district)

i. Explain what type of omitted variable (bias) the district-level fixed effects
capture.

ii. Discuss the economic significance of the FE estimated coefficients on clrprc1
and clrprc2 (without worrying about causality/identification for this part).

iii. Explain what the corresponding confidence intervals tell us about our uncer-
tainty about the true population values; be precise and explicit.

iv. Explain one possible reason that strict exogeneity might be violated here.

f. Run reg D(lcrime clrprc1 clrprc2) , vce(cluster district) to compute
the FD estimator and briefly compare with the FE results.

Exercise III.7. The following examines the relationship between low infant birthweight
(a bad health outcome) and participation in a welfare program (that hopes to help preg-
nant women through nutrition programs and prenatal care). The specific program is the
Aid to Families with Dependent Children (AFDC). The panel data is aggregated at the
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state-year level. Other control variables try to proxy for general quality of health care
and income level in the state. The variable descriptions can be found online.3

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse jtrain , clear

c. Run encode state , gen(state_id) to get a numeric identifier for the states
(because xtset does not allow strings).

d. Run xtset state_id year , delta(3) noting that the delta(3) tells it to treat
year 1987 as t = 1 and 1990 as t = 2.

e. Run reg lowbrth afdcprc if year==1990 , vce(robust) and explain one spe-
cific reason you don’t think the slope coefficient can be interpreted as a causal effect;
say in which direction you think it is biased, and why.

f. Run xtreg lowbrth afdcprc d90 , fe cluster(state_id)

i. Explain what type of omitted variable (bias) the state-level fixed effects cap-
ture.

ii. Discuss the economic significance of the estimated coefficient on afdcprc
(without worrying about causality/identification for this part).

iii. Explain what the corresponding confidence interval tells us about our uncer-
tainty about the true population value; be precise and explicit.

iv. Explain one possible reason that strict exogeneity might be violated here.

g. Run reg D(lowbrth afdcprc) , vce(cluster state_id) to compute the FD es-
timator and briefly compare with the FE results.

h. Run xtreg lowbrth afdcprc d90 lphypc lbedspc lpcinc lpopul , fe
cluster(state_id) and briefly compare with the earlier FE results that did not
include control variables.

3http://fmwww.bc.edu/ec-p/data/wooldridge/lowbrth.des

http://fmwww.bc.edu/ec-p/data/wooldridge/lowbrth.des
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Introduction

This part looks at the probit model and related topics. Specifically, there is some discus-
sion of binary response models, of (quasi) maximum likelihood, and of optimal prediction.
Unlike previous parts, there is little emphasis on causal identification.
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Chapter 14

Binary Response Models

Unit learning objectives for this chapter

14.1. Define ideas surrounding binary response models, including for both description and
prediction. [TLOs 1–3]

14.2. Describe different methods for estimating binary response models, including their
assumptions and the interpretation of model parameters. [TLOs 3 and 4]

Optional resources for this chapter

• Optimal prediction: Hastie, Tibshirani, and Friedman (2009, §2.4)

14.1 Binary Basics

Some properties of binary variable apply to all binary response models, meaning
models of a binary outcome Y . The word “binary” most generally refers to anything with
two possible values, but in this context, such values are coded as 0 and 1. For example,
the underlying binary variable may have values “has bachelor’s degree” and “does not
have bachelor’s degree,” but this would be coded as Y = 1 (degree) and Y = 0 (if no
degree). More precisely, such a Y is a Bernoulli random variable with parameter
p ≡ P(Y = 1): Y ∼ Bernoulli(p).

A convenient property is

E(Y ) = (0)P(Y = 0) + (1)P(Y = 1) = P(Y = 1),

E(Y |X = x) = P(Y = 1 |X = x) ≡ p(x),
(14.1)
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so the conditional mean function (CMF) can be interpreted as the response probability
(function). This means that anything we know about identification, estimation, and
inference for CMF models can in principle apply to binary response models (including
IV, FE, etc.). There are two main caveats. First, the simple linear-in-variables model
is often especially implausible, although we could just use more flexible nonlinear or
even nonparametric estimators. Second, we are often most interested in an underlying
economic model that explains choices rather than just predicting choices themselves.

14.2 Linear Probability Model

The linear probability model (LPM) is essentially a linear regression model in which
Y happens to be binary. Often “linear” refers to linear-in-variables, meaning that only
the raw covariates appear in vector X (including an intercept) and the model is p(x) =
E(Y | X = x) = x′β. However, sometimes “linear” refers to linear-in-parameters,
meaning that X can also contain interaction terms and quadratic (and other polynomial)
and log and other transformations, as long as we can still write p(x) = x′β. This is much
more flexible than the linear-in-variables model, and just as easy to estimate, but also
more complicated to interpret.

14.2.1 Model Interpretation and Partial Effects

With the stricter linear-in-variables LPM, each individual coefficient has a simple in-
terpretation. The intercept β0 is the probability of Y = 1 if all regressors are equal
to zero. (As usual, if the regressors have been demeaned first, then this intercept is a
“centercept” equal to the probability of Y = 1 when the raw regressors are all at their
mean values; otherwise, it may be meaningless if we are talking about the employment
probability of an individual with zero years of education and zero income, who is zero
years old.) The coefficient βj on regressor Xj provides the change in the predicted value
of Y = 1 associated with a one-unit increase in Xj . For example, if βj = 0.02, then a
one-unit increase in Xj is associated with a 2 percentage point (pp) increase in the
probability of Y = 1, recalling that P(Y = 1) = 1 means 100%. Note this differs from
a 2% increase; for example, going from P(Y = 1) = 0.10 to 0.12 is a 2pp increase but
a (0.12 − 0.10)/0.10 = 0.2 = 20% increase. The phrase associated with describes a
statistical relationship without claiming any causal interpretation.

As usual, the linear-in-variables model heavily restricts the partial derivative with
respect to any regressor Xj : it is constant, not allowed to vary based on the initial level of
Xj , nor based on the values of any other regressors. In contrast, the linear-in-parameters
LPM allows both types of heterogeneity. In that case, you can take the partial derivative
with respect to Xj (which may appear in multiple terms) to see how it depends on both
the parameters and variable values. More precisely, define the partial effect (on the
reponse probability, but not in the causal sense of “effect”) at X = x of continuous and
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binary Xj respectively:

PEj(x) ≡
∂p(x)

∂xj
, PEj(x) ≡ p(x1, . . . , xj−1, 1, xj+1, . . .)− p(x1, . . . , xj−1, 0, xj+1, . . .).

(14.2)
However, as is often true, this flexibility of letting the PE depend on x makes results
more difficult to summarize and communicate.

As a compromise, often the more flexible model is used but then heterogeneous partial
derivatives are summarized by a single number. Perhaps the two most common summaries
are the partial effect at the average (PEA) and the average partial effect (APE).
The PEA simply plugs in the sample average X̄ = 1

n

∑n
i=1Xi when computing the partial

effect of Xj :

PEAj ≡ PEj(E(X)) =
∂p(x)

∂xj

∣∣∣∣
x=E(X)

. (14.3)

The APE instead takes the mean PE by averaging over the population distribution of X:

APEj ≡ E[PEj(X)]. (14.4)

Writing P̂Ej(x) for the estimated PE for Xj as a function of x, which is some function
of the estimated parameter vector β̂, the typical PEA and APE estimators are

P̂EAj = P̂Ej(X̄), ÂPEj = Ê[P̂Ej(X)] =
1

n

n∑
i=1

P̂Ej(Xi). (14.5)

In Stata, whether the underlying model is the LPM or something else, you can use
the margins, dydx(...) command after your initial estimation command to compute
either PEA (option atmeans) or APE (which Stata calls AME, average marginal effect).
However, this does not work if Stata does not know a variable appears in multiple terms.
For example, if you generate a variable xsq for x2 and then reg y x xsq, Stata thinks x
and xsq are two separate variables and would report the partial effect of x as simply the
coefficient on x, whereas if you reg y c.x##c.x then Stata knows you have nonlinearity
in x.

The APE tends to be more commonly used and is more similar to other objects of
interest like the ATE. One downside of the PEA is that the mean is difficult to interpret
for binary Xj (like Xj = 1{female} for which maybe X̄j = 0.74).

Example 14.1. Let p(x) = α+ βx3. The PE of x is the partial derivative, 3x2β, which
depends on the initial value of x. The PEA is 3[E(X)]2β, which is estimated by 3[Ê(X)]2β̂.
The APE is E(3X2β) = 3β E(X2), which is estimated by plugging Xi into the estimated
PE and averaging over i = 1, . . . , n: 1

n

∑n
i=1 P̂E(Xi) =

1
n

∑n
i=1 3X

2
i β̂ = 3β̂ 1

n

∑n
i=1X

2
i .

If either type of LPM is misspecified, then we can use the general misspecified CMF
interpretations reviewed in Section 3.7.1. That is, we have a linear projection model,
which provides the “best” (wrt MSE) linear predictor of Y given X, and the “best” linear
approximation of the true CMF, which here is also the response probability function.



210 CHAPTER 14. BINARY RESPONSE MODELS

14.2.2 Limitations

The main complaint against the LPM is that it can generate impossible predicted prob-
abilities, p̂(x) > 1 or p̂(x) < 0. However, this is often not a major concern, as the next
discussion questions help illustrate.

Discussion Question 14.1. Let Y = 1{employed}, and X is years of education. Imag-
ine you estimate β̂0 = 0.56 and β̂1 = 0.02 in p̂(x) = β̂0 + β̂1x.

a) Would these estimates ever predict employment probability > 100%? Or < 0%? If
so, when?

b) Does this imply that our model is bad? Why/not?

Discussion Question 14.2. Let Y = 1{employed}, X = 1{female}, P(Y = 1 | X =
x) = β0 + β1x. (Hint: can treat as CMF; or, just plug in x values.)

a) What’s the interpretation of β0 and β1?
b) What are the sample analogs β̂0 and β̂1?
c) Is p̂(x) < 0 or > 1 possible? Why/not?

Nonetheless, if we can simply use a model that enforces 0 ≤ p̂(x) ≤ 1, then we don’t
need to worry about the issue. There are also other models that may better represent
underlying economic decisions.

14.3 Binary Prediction

=⇒ Kaplan video: Intuition for Prediction

This subsection provides a brief introduction to concepts about optimal prediction,
with a focus on binary Y . The underlying model (LPM, probit, etc.) is irrelevant. See
Sections 2.4–2.5 of Kaplan (2022a) for additional details.

Although we usually think of data as fundamental to prediction, prediction is more
fundamentally formulated mathematically in the population. Then, after deriving the
optimal population predictor, we can use data to estimate it. (There are more sophisti-
cated ways to try to incorporate empirical uncertainty into optimal prediction, but those
are beyond our scope.)

Consider binary Y = 1 if it rains on Tuesday, otherwise Y = 0, and our job is to guess
whether or not it rains on Tuesday. Our guess g is non-random because we have to make
a single guess before Y is realized (and it is not optimal to randomize guessing). Because
Y is binary, it only makes sense for us to guess either g = 1 (rain) or g = 0 (not). There
are two important components: the probability P(Y = 1), and the consequences of being
wrong.

https://youtu.be/oZ6uPvp4L1Y
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14.3.1 Loss Function

The consequences of being wrong are quantified through a loss function that says how
bad it is to have guessed g when the true realization is y, L(y, g). Higher values (closer to
+∞) of loss indicate worse consequences. Usually the loss function is normalized to have
L(y, y) = 0 (zero loss for correct prediction), so that “how bad” is relative to a correct
guess, and all loss values are non-negative.

Example 14.2. Imagine you make a bet with your friend: if you correctly predict the
rain variable Y , then you win $1, but if you’re wrong then you must pay your friend $1.
Without normalizing, this means you lose $1 when y ̸= g, so L(0, 1) = L(1, 0) = 1, and
winning $1 is −1 loss so L(0, 0) = L(1, 1) = −1. Alternatively, for reasons that will be
clearer later, we could normalize by adding 1 to each value: L(0, 0) = L(1, 1) = 0 and
L(0, 1) = L(1, 0) = 2. If you could cheat and see already that it’s raining (Y = 1), then
intuitively you’d guess g = 1 to make sure you win the bet; indeed, L(1, 1) = 0 < 2 =
L(1, 0), so your optimal choice of g minimizes your loss.

Example 14.3. Imagine you again make a bet with your friend, but now your friend
will pay you $10 if you correctly predict rain. Without normalizing, as before L(0, 1) =
L(1, 0) = 1 and L(0, 0) = −1, but now L(1, 1) = −10. Compared to correctly guessing
g = 1 to get L(1, 1) = −10, incorrectly guessing g = 0 to get L(1, 0) = 1 is +11 higher
loss, so we could normalize L(1, 1) = 0 and L(1, 0) = 11. As before, we can also normalize
L(0, 0) = 0 and L(0, 1) = 2.

The 0–1 loss function is

L0(y, g) = 1{y ̸= g} =

{
0 if y = g,
1 if y ̸= g.

(14.6)

It only cares whether we are exactly correct or not. A more general version is the
weighted 0–1 loss function,

Lw(y, g) = 1{y = 0, g ̸= 0}+ w 1{y = 1, g ̸= 1}, (14.7)

which allows Lw(1, 0) > Lw(0, 1) if w > 0, or Lw(1, 0) < Lw(0, 1) if w < 0. This is similar
to type I errors being regarded as worse than type II errors in the hypothesis testing
context. This weighted 0–1 loss is fully general given binary Y and g.

14.3.2 Unconditional Optimal Prediction in the Population

With random Y , we cannot choose g to minimize loss for every realization Y = y, so
often instead the “optimal” prediction is defined as minimizing our mean loss. Given a
non-random guess g, mean loss (or expected loss) is E[L(Y, g)], where the mean is
with respect to the distribution of Y . Mean loss is also called risk. With binary Y and
g, this is simply

E[L(Y, g)] = P(Y = 0)L(0, g) + P(Y = 1)L(1, g). (14.8)
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With the normalization L(0, 0) = L(1, 1) = 0 and weighted 0–1 loss, and writing p ≡
P(Y = 1) = 1− P(Y = 0),

E[Lw(Y, 0)] =

=1−p︷ ︸︸ ︷
P(Y = 0)

=0︷ ︸︸ ︷
Lw(0, 0)+

=p︷ ︸︸ ︷
P(Y = 1)

=w︷ ︸︸ ︷
Lw(1, 0) = pw,

E[Lw(Y, 1)] =

=1−p︷ ︸︸ ︷
P(Y = 0)

=1︷ ︸︸ ︷
Lw(0, 1)+

=p︷ ︸︸ ︷
P(Y = 1)

=0︷ ︸︸ ︷
Lw(1, 1) = 1− p.

(14.9)

Given (14.9), we prefer to guess g = 1 when 1− p < pw, or equivalently p(w+1) > 1,
and conversely we prefer g = 0 when p(w + 1) < 1, with indifference at p(w + 1) = 1.
Holding w fixed, we are more likely to prefer g = 1 as p ↑ 1. This is intuitive: all else
equal, as Y = 1 becomes more likely, we should be more likely to guess g = 1. Holding
p fixed, we are more likely to prefer g = 1 as w increases. This is also intuitive: all else
equal, as the consequences of a wrong g = 0 guess become worse, we have more incentive
to avoid g = 0 and instead guess g = 1.

Given w, the optimal prediction follows a probability threshold. Let g∗w be the optimal
prediction given Lw(·),

g∗w ≡ argmin
g∈{0,1}

E[Lw(Y, g)] = 1{p > 1/(1 + w)}. (14.10)

Discussion Question 14.3 (optimal prediction). Wait: isn’t the mean the best predictor
of Y ? (For example, (3.6) in Section 3.7.1 replacing X = 1.)

a) What is the mean of Y , and how does it compare to g∗w?
b) Given Lw(·), how does the risk of the mean of Y compare to the risk of g∗w?

Discussion Question 14.4 (threshold). Consider the optimal prediction in (14.10).
a) When would a lower threshold 1/(1+w) help increase our prediction accuracy when

the true value is Y = 1? (For example, if we predict whether or not it will rain
tomorrow for 100 consecutive days, and it actually rains on 27 of those days, we’re
only considering how many of those 27 days with Y = 1 we correctly predicted.)

b) When would a lower threshold 1/(1+w) help increase our prediction accuracy when
the true value is Y = 0?

14.3.3 Conditional Optimal Prediction in the Population

All the unconditional intuition continues to hold conditional on X = x. For example,
generalizing (14.8),

E[L(Y, g) |X = x] = P(Y = 0 |X = x)L(0, g) + P(Y = 1 |X = x)L(1, g), (14.11)

and following the same derivations leads to the optimal prediction

g∗w(x) ≡ argmin
g∈{0,1}

E[Lw(Y, g) |X = x] = 1{p(x) > 1/(1 + w)}, (14.12)
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continuing the notation p(x) ≡ P(Y = 1 | X = x). Again, this has the simple form of a
probability threshold that depends on the relative loss w.

Discussion Question 14.5 (prediction and policy). Imagine that you estimated crime
probabilities for different neighborhoods for each 8-hour police shift of every day. There’s
only enough budget to patrol 10 of the 20 neighborhoods each shift. Assume you can
perfectly prevent all crime in the patrolled neighborhoods. How should you choose which
neighborhoods to patrol? Explain your procedure, any additional assumptions you make,
and anything that might go wrong if you actually implemented this procedure in the real
world.

14.3.4 Prediction in Practice

If we knew the true response probability function p(·), then given loss function Lw(·), we
could compute g∗w(x) = 1{p(x) > 1/(1 + w)}. In practice, we can plug in our estimated
p̂(·) to get

ĝw(x) = 1{p̂(x) > 1/(1 + w)}. (14.13)

Note having p̂ > 1 or p̂ < 0 is not a problem for prediction. A formula like (14.13) is
sometimes called a decision rule in the context of statistical decision theory. In large
samples, our p̂(·) is close to the true p(·), so this should generate predictions that are
close to minimizing risk. Again, the threshold 1/(1 + w) depends on the relative loss of
incorrectly guessing g = 1 versus incorrectly guessing g = 0, so the decision rule depends
on both the predicted probability as well as the loss function.

Beyond Our Scope

In small samples, the estimation uncertainty may play an important role. For ex-
ample, consider unconditional prediction in the extreme case n = 1. Consider very
large w = 999, so it is much worse to incorrectly guess g = 0 when Y = 1 than
to incorrectly guess g = 1 when Y = 0. Imagine you observe Y1 = 0; which g
would you choose for out-of-sample prediction? According to (14.13), ĝw = 0 because
0 = p̂ < 1/(1 + 999) = 0.001. However, with n = 1, we have lots of uncertainty
about the estimated p̂ = 0, and more specifically we are not sure that p < 0.001. For
example, even if the true p = 0.1 > 0.001, we are still very likely to observe Y1 = 0.
There are more sophisticated approaches (both frequentist and Bayesian) to try to
incorporate such uncertainty into our decision-making.

If prediction is the ultimate goal (rather than description or causal inference), then
it is helpful to separately report the percent correctly predicted for individuals in the
sample with Yi = 0 and Yi = 1. That is, given (14.13), the percent correctly predicted
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for Yi = 0 is∑n
i=1 1{Yi = ĝw(Xi) = 0}∑n

i=1 1{Yi = 0}
=

∑n
i=1 1{Yi = 0}1{p̂(Xi) < 1/(1 + w)}∑n

i=1 1{Yi = 0}
, (14.14)

and similarly for Yi = 1 replacing all the = 0 with = 1 and replacing < with >.

14.4 Probit Model

Consider the general single index model

E(Y |X = x) = G(x′β), (14.15)

where G(·) is a known, increasing, nonlinear function (related to the “link function” in a
“generalized linear model”). The “index” is x′β, and there is only one (“single”); it reduces
the dimensionality from that of x to a scalar before applying the nonlinear function,
which is even more important if G(·) is modeled nonparametrically. In our case the LHS
equals p(x), so it makes sense to restrict 0 ≤ G(r) ≤ 1 for all r ∈ R. One class of such
functions is CDFs. The use of a CDF for G(·) can thus be thought of as a convenient way
to enforce 0 ≤ p(x) ≤ 1, but it is also derived from a more economic model below.

Beyond Our Scope

In the model in (14.15), the function G(·) can also be estimated nonparametrically,
instead of specifying it. For example, see Ichimura (1993) and Klein and Spady (1993).

The probit model uses G(·) = Φ(·), the standard normal distribution’s CDF, while
the logit model uses G(·) = Λ(·), the standard logistic distribution’s CDF.

14.4.1 Interpretation and Partial Effects

For the probit, the partial effect defined in (14.2) for continuous xj is

PEj(x) ≡
∂p(x)

∂xj
= ϕ(x′β)βj , (14.16)

where ϕ(·) is the standard normal PDF, and assuming none of the other elements in x
involve xj . Similar to before, the PE for binary xj is the difference in response probability
when plugging in xj = 1 versus xj = 0, holding all other elements of x constant. Although
PEs can be more convenient mathematically for providing intuition, even for a continuous
xj , the most accurate way to compute the change in response probability associated with
a change from x to x+ d is

p(x+ d)− p(x) = Φ((x+ d)′β)− Φ(x′β). (14.17)
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Discussion Question 14.6 (probit features). Consider a simple probit model p(x) =
Φ(β0 + β1x).

a) Why is the derivative with respect to x (partial effect) equal to ϕ(β0+β1x)β1, where
ϕ(·) is the standard normal PDF?

b) Can the derivative depend on x (unlike LPM)?
c) Can the derivative be constant (wrt x)?
d) Can the derivative have a different sign (±) at different x?

Although the probit model is nonlinear (in both variables and parameters), “nonlinear”
does not necessarily imply “flexible” or “robust to misspecification.” Given X, the probit
has the same number of parameters in β as the LPM, so it is not really “more” flexible,
just differently flexible, as DQ 14.6 illustrates. But, arguably it is “differently flexible” in
a way that’s more appropriate for binary Y .

The APE and PEA are defined the same way as in (14.3) and (14.4). For continuous
Xj , assuming again no other element of X involves Xj ,

APEj ≡ E[PEj(X)] = E[ϕ(X ′β)βj ] = E[ϕ(X ′β)]βj ,

PEAj ≡ PEj(E(X)) = ϕ(E(X)′β)βj .
(14.18)

Although these expressions are complex, the ratio of APEs or PEAs across two regressors
Xj and Xk are simple:

APEj

APEk
=

E[ϕ(X ′β)]βj
E[ϕ(X ′β)]βk

=
βj
βk

=
PEAj

PEAk
. (14.19)

Example 14.4. You estimate a probit of employment (Y ) given education (X1) and
experience (X2). Although the estimated β̂1 and β̂2 do not have a direct interpretation,
β̂1/β̂2 = 3.1, which you can interpret as the APE due to education being 3.1 times larger
than the APE due to experience. (This approximately means that one extra year of
education is associated with the same increase in employment probability as an extra 3.1
years of experience.)

If a covariate enters nonlinearly, then the PE/APE/PEA have additional terms. For
example, let

p(x1, x2) = Φ(β0 + x1β1 + x2β2 + x1x2β3 + x21β4 + x22β5).

Then the PE for x1 is

∂p(x1, x2)

∂x1
= ϕ(β0 + x1β1 + x2β2 + x1x2β3 + x21β4 + x22β5)(β1 + x2β3 + 2x1β4), (14.20)

which feeds into the PEA/APE accordingly.
In Stata, as with nonlinear-in-variables LPM, it is very important to make sure Stata

knows you have nonlinear functions of a particular regressor, otherwise the APE/PEA
from margins will be wrong. For example, like before, you would need to run probit y
c.x##c.x instead of generating gen xsq=x^2 and running probit y x xsq.
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14.4.2 Prediction

Prediction is the same as with the LPM: nothing in Section 14.3 depended on the under-
lying model. Given the probit β̂, the predicted Y given X = x is

p̂(x) = Φ(x′β̂), (14.21)

which can then be plugged into the decision rule in (14.13).

14.4.3 Structural Model and Interpretation

Consider a latent (unobserved) continuous outcome Y ∗. This Y ∗ is often interpreted as
an individual’s utility, or specifically the difference in their utility from choosing Y = 1
instead of Y = 0. (So Y ∗ > 0 means more utility from Y = 1, while Y ∗ < 0 means
more utility from Y = 0.) If people maximize utility, then Y = 1{Y ∗ > 0}. For example,
maybe Y ∗ is the utility “gain” (possibly negative) from getting married and Y is the
observed choice about getting married; or Y ∗ is the utility gain from buying organic milk
(vs. non-organic) and Y is the observed milk type choice; or going to college, or serving
in the military, etc. As usual, the “individual” could also be a firm or country or other
unit, so we could model the firm’s benefit from going public (vs. staying privately held),
or a city’s benefit from having a free (vs. paid) bus system, etc. For the probit, the full
structural model is

Y ∗ =X ′β + U, U ∼ N(0, 1), Y = 1{Y ∗ > 0}. (14.22)

Alternatively, we could change the distribution of U to any other parametric distribu-
tion, like a standard logistic (for the logit model), or any other continuous, symmetric
distribution with known CDF G(·).

Given “exogeneity” in the sense of U ⊥⊥ X, the structural β are identified and equal
to the parameters in the response probability model:

P(

use (14.22)︷ ︸︸ ︷
Y = 1 |X = x) = P(

Y=1︷ ︸︸ ︷
Y ∗ > 0 |X = x)

= P(

Y ∗ in (14.22)︷ ︸︸ ︷
X ′β + U > 0 |X = x)

= P(U >

non-random︷ ︸︸ ︷
−x′β |

no effect on U b/c U⊥⊥X︷ ︸︸ ︷
X = x )

= P(U > −x′β)

= 1−

use U∼N(0,1) from (14.22)︷ ︸︸ ︷
P(U ≤ −x′β)

= 1− Φ(−x′β)

= Φ(x′β), (14.23)
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where the last equality uses the symmetry of the standard normal distribution.

Beyond Our Scope

It is possible to deal with endogeneity and/or heteroskedasticity in probit models; for
example, see Carlson (2019, 2023).

In (14.22), Var(U) = 1 because even if we let Var(U) = σ2, we could not learn about
σ2 given that we only observe binary Y . This also means we cannot learn about the
absolute magnitude of β, only the relative magnitudes and signs. That is, β is only
identified up to scale, as DQ 14.7 helps illustrate.

Discussion Question 14.7 (identification up to scale). Consider the intercept-only
model with

P(Y = 1) = P(Y ∗ > 0) = P(U > −β) = P(U ≤ β)

with U ∼ N(0, σ2). Imagine P(Y = 1) = 0.95. Consider β as a function of σ, β(σ). (Hint:
recall if Z ∼ N(0, 1), then σZ ∼ N(0, σ2).)

a) With σ = 1, what is β(1)? (If you haven’t memorized z-tables, it’s fine to just write
a formula instead of a number.)

b) With σ = 2, what is β(2)?
c) What’s the relationship between β(2) and β(1)?
d) What’s the general formula for the ratio β(σ)/β(1)?
e) Does the sign (±) of β(σ) depend on σ? Is this true for other possible P(Y = 1)

values besides 0.95?

If we look back at the identification argument but write U = σZ with Z ∼ N(0, 1) so
U ∼ N(0, σ2), then altogether we get

P(Y = 1 |X = x) = P(U ≤ −x′β) = P(σZ ≤ −x′β) = P(Z ≤ −x′β/σ) = Φ(−x′β/σ),
(14.24)

meaning we can only identify β/σ.
Thankfully, some meaningful population objects of interest are not scale-dependent.

For example, the relative magnitudes do not depend on σ because it’s the same scalar
σ dividing each element of β, so (βj/σ)/(βk/σ) = βj/βk, regardless of σ. Similarly,
estimated probabilities p̂(x) are not scale-dependent, nor are the PE/APE/PEA. This
is another reason we focus on partial effects rather than individual probit coefficient
estimates.

Discussion Question 14.8 (probit economic significance). Let p(x) = Φ(β0 + β1x), so
the partial effect is ϕ(β0+β1x)β1. Let Y = 1{employed}, X is income of the individual’s
spouse measured in $1000s (like x = 50 means $50,000). Let β̂0 = 4. Discuss the economic
significance of β̂1 = −0.1. (Hint #1: is the partial effect the same at all x?) (Hint #2:
ϕ(0) ≈ 0.4, ϕ(2) ≈ 0.05, ϕ(4) ≈ 0.0001.)
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14.5 Logit Model

The logistic distribution is relatively similar to the standard normal distribution (uni-
modal, symmetric, not fat-tailed, etc.), so the logit model that uses the single index
model from (14.15) with G(·) = Λ(·) (logistic CDF) is relatively similar to the probit
model that uses G(·) = Φ(·). For example, thinking of the latent model, specifying
normal instead of logistic errors is not a big difference economically. Estimates of the
APE or PEA tend to be very similar between probit and logit. However, there are some
qualitative differences.

Due to the logistic CDF formula, logit can be interpreted as modeling the log odds ra-
tio. (I think this interpretation is the primary reason some statisticians deride economists
for using probit instead of logit.) The “odds ratio” refers to P(Y = 1)/P(Y = 0); with
p ≡ P(Y = 1), this is p/(1 − p). The log odds ratio is the (natural) log of this. The
transformation from p to log(p/(1 − p)) is called the logit function, which is also the
inverse CDF (i.e., quantile function) of the standard logistic distribution. This can be
derived from the standard logistic CDF Λ(r) = 1/(1 + e−r) and the single index model:

p(x) = Λ(x′β) =
1

1 + e−x′β
,

1− p(x) =
e−x′β

1 + e−x′β
,

p(x)

1− p(x)
=

1/(1 + e−x′β)

e−x′β/(1 + e−x′β)
= ex

′β,

log

(
p(x)

1− p(x)

)
= x′β.

That is, our linear-in-parameters “index” x′β models the log odds ratio.
The logit model also provides some convenient cancellation in a panel model with fixed

effects, and generalizes nicely to a multinomial choice models (more than two choices),
although such topics are beyond our scope.

Beyond Our Scope

If you want to determine the “better” model for a given dataset, you can apply one of
the many “model selection” procedures to judge between probit and logit; for example,
see Chapter 18 (“Model Selection”) of Kaplan (2021).



Chapter 15

(Quasi) Maximum Likelihood

Unit learning objectives for this chapter

15.1. Describe terms and concepts related to quasi-maximum likelihood, both mathemat-
ically and intuitively. [TLOs 1–3]

If you’ve seen anything about maximum likelihood before, it most likely started with
a joint PDF for all n observations, which under iid sampling factors into a product of
individual PDFs, and we want to find the parameter values that maximize the product.
Despite seeming intuitive, this heuristic argument gives us no formal justification for the
estimator being consistent. Section 15.2 provides a more insightful view, which also helps
us understand performance under misspecification. Before that, some basic terms and
formulas are given.

15.1 Basics

First consider Yi whose marginal PDF we assume has the form f(· | θ) for some true
θ ∈ Θ. That is, we know the “family” f(· | ·) and consider only possible PDFs f(· | t)
for some t ∈ Θ. If our assumption is correct, then our model is properly specified; if
there is no t ∈ Θ such that f(· | t) is the PDF of Yi, then our model is misspecified.
Sometimes such a PDF (evaluated at point Y = y) is also written as ft(y), or f(y; t).
The PDF is the likelihood function. The likelihood function is sometimes written as
L(t | y) to emphasize that we are trying to pick among possible t ∈ Θ values, but that
form can also generate confusion. The log-likelihood function is simply the (natural)
log, log[f(y | t)]. Evaluated at y = Yi, this is sometimes written ℓi(t).

The general idea of maximum likelihood (ML) is to characterize the estimator θ̂
as the value that maximizes the likelihood. More specifically, the maximum likelihood

219
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estimator (MLE) is

θ̂ ≡ argmax
t∈Θ

1

n

n∑
i=1

log[f(Yi | t)]. (15.1)

If the second-order condition holds, then the maximizer can be written as the solution to
the first-order condition

0 =
1

n

n∑
i=1

si(θ̂), si(t) ≡
∂ log[f(Yi | t)]

∂t
, (15.2)

where si(·) is the score function for observation i.

Example 15.1. Let Yi ∼ N(θ, 1), so f(y | t) = (2π)−1/2e−(y−t)2/2, with t ∈ Θ = R. The
log-likelihood and score are

log[f(y | t)] = −1

2
log(2π)− (y − t)2

2
,

∂ log[f(y | t)]
∂t

= y − t. (15.3)

As the log-likelihood is quadratic in t and thus satisfies the SOC, the MLE solves the
FOC:

0 =
1

n

n∑
i=1

(Yi − θ̂) =⇒ θ̂ =
1

n

n∑
i=1

Yi. (15.4)

Interestingly, we know from the WLLN that this MLE is consistent for the true population
mean E(Y ) even if the Yi are not normally distributed, but this is not a general property
of MLE.

Example 15.2. Let Yi ∼ Bernoulli(θ). (Assuming the Yi are iid or at least stationary,
this must be properly specified because there are no other possible distributions for binary
random variables.) Instead of a PDF, we have a PMF, but the idea is the same: f(1 |
t) = P(Y = 1 | t) = t and f(0 | t) = 1 − t, so for y ∈ {0, 1}, f(y | t) = ty + (1 − t)1−y.
The log-likelihood and score are

log[f(y | t)] = y log(t) + (1− y) log(1− t),

∂ log[f(y | t)]
∂t

= yt−1 + (1− y)(1− t)−1(−1).
(15.5)

Solving the FOC, remembering either Yi = 0 or Yi = 1,

0 =
1

n

n∑
i=1

[Yiθ̂
−1 − (1− Yi)(1− θ̂)−1]θ̂−1Ȳ − (1− θ̂)−1(1− Ȳ ),

so

1− Ȳ

1− θ̂
=

Ȳ

θ̂
=⇒ θ̂ − θ̂Ȳ = Ȳ − θ̂Ȳ =⇒ θ̂ = Ȳ .

We know from the WLLN that indeed θ̂ = Ȳ
p→ θ.
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Beyond Our Scope

There are also nonparametric approaches to maximum likelihood, where you do not
need to specify the distribution up to a finite number of unknown parameters. These
include the Kiefer and Wolfowitz (1956) nonparametric maximum likelihood estimator
(NPMLE) and sieve maximum likelihood, which allows the parametric model to be
more complex when more data is available (with “more complex” being implemented
in a precise way, and trying to choose the optimal level of complexity given a particular
dataset); for example, see Sections 2.2.2 and 4.2.4 and other references throughout
Chen (2007).

The ideas above extend readily to a vector of parameters. Because Y is still a scalar,
the likelihood f(y | t) is still a scalar, as is the log-likelihood, but the score is a vector
with the same dimension as t.

Also, the Hessian H i(t) is the matrix of second derivatives of the log-likelihood
for observation i, which is the derivative of the score si(t) with respect to t. Another
important matrix is the expected outer product of the score, E[s(θ)s(θ)′].

15.2 Identification and Quasi-Maximum Likelihood

The terms quasi-maximum likelihood (QML) and pseudo maximum likelihood
(PML) both refer to ML when the parametric family of distributions is misspecified,
meaning the true distribution is not a member of the family. (The only difference is
“quasi” is Latin, whereas “pseudo” is Greek.)

The situation is similar in spirit to when we specify a linear regression model when
the true CMF is not linear. Recall from Section 3.7.1 that instead of the CMF, we end
up estimating the “best linear approximation” of the CMF. That is, we estimate the
function that’s “closest” to the true CMF within our erroneously restricted set of possible
functions (like linear functions), but we must also remember that “closest” does not mean
“close.” (For example, the city in Missouri closest to New Zealand is still not close to
New Zealand.) Similarly with QML, we estimate the distribution in our specified family
that’s “closest” to the true one, but it may not be “close.”

First, we must define “closest” quantitatively. For QML, it is defined in terms of the
Kullback–Leibler (KL) divergence, also known as the KL information or Kullback–
Leibler information criterion (KLIC). Note the word “distance” is not used because
it is not symmetric, meaning the KL divergence from f(·) to g(·) generally does not equal
the KL divergence from g(·) to f(·).

For notational simplicity, consider the unconditional case with scalar Y with support
R. Let g(·) be the true PDF of Y . Thus, the expectation operator refers to integrating
against g(·), like E(Y ) =

∫
R yg(y) dy. Let f(· | t) be the specified PDF family. If there is

some θ such that g(·) = f(· | θ), then it is properly specified; if not, then it is misspecified.
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With proper specification, the population θ maximizes the population expected log-
likelihood, as the (long) argument below shows. First write the KL divergence,

E[f(Y | t)/f(Y | θ)] =
∫
R

f(y | t)
f(y | θ)

f(y | θ) dy =

∫
R
f(y | t) dy = 1

because f(· | t) is a PDF and thus integrates to 1. Because log(1) = 0, then

log
{
E[f(Y | t)/f(Y | θ)]

}
= 0. (15.6)

By Jensen’s inequality, because log(·) is concave,

E
[
log{f(Y | t)/f(Y | θ)}

]
≤ 0, (15.7)

and with t = θ the upper bound of zero is attained:

E
[
log{f(Y | θ)/f(Y | θ)}

]
= E[log(1)] = E[0] = 0. (15.8)

Further, using log(a/b) = log(a)− log(b),

0 ≥ E
[
log{f(Y | t)/f(Y | θ)}

]
= E{log[f(Y | t)]} − E{log[f(Y | θ)]},

E{log[f(Y | θ)]} ≥ E{log[f(Y | t)]}.

If for all t ̸= θ (and t ∈ Θ) a) P{f(Y | θ) ̸= f(Y | t)} > 0, and b) E{|log[f(Y | t)]|} < ∞,
then the true θ is the unique maximizer of the expected log-likelihood; see Lemma 2.2 of
Newey and McFadden (1994).

More generally, even under misspecification, we can consider the population estimand
of the MLE as the maximizer of the expected log-likelihood,

θ ≡ argmax
t∈Θ

E{log[f(Y | t)]}. (15.9)

Even if f(· | θ) is not the true PDF of Y , this is still a well-defined population object,
although again it may not have much meaning if there is a lot of misspecfication. Also
note that the measure of “close” is not related to any particular distributional feature like
the mean or median, but rather the KL divergence of the PDF as a whole.

15.2.1 Asymptotic Theory

The definition of the (Q)ML population parameter in (15.9) suggests estimation by

θ̂ = argmax
t∈Θ

Ê{log[f(Y | t)]} = argmax
t∈Θ

1

n

n∑
i=1

{log[f(Yi | t)]}, (15.10)

which is indeed the MLE. The leading 1/n can be removed without changing the max-
imizer, and the increasing transformation exp{·} can be applied to yield

∏n
i=1 f(Yi | t),
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which looks like the joint PDF of n iid random variables Yi, but such an interpretation
is not fundamental or helpful for the asymptotic theory. Also, similar to GMM (Sec-
tion 10.A), the key to consistency is uniform (over t ∈ Θ) convergence in probability of
Q̂(t) ≡ Ê{log[f(Y | t)]} to the population Q(t) ≡ E{log[f(Y | t)]}. For this, iid sampling
is not necessary. Nor are we required to model the dependence across observations; using
the marginal PDF is sufficient. For example, this is helpful with panel data: we do not
need to model the joint likelihood over t = 1, . . . , T , only the marginal distribution in
each period t. It may be possible to increase efficiency by modeling the dependence, but
as usual, this generally makes the estimator less robust: we are adding information that
could reduce our uncertainty, but if the information is wrong then we may introduce bias.

The asymptotic theory for MLE is actually similar to that for GMM: both estimators
maximize (or minimize) a criterion function that depends on the data. We need the
criterion function (which for finite n is a random function, in the sense that it depends
on the data) to converge uniformly in probability to a fixed population criterion function
whose unique solution is the true population parameter value, and then we need to look
at the function’s behavior local to the true parameter to derive the asymptotic normal
distribution. Actually, parallel to the GMM results in Newey and McFadden (1994) are
MLE results, because the underlying theory is closely related. For example, Theorem
2.5 of Newey and McFadden (1994) provides a consistency result for MLE, and Theorem
3.3 has an asymptotic normality result, given proper specification. As they sketch at the
beginning of Section 3 (page 2141), the strategy is similar to that we saw for GMM: take
a second-order mean value theorem expansion of the FOC around the true θ, then isolate√
n(θ̂ − θ), which yields the negative inverse Hessian (which converges in probability to

a fixed matrix) times the normalized sum of scores, to which a CLT applies. That is,
with some abuse of notation and θ̃ values between θ and θ̂ from the mean value theorem
expansion, we have an expansion like

0 =
1

n

n∑
i=1

si(θ) +
1

n

n∑
i=1

H i(θ̃)(θ̂ − θ) (15.11)

as in (3.1) of Newey and McFadden (1994), which yields something like their (3.2):

√
n(θ̂ − θ) = −

[ p→H︷ ︸︸ ︷
1

n

n∑
i=1

H i(θ̃)

]−1

d→N(0,J)︷ ︸︸ ︷
1√
n

n∑
i=1

si(θ)
d→ N(0,H−1JH−1). (15.12)

However, the asymptotic details are not particularly useful in practice and thus are
omitted.

15.2.2 Conditional MLE

We can follow the same MLE approach after conditioning on X. That is, we specify a
family of conditional PDFs f(· | X = x, t), taking the log to get the log-likelihood and
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then taking the derivative with respect to t to get the score. Specifying the conditional
distribution is weaker than specifying the full joint distribution of (Y,X ′) because a joint
distribution uniquely determines the conditional distribution, but there are many joint
distributions possible for a given conditional distribution.

Example 15.3. Consider the probit model from (14.22), Y ∗ =X ′β+U with U ∼ N(0, 1)
and U ⊥⊥ X, and observed Y = 1{Y ∗ > 0}. From (14.23), P(Y = 1 | X = x) = Φ(x′β).
Thus, conditional on X = x, Y follows a Bernoulli distribution with parameter Φ(x′β).
Thus, we can adapt the unconditional Bernoulli structure from Example 15.2: for y ∈
{0, 1},

f(y |X = x, t) = [Φ(x′t)]y[1− Φ(x′t)]1−y, (15.13)
log[f(y |X = x, t)] = y log[Φ(x′t)] + (1− y) log[1− Φ(x′t)], (15.14)

∂ log[f(y |X = x, t)]

∂t
= y

ϕ(x′t)x

Φ(x′t)
+ (1− y)

−ϕ(x′t)x

1− Φ(x′t)
. (15.15)

Often MLE is used for structural models that hope to have enough detail that the
remaining error term is plausibly independent ofX, and assuming a particular parametric
distribution for the error term leads to a tractable MLE. Counterfactual policy simulations
can then be run by changing the model parameters and/or X distribution and drawing
error terms from the assumed distribution, to generate simulated outcomes.

15.2.3 Efficiency and Standard Errors

Assuming you know the conditional distribution of Y up to just a finite number of un-
known parameters is a much stronger assumption than we have seen elsewhere in this
book, which has two implications. First, recall that our results are essentially a combina-
tion of the data with information we bring to the data in the form of “assumptions.” If we
bring lots of information, then our results have less uncertainty. One way to phrase this
is that our estimator will be more efficient. Indeed, there are results about MLE being
asymptotically efficient (attaining the Cramér–Rao lower bound).

Second, however, such strong assumptions are almost surely false. Wooldridge (2010)
writes, “efficiency usually comes at the price of nonrobustness” (p. 469). He notes, “there
are cases in which MLE turns out to be robust to failure of certain assumptions, but these
must be examined on a case-by-case basis” (p. 470). My favorite quip on the topic is from
Andres Santos (teaching ECON 220C in Spring 2009 at UCSD), who said something to the
effect of, “if you’re smart enough to correctly specify a model up to only a finite number
of unknown parameters, then you should be doing something much more important than
econometrics.” The point being: if any mere mortal claims to have properly specified a
ML model, then we should not believe them.

The efficiency can be seen as getting the “sandwich form” asymptotic variance in
(15.12) to collapse. In GMM, this “collapse” was achieved by a particular choice of the
weighting matrix. In ML, this collapse comes if the model is properly specified, in which
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case (in the notation of (15.12)) −H = J , or in terms of notation elsewhere in this
chapter, −E[H i(θ)] = E[si(θ)si(θ)

′], known as the information matrix equality.
When you compute standard errors, you should use standard errors that are robust

to misspecification. That is, you should ask Stata to estimate the full H−1JH−1 asymp-
totic covariance matrix without first assuming the information matrix equality holds, i.e.,
without assuming proper specification. Otherwise, your standard errors will be too small,
even in large samples (asymptotically), because you have assumed something to be true
(proper specification) that is not.
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Exercises

Exercise IV.1. Consider the binary variable (inlf below) of whether or not a married
woman is in the labor force, and its relationship with other socioeconomic variables. Note
the dataset lacks variable labels, but they can be found online.1

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse mroz , clear

c. Run reg inlf educ exper kidslt6 kidsge6 nwifeinc , vce(robust)

i. Describe how to interpret the population model you are estimating.
ii. Interpret the estimated coefficient on educ, and comment on its economic

significance.
iii. Explain what the confidence interval tells us about our uncertainty about the

true population value; be precise and explicit.
iv. Explain one reason (specific to this economic example) that you doubt the true

conditional mean function is linear-in-variables.

d. Run probit inlf educ exper kidslt6 kidsge6 nwifeinc , vce(robust)

e. Run margins, dydx(educ exper) atmeans and margins, dydx(educ exper)
and explain the difference between the two commands; then compare the results
with the OLS estimated slopes.

f. Run logit inlf educ exper kidslt6 kidsge6 nwifeinc followed by margins,
dydx(educ exper) and briefly comment on the economic significance of the dif-

ference with the probit-estimated average partial “effects.”

g. Consider the following very stylized hypothetical predication application. Imagine
you work for a company that offers services for married women in the labor force,
and your job is to write code to decide whether or not to buy an online ad for each
user that visits another website (that allows you to buy ads for a fixed price). The
other website collects all the regressors (predictors) used above, but cannot observe

1http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.des
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inlf, so you need to guess (predict). Given your estimated model from above, you
can compute the predicted (conditional) probability of being in the labor force for
user i, denoted p̂i. Each ad costs $0.001; if the user is indeed in the labor force,
then expected revenue is $0.003 (because most people don’t click through, etc.),
otherwise expected revenue is zero. Assuming your goal is to maximize expected
profit, which is a better prediction of being in the labor force (yi), ŷi = 1{p̂i > 0.25}
or ŷi = 1{p̂i > 0.75}? (That is, you generate binary ŷi, then run the ad if ŷi = 1
but not if ŷi = 0.) Try to find an even better prediction rule for ŷi as a function of
p̂i, and explain why your prediction generates higher expected profit than the two
above.

Exercise IV.2. The following models whether an individual is arrested or not in a
particular year, given their past criminal justice involvement, demographics, and current
employment and income. Variable descriptions are provided in the variable labels in the
dataset, originally studied by Grogger (1991). Section II of the original paper provides
more details about the data, like covering men in California who were arrested at least
once since 1972 and who were born in either 1960 or 1962.

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse grogger , clear

c. Create the dependent variable: gen d_arr86 = (narr86>0)

d. Run reg d_arr86 pcnv avgsen tottime black hispan , vce(robust)

i. Describe how to interpret the population model you are estimating.
ii. Interpret the estimated coefficients on pcnv and avgsen, and comment on their

economic significance.
iii. Explain what the confidence intervals tell us about our uncertainty about the

true population values; be precise and explicit.
iv. Explain one reason (specific to this economic example) that you doubt the true

conditional mean function is linear-in-variables.

e. Run probit d_arr86 pcnv avgsen tottime black hispan , vce(robust)

f. Run margins, dydx(pcnv avgsen) atmeans and margins, dydx(pcnv avgsen)
and explain the difference between the two commands; then compare the results
with the OLS estimated slopes.

g. Run logit d_arr86 pcnv avgsen tottime black hispan followed by margins
, dydx(pcnv avgsen) and briefly comment on the economic significance of the
difference with the probit-estimated average partial “effects” of pcnv and avgsen.

h. Now consider trying to predict whether or not an individual will be arrested over
the next 12 months for the purpose of targeting an intervention that includes 1-
on-1 mentoring, job training, and subsidized housing, and imagine you only care
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about reducing arrests (not any other outcome). There is no budget constraint, but
the opportunity cost of spending $1 on this program is not spending that $1 on
a different program to help reduce arrests. After running your probit command
from above, pretend we then loaded a new dataset that includes only the predictor
variables but not d_arr86, and then generate the predicted arrest probabilities with
predict phat along with two possible binary predictions of being arrested using
two different probability thresholds:
gen target25 = (phat>0.25)
gen target48 = (phat>0.48)
Finally, because actually we do know the true d_arr86 values, compare the true
and predicted values:
tab d_arr86 target25
tab d_arr86 target48

i. For the 25% threshold: how many “false negatives” (target25=0 but they
are arrested) and “false positives” (target25=1 but they are not arrested) are
there? How many are there for the 48% threshold?

ii. Qualitatively, what is the cost of a false negative? What’s the cost of a false
positive?

iii. Adding whatever additional details you need (about costs, benefits, etc.) for
the following to be true: why might the higher threshold be preferred here?

iv. Would a 50% threshold be even better? 60%? Explain why/not.

Exercise IV.3. Consider the relationship between whether or not somebody reports
being in good health (gdhlth) and other variables. This dataset is from 1975. Note the
dataset lacks variable labels, but they can be found online.2

a. As usual, make sure the command bcuse is installed: ssc install bcuse

b. Load the data: bcuse sleep75 , clear

c. Run reg gdhlth c.age##c.age male##yngkid sleep totwrk educ , vce(
robust)

i. Describe how to interpret the population model you are estimating.
ii. Interpret the estimated coefficients on age and its square, and comment on

their economic significance.
iii. Explain what the confidence intervals tell us about our uncertainty about the

true population values; be precise and explicit.
iv. Explain one reason (specific to this economic example) that you doubt the true

conditional mean function has this exact functional form.

d. Run margins , dydx(age) at(age=(30(15)60)) vsquish
2http://fmwww.bc.edu/ec-p/data/wooldridge/sleep75.des

http://fmwww.bc.edu/ec-p/data/wooldridge/sleep75.des
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e. Run probit gdhlth c.age##c.age male##yngkid sleep totwrk educ , vce(
robust) and then margins , dydx(age) at(age=(30(15)60)) vsquish and
compare with the OLS results.

f. Repeat part (e) but with logit instead of probit and briefly compare to the probit
results.

g. Now imagine you work for a health insurance company and want to predict if an
individual is in good health; if not, the insurance company will call them with a
reminder to visit the doctor. After running your probit command from above,
pretend we then loaded a new dataset that includes only the predictor variables but
not gdhlth, and then generate the predicted arrest probabilities with
predict phat along with two possible binary predictions of being arrested using
two different probability thresholds:
gen target50 = (phat>0.50)
gen target80 = (phat>0.80)
Finally, because actually we do know the true gdhlth values, compare the true and
predicted values:
tab gdhlth target50
tab gdhlth target80

i. For the 50% threshold: how many extraneous phone calls would be made
(target50=0 but gdhlth=1)? How many individuals not in good health fail
to get called (target50=1 but gdhlth=0)? How many of each for the 80%
threshold?

ii. Qualitatively, what is the cost of calling somebody who’s actually in good
health? What’s the cost of failing to call somebody in bad health?

iii. Adding whatever additional details you need (about costs, benefits, etc.) for
the following to be true: why might the higher 80% threshold be preferred
here?
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analogy principle, 35
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APE, see average partial effect
AR, see Anderson–Rubin
ASE, see average structural effect
ASF, see average structural function
associated with, 208
asymptotic bias, 51
asymptotically linear, 146
asymptotics
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sequential, 163

ATE, see average treatment effect
ATET, see average treatment effect on

the treated
ATT, see average treatment effect on the

treated
attenuation bias, 84
autocorrelation, 163
average causal effect, 56
average partial effect, 209
average structural effect, 64
average structural function, 64
average treatment effect, 55

conditional, 67
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on the treated, 59
on the treated, conditional, 70

Bayesian, 31
before sampling, 28
Bernoulli random variable, 207
best linear approximation, 40
best linear predictor, 39
between variation, 188
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downward, 48
negative, 48
positive, 48
toward zero, 48
upward, 48

binary response model, 207
BLA, see best linear approximation
BLP, see best linear predictor

CATE, see average treatment effect, con-
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CATT, see average treatment effect on
the treated, conditional

causal inference, 37
CEF, see conditional expectation func-
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classical, 31
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cluster-robust standard errors, 181
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collider, 87
collider bias, 87
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conditional expectation function, 40
conditional mean function, 40
confidence interval, 45
confidence level, 45
consistent, 51
continuously updated estimator, 136
contrapositive, 19
converse, 19
correlated random effects, 180
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coverage probability, 45

nominal, 45
CP, see coverage probability
CRE, see correlated random effects
credible interval, 32
credible set, 32
CUE, see continuously updated estima-

tor

data-generating process, 25
decision rule, 213
DGP, see data-generating process
DiD, see difference-in-differences
difference-in-differences, 161, 169
dynamic panel model, 191

economic significance, 43
efficiency, 51, 147
empirical distribution, 24
endogenous, 62
error form, 41
errors-in-variables, 83

classical, 84
excluded instrument, 113
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sequential, 191
strict, 175

exogenous, 62

FD estimator, see first-difference estima-
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FE, see fixed effects
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first difference, 162
first lag, 162
first-difference estimator, 176
fixed effects, 171
fixed effects estimator, 176
fixed effects transformation, 176
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GE, see general equilibrium
general equilibrium, 36
general equilibrium effects, 59
GMM
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iterative, 136
two-step estimator, 136, 147
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heterogeneity, 55

identically distributed, 30
identification, 34
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nonparametric, 69
over-, 114
partial, 35, 114
point, 34
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up to scale, 217

identifying assumptions, 34
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if and only if, 18
ignorability, 57
iid, see independent and identically dis-

tributed
implied by, 17
implies, 17
included instrument, 114
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conditional mean, 68
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independent and identically distributed,
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independent variables, 38
influence function representation, 146
information matrix equality, 225
instrument

excluded, 110
instrumental variable, 103
inverse, 19
IV, see instrumental variable
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criterion
Kullback–Leibler, 221
Kullback–Leibler information criterion,
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lagged, 162
LATE, see average treatment effect, local
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linear
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-in-variables, 208

linear probability model, 208
linear projection, 39
linear projection coefficients, 39
linear-log, 44
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log-linear, 44
log-log, 44
logit

function, 218
model, 214, 218

longitudinal data, 162
loss

expected, 211
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loss function, 211
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weighted 0–1, 211

LP, see linear projection
LPCs, see linear projection coefficients
LPM, see linear probability model
LQTE, see local quantile treatment effect

maximum likelihood, 219
maximum likelihood estimator, 220
mean squared error, 49
measurement error, 81

classical, 84
misspecified, 219
ML, see maximum likelihood
MLE, see maximum likelihood estimator
moment condition, 114
moment function, 133
MSE, see mean squared error
multiple comparisons problem, 46
multiple testing problem, 46

natural experiments, 163
necessary, 18
Neyman–Rubin causal model, 54
no interference, 57
non-interference, 57
nonparametric regression, 42
nonseparable, 64

OLS, see ordinary least squares
omitted variable bias, 78, 171
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OVB, see omitted variable bias

panel
balanced, 162
cross-sectional dimension, 162
data, 161, 162, 171
time-series dimension, 162
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parallel trends, 165, 167
partial effect, 208
partial effect at the average, 209
partial equilibrium, 36
PE, see partial equilibrium
PEA, see partial effect at the average
percentage point, 208
perfect proxy, 86
plug-in principle, 35
PML, see pseudo maximum likelihood
POLS, see pooled OLS
pooled OLS, 173
population

finite, 25
infinite, 25
super-, 26

posterior, 32
potential outcome

treated, 54
untreated, 54

power, 124
pp, see percentage point
predictors, 38
prior, 32
probit model, 214
properly specified, 219
proxy variable, 85
pseudo maximum likelihood, 221

QML, see quasi-maximum likelihood
quadratic loss, 39
quasi-experiments, 163

quasi-maximum likelihood, 221

random
-ized, 37
draw, 27
sample, 27, 29
variable, 27

random coefficients, 62
random effects, 174
rank condition, 114
RE, see random effects
realization, 27
realized value, 27
reduced form parameters, 112
reduced-form, 37
redundant, 85
regression discontinuity, 70
regressors, 38
relevant, 106, 116
repeated sampling, 32
response probability, 208
right-hand-side variables, 38
risk, 211

sample
analog, 41
distribution, see empirical distribu-

tion
size, 29

sampling
clustered, 181
distribution, 47
independent, 29
stratified, 181

sandwich form, 121
score function, 220
serial correlation, 163
significance

economic, see economic significance
statistical, see statistical significance

simultaneity, 101
single index model, 214
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spillover effects, 58
Stata

ado-file, 11
command line, 10
comments, 11
console, 10
do-file, 10
Mata, 11
program, 11
replicability, 10
scripts, 10

static panel model, 191
statistical significance, 45
statistics, 2
strata, 181
stratum, 181
strong ignorability, 57
stronger, 18
structural approach, 37
sufficient, 18

test
J-, 129
inversion, 128
of overidentifying restrictions, 129
omnibus, 130

overidentification, 129
Sargan–Hansen, 129
specification, 129

time effects, 178
treatment, 54
treatment effect, 54, 55
TWFE, see two-way fixed effects
two-stage least squares, 113, 118
two-way fixed effects, 178
type I error rate, 124
type II error, 124

ULLN, see uniform (weak) law of large
numbers

unbiased, 48
unconfoundedness, 57
undercoverage, see coverage
uniform (weak) law of large numbers, 143
units, 29
unobserved effects model, 172
unobserved heterogeneity, 172

Wald estimator, 104, 112
weak identification, 126
weak instruments, 126
weaker, 18
within transformation, 176
within variation, 188


	Contents
	Preface
	Textbook Learning Objectives
	Notation
	I Foundations
	Introduction
	Stata
	Access
	Pros and Cons
	General Setup
	Administrative Commands
	Data Input and Examination
	Data Manipulation Commands
	Data Analysis

	Logic
	Terminology
	Theorems
	Comparing Assumptions

	The Big Picture
	Description, Prediction, and Causality
	Population and Sample
	Population Types
	Before and After Sampling: Two Perspectives
	Sampling Types

	Frequentist and Bayesian
	Very Brief Overview: Bayesian Approach
	Very Brief Overview: Frequentist Approach
	Bayesian and Frequentist Differences

	Identification, Estimation, and Inference
	General Equilibrium and Partial Equilibrium
	Structural and Reduced-Form Approaches
	Linear Regression
	Linear Projection
	Conditional Mean Function
	Causal Interpretation

	Economic Significance
	Basic Idea
	Units of Measure
	Log Models

	Quantifying Uncertainty
	Quantifying Accuracy of an Estimator
	Bias
	Mean Squared Error
	Consistency and Asymptotic MSE


	Identification by Independence
	Average Treatment Effect
	Potential Outcomes
	Treatment Effects
	Average Treatment Effect
	ATE Identification
	SUTVA Violations
	ATT Identification
	Estimation

	Linear Structural Model
	Fixed Coefficients
	Random Coefficients

	Nonseparable Structural Model

	Identification by Conditional Independence
	Conditional Average Treatment Effect
	CATT
	Linear Structural Model
	Nonseparable Structural Model

	OVB and Proxy Variables
	Omitted Variable Bias
	Allegory for Intuition
	Formal Characterization of OVB
	Measurement Error

	Proxy Variables
	Collider Bias
	Collider Bias: Example

	Exercises

	II Instrumental Variables
	Introduction
	Local Average Treatment Effect
	Wald Estimator and Estimand
	Types of Individuals
	LATE Identification
	Proof of LATE Identification

	IV Regression
	Simple IV Regression
	Ratio of Covariances
	Ratio of LP Slopes
	Isolating Exogenous Part of Regressor
	Method of Moments

	IV with One Instrument
	IV with Multiple Instruments
	Some Intuition
	Identification
	Estimation, Inference, and Efficiency

	General IV Regression

	IV Diagnostics
	Underidentification
	Weak Identification
	Consequences of Weak Identification
	Assessing Weak Identification
	Coping with Weak Identification

	Misspecification

	Generalized Method of Moments
	Basic Setting and Notation
	Simple Examples
	2SLS as GMM
	General Estimator
	Asymptotic Theory
	Testing Overidentifying Restrictions

	Technical Details: GMM Consistency
	Technical Details: GMM Asymptotic Normality

	Exercises

	III Panel Data
	Introduction
	Difference-in-Differences
	Panel Data Basics
	Basic Terms and Notation
	Asymptotic Frameworks

	Some Intuition
	Bad Approaches
	Counterfactuals and Parallel Trends

	ATT Identification
	Estimation by Regression

	Fixed Effects Regression
	Structural Model
	Pooled OLS and Random Effects
	Two-Period Case
	Two-Way Fixed Effects
	Other Approaches
	Other Considerations
	Cluster-Robust Standard Errors
	Types of Sampling
	SE for Panel Regression

	Pooled OLS Asymptotic Theory
	Efficiency
	POLS Cluster-Robust Standard Errors

	Dynamic Panel Models
	Types of Exogeneity
	FE/FD Failure in Simple Model
	Moment Conditions

	Exercises

	IV Probit
	Introduction
	Binary Response Models
	Binary Basics
	Linear Probability Model
	Model Interpretation and Partial Effects
	Limitations

	Binary Prediction
	Loss Function
	Unconditional Optimal Prediction in the Population
	Conditional Optimal Prediction in the Population
	Prediction in Practice

	Probit Model
	Interpretation and Partial Effects
	Prediction
	Structural Model and Interpretation

	Logit Model

	(Quasi) Maximum Likelihood
	Basics
	Identification and Quasi-Maximum Likelihood
	Asymptotic Theory
	Conditional MLE
	Efficiency and Standard Errors


	Exercises

	Bibliography
	Index

