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To the tails.
—DMK



An economist was standing with one foot in a bucket of boiling water and
the other foot in a bucket of ice. When asked how he felt, he replied, “On
average I feel just fine.”

Variation of quote attributed to Mark Twain
As retold by Hansen (2020a, p. 29)
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Preface

This text was prepared for a 15-week semester Advanced Econometrics course for 2nd-year
economics PhD students at the University of Missouri. The class focuses on two general
themes: 1) learning about aspects of distributions besides the mean, and 2) nonparametric
methods. Other topics naturally arise.

The assumed background is the first-year core PhD econometrics at the University
of Missouri, which uses (roughly) the first nine chapters of Hansen (2020a) and related
material from Hansen (2020b) in the first semester and a subset of Wooldridge (2010)
covering basics like IV, GMM, and potential outcomes in the second semester.

As with my Introductory Econometrics text (Kaplan, 2022b), this text’s source files
are freely available. Instructors may modify them as desired, or copy and paste LATEX code
into their own lecture notes, with usage subject to the Creative Commons license linked
on the copyright page. I wrote the text in Overleaf, an online (free) LATEX environment
that includes knitr support. You may see, copy, and download the entire project from
Overleaf1 or from my website.2

Another unusual feature is the prevalence of in-class discussion questions. I find these
very helpful (for more actively engaging students, for gauging how students are tracking,
and for breaking up my lecturing), and students seem to appreciate them, too.

Thanks to everyone for their help and support: my past econometrics instructors, my
colleagues and collaborators, my students, and my family.

David M. Kaplan
Spring, 2020
Columbia, Missouri, USA

1https://www.overleaf.com/read/bbmwhsvfwgfc
2https://kaplandm.github.io/teach.html
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Textbook Learning Objectives

For good reason, it has become standard practice to list learning objectives for a course
as well as each unit within the course. Below are the learning objectives corresponding to
this text overall. In the future, each chapter will additionally list more specific learning
objectives that map to one or more of these overall objectives. I hope you find these
helpful guidance, whether you are a solo learner, a class instructor, or a class student.

The textbook learning objectives (TLOs) are the following.

1. For a variety of econometric methods, describe their critical assumptions, output,
and interpretation (economic and statistical), with some understanding of how these
relate.

2. Develop intuition for fundamental concepts to enable you to understand economet-
rics papers/books that you need to read later for your own research.

3. Judge which of two methods is “better” in a given situation, including in others’
research.

4. Gain familiarity with LATEX and R.

5. Produce new empirical (or methodological) econometric research, aware of its po-
tential flaws (accepting that it won’t be perfect), able to articulate (defend) how
you’ve successfully extracted new knowledge about the world from the raw data.

xix
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Notation

Variables

Usually, uppercase denotes random variables, whereas lowercase denotes fixed values. The
primary exception is for certain counting variables, where uppercase indicates the maxi-
mum value and lowercase indicates a general value; e.g., time period t can be 1, 2, 3, . . . , T ,
or regressor k out of K total regressors. Scalar, (column) vector, and matrix variables are
typset differently. For example, an n-by-k random matrix with scalar (random variable)
entries Xij (row i, column j) is

X =


X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...
Xn1 Xn2 · · · Xnk


and a k-dimensional non-random vector is

z =


z1
z2
...
zk


Unless otherwise specified, vectors are column vectors. The transpose of a column vector
is a row vector. For example, using the z defined above,

z′ = (z1, z2, . . . , zk)

Note: displayed math like above should always have appropriate punction (comma, pe-
riod) at the end! . . . unless you are defining notation and worry about confusing people.

Greek letters like β and θ generally denote fixed population parameters.
I sometimes make exceptions to match convention. For example, ϵ is a Greek letter

but is conventionally used for a regression error term or white noise.

1



2 NOTATION

Estimators usually have a “hat” on them. Since estimators are computed from data,
they are random from the frequentist perspective. Thus, even if θ is a non-random
population parameter, θ̂ is a random variable.

I try to put “hats” on other quantities computed from the sample, too. For example,
a t-statistic would be t̂ (a random variable computed from the sample) instead of just t
(which looks like a non-random scalar). Or, a J-statistic would be Ĵ , even though J is
already uppercase, to emphasize that it is computed from data (rather than data itself).

Besides hats, tildes and bars may indicate estimators of parameters, and bars indicate
sample averages. For example, there may be multiple alternatives for estimating θ: θ̂, θ̃,
and θ̄. The sample average of Y1, . . . , Yn is Ȳ .

Estimators and other statistics (i.e., things computed from data) may sometimes
have a subscript with the sample size n to remind us of the asymptotic perspective of a
sequence (indexed by n) of random variables. For example, with n denoting sample size,
θ̂n, t̂n, and Ȳn.

The following is a summary.
y scalar fixed (non-random) value
Y scalar random variable
θ scalar non-random value
θ̂ scalar random variable

x non-random column vector
x′ transpose of x
X random column vector
β non-random column vector
β̂ random column vector

w non-random matrix
w′ transpose of w
W random matrix
Ω non-random matrix
Ω̂ random matrix

Symbols

In addition to the following symbols, vocabulary words and abbreviations (like “quantile”
or “IVQR”) can be looked up in the Index in the very back of the text.

=⇒ implies; see Chapter 3
⇐= is implied by; see Chapter 3
⇐⇒ if and only if; see Chapter 3
limn→∞ limit
plimn→∞ probability limit
→ converges to (deterministic)



NOTATION 3

p→ converges in probability to; see Hansen (2020b, §7.3)
a.s.→ converges almost surely to; see Hansen (2020b, §7.14)
d→ converges in distribution to; see Hansen (2020b, §8.2)
⇝ converges weakly to
≡ is defined as
≈ approximately equals
.
= equals when ignoring smaller-order terms
∼ is distributed as
a∼ is distributed approximately (or asymptotically) as
X ⊥⊥ Y X and Y are statistically independent
N(µ, σ2) normal distribution with mean µ and variance σ2

N(0, 1) standard normal distribution
Φ(·) cumulative distribution function (CDF) of N(0, 1)
ϕ(·) probability density function (PDF) of N(0, 1)
FY (·) cumulative distribution function (CDF) of Y
QY (·) quantile function of Y
fY (·) probability density function (PDF) of Y (or PMF if discrete)
1{·} indicator function: 1{A} = 1 if event A occurs, else 1{A} = 0
P(A) probability of event A
P(A | B) conditional probability of A given B
E(Y ) expected value of Y
Ê(Y ) expectation for sample distribution; same as 1

n

∑n
i=1 Yi

E(Y | X = x) CEF (function of x); see Hansen (2020a, §2.5)
E(Y | X) expected value of Y given X; this is a random variable
Qτ (Y ) τ -quantile of Y ; see Section 4.2
Qτ (Y | X = x) conditional τ -quantile function (τ -CQF); see Section 5.1
Var(Y ) variance of Y
Var(Y | X = x) conditional variance (a non-random value)
Var(Y | X) conditional variance (a random variable)
Cov(Y,X) covariance
Corr(Y,X) correlation
b ∈ {a, b, c} b is in the set containing a, b, and c
S1 ∪ S2 the union of sets S1 and S2
J⋃

j=1
Sj the union of S1, . . . ,SJ

S1 ∩ S2 the intersection of sets S1 and S2
J⋂

j=1
Sj the intersection of S1, . . . ,SJ

N the set of natural numbers, {1, 2, 3, . . .}
R the set of real numbers (which excludes ±∞)
R≥0 the non-negative real numbers



4 NOTATION

R>0 the strictly positive real numbers
R̄ the extended real numbers, R ∪ {−∞,∞}
Rk k-dimensional Euclidean space
Z the set of integers, {. . . ,−2,−1, 0, 1, 2, . . .}
Z≥0, Z>0 analogous to R≥0 and R>0

SE(θ̂) standard error of estimator θ̂
argming f(g) the value of g that minimizes f(g)

Ik k × k identity matrix (ones on main diagonal, zeros elsewhere)
∥·∥ norm (Euclidean unless otherwise defined)
tr(v) trace of matrix v
v′ transpose of matrix v
v−1 inverse of matrix v
v > 0 matrix v is positive definite
v ≥ 0 matrix v is positive semi-definite



Statistical Software Overview

Note #1: if links don’t work, try Google. (That’s how I found them, after all.) Google is
often able to track down helpful pages.

Note #2: in general, I would trust a random (Googled) page’s tips for R much more
than its econometric advice. It’s easy to try the code they provide and see if it does what
you need it to do. It’s difficult or impossible to quickly see whether their econometric
suggestion is appropriate for your data (or if what they are saying is even correct at all).

As a student at Mizzou, you can use Software Anywhere for free.3 Even if you are
off-campus, that webpage gives instructions for connecting first with VPN.

The on-campus computing sites also provide a variety of statistical software. You can
check which computing sites/labs have your favorite software on the Computing Sites
Software web page.4

If you ever need help beyond what you can find on Google, please feel free to come to
my office hours—that’s what they are for.

R

Nice things about R:
1. It’s free. (As are RStudio and other related products.)
2. It’s open-source. (Is that nice? I’m not sure I care.)
3. It’s popular:

• Companies use it.
• Academics use it across many fields.
• Statisticians/econometricians often contribute code/packages for new methods

in R. (My guess is new econometric methods are provided most commonly in
R, then Stata, then Matlab.)

• There are many online resources for learning R.
4. The syntax is relatively straightforward (i.e., it’s not SAS; similar to Matlab, S-plus,

etc.).

3https://doit.missouri.edu/services/software/software-anywhere
4https://doit.missouri.edu/services/computing-sites/sites-software

5

https://doit.missouri.edu/services/software/software-anywhere
https://doit.missouri.edu/services/computing-sites/sites-software


6 STATISTICAL SOFTWARE OVERVIEW

5. The graphics look the nicest to me.
6. It’s flexible (easy to create new functions, etc.).
7. Can do parallel processing to speed up computations (even on your personal com-

puter).
Drawbacks:
1. It can be more complicated to do common econometric tasks in R than in Stata;

e.g., cluster-robust standard errors, 2SLS.
2. It’s slower than FORTRAN and such.
Sometimes I have used a combination of Stata and R to analyze data. Often datasets

are available online in .dta format, and it is easy to do simple manipulations in Stata
(filtering, reshaping, merging, etc.). Then, you can load the prepared (“prepped”) dataset
into R to run whatever special function you want to use in R. (Or if you’re just running
OLS or something basic, just stick with Stata.) There is actually an R package (haven)
that loads Stata .dta files (up to version 15 as of March 2020); or you can just export
from Stata into .csv format, which is easy to read into R.

More detailed help getting started in in Chapter 2.

Stata

Nice things about Stata:
1. Very intuitive and simple; easy to do most common tasks.
2. Popular among applied economists =⇒ lots of support, data often available in

Stata format, used in jobs, etc.
3. I think the help files within Stata are very helpful (once you know the basic structure

and syntax).
Drawbacks:
1. Not as many fancy functions as R, although econometricians are getting better

about providing code in Stata (e.g., lots of the new RD methods).
2. Not as easy to code your own functions (vs. R, based on my experiences doing both).
3. Can only have one dataset in memory at a time.
4. Slower? Most expensive version does support parallel processing now, and Mata is

compiled (I think).
Suggestion: if you get a job (or research project) where you’ll be using Stata for a

while, it is definitely worth the investment to learn the commands (rather than using the
menus/buttons) and to write DO-files that can be saved and replicated.

UCLA has some respected Stata resources.5

The first Google hit is currently a Princeton professor’s tutorial; I haven’t looked
through it, but it’s probably pretty good, right?6

5https://stats.idre.ucla.edu/stata
6http://data.princeton.edu/stata

http://cran.r-project.org/web/packages/haven/index.html
https://stats.idre.ucla.edu/stata
http://data.princeton.edu/stata
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Matlab

Good: ok syntax and speed (including parallel processing).
Bad: much (most?) of the Matlab functionality is in the “toolboxes” that must be

separately purchased, so if you don’t have access to all the toolboxes (and can’t buy them
when necessary), functionality is restricted. Also, not as much econometrics-specific code
available since R and Stata are more popular for most but not all fields within econ.

See http://people.duke.edu/~hpgavin/matlab.html for a (curated?) list of tuto-
rials, or try Google.

SAS

I primarily used SAS when working at the economic consulting firm NERA for two years. I
didn’t like it as much as other statistical software options, but (at the time) Stata couldn’t
handle the big files we had, and my boss got his start as a dedicated SAS programmer. I
hope you aren’t ever forced into using SAS, but I’m happy to try to help if you’d like to
learn it.

Others

Julia: supposed to be great, but less widely used, so maybe have to write more of your own
code from scratch. (But I don’t think it’s like the Esperanto of programming languages
or anything.)

Python, Fortran, C, GAUSS, Eviews. . . .

http://people.duke.edu/~hpgavin/matlab.html
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Part I

Writing, Coding, and Logic
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Chapter 1

Writing and Typesetting

Unit learning objectives for this chapter

1.1. Get started with an online LATEX editor and modify some templates [TLO 4]

1.2. Learn best practices for effective writing

Optional resources for this chapter

• Overleaf registration: https://www.overleaf.com?r=63e2691f&rm=d&rs=b

• My LATEX templates, including job market candidate (JMC) templates: https:
//www.overleaf.com/read/gtfzpkwrzhhw

• Article on scientific writing: https://pdfs.semanticscholar.org/73e3/
171fc0ef4aa6d1d92cff07085f41e94907a6.pdf

1.1 LATEX

In class, we’ll spend one day on LATEX. I know some of you may not ever use it, which
is fine. (Unless you’re doing econometric theory: then it’s a negative signal if your
papers/slides are not in LATEX, and all the math will [eventually] be much easier in
LATEX.)

Overleaf is an online LATEX editor that offers free accounts.1 I’ve used Overleaf (and
its predecessor ShareLaTeX) for many years now, and I like it because: 1) it’s free, 2)
it’s online (so I can easily work from any computer), 3) they do all the work of updating
packages and compilers, 4) you can collaborate easily (concurrent editing, etc.), 5) the

1Register at https://www.overleaf.com?r=63e2691f&rm=d&rs=b to get me a referral bonus!

11
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compiler is fast. Especially for a beginner, I’d strongly recommend Overleaf over main-
taining your own LATEX system locally. Overleaf also has a WYSIWYG option that may
be helpful for beginners, although I’ve never tried it.

The quickest way to get started is by looking at examples. Here are a few of my
projects (read-only access, so don’t worry about deleting something by mistake; but, you
can copy code or download files):

• https://www.overleaf.com/read/sxqrmqymbktz (job market stuff)

• https://www.overleaf.com/read/snjcmmshybtk (paper and talk/slides)

• https://www.overleaf.com/read/jzkzmyvqgcqx (older paper with older slides
template)

• https://www.overleaf.com/read/xzwpqpnpcmdv (other paper)

If you’re starting to write a paper, I’d suggest doing what I do: take the _paper.tex file
from one of the links above, then delete all the content but keep the preamble (loading
packages, etc.) and structure. Just, remember to delete my name. I’d suggest doing the
same for making a CV (in the “job market stuff” project), or slides, etc.

Other than examples, you can largely learn from Google. You can also browse Over-
leaf’s learning materials,2 which have sometimes popped up on Google for me and seem
to be helpful. The StackExchange site3 is also helpful (and is usually the first Google
result).

To get you oriented within the templates/files, the main structure/elements of a paper
are the following.

• Preamble: loading packages and defining macros and such; doesn’t “do” anything
that gets displayed directly, but gets prepared to do things later.

• Title/author/etc.

• Text: a paper is divided into different sections (Introduction, etc.); each section is
started with a \section{Section Title} command. You can use the command \
subsection{Subsection title} to start a subsection; subsubsections are possible
but should be used rarely. In the line after such a command, add something like
\label{sec:intro} to let you later use \cref{sec:intro} instead of needing to
type out Section 1.

• Tables and figures (“floats”): almost all econ papers have at least one table or figure.
These are sometimes called “floats” because LATEX helps decide where to place them
to look best; they are not forced to be in a particular place. Sometimes you can find
a better place manually, but people (who have studied econ but not typesetting)

2https://www.overleaf.com/learn
3https://tex.stackexchange.com

https://www.overleaf.com/read/sxqrmqymbktz
https://www.overleaf.com/read/snjcmmshybtk
https://www.overleaf.com/read/jzkzmyvqgcqx
https://www.overleaf.com/read/xzwpqpnpcmdv
https://www.overleaf.com/learn
https://tex.stackexchange.com
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are wrong more often than LATEX, and it saves you time to just let LATEX handle
it. Within a “table” environment there is a caption, a label, and a “tabular” (the
part that actually looks like a table). Within a “figure” environment, there is also
a caption and label, in addition to the picture itself. Table captions go above the
tabular; figure captions go below the picture. For an environment named “env”
you put the code between \begin{env} and \end{env} commands. If your table
has \label{tab:OLS} then later use \cref{tab:OLS} to refer to it; the numbering
updates automatically.

• Math: can be either “inline” like eiπ + 1 = 0 or “display” (on its own line) like

eiπ + 1 = 0.

To figure out if/where to put punctuation, pretend you just replaced all the math
with words (like “e to the power i times pi plus one equals zero”). There are different
environments for display math, like equation* for a single line with no label, or
equation for a single line with a label (and you put a \label{eqn:Euler} just
inside the equation environment so you can refer to it later like \cref{eqn:Euler
}). With multiple lines, you have to decide if you also want multiple labels, if you
want them aligned in a particular way (like by the = in each line), etc., so there are
more options like aligned and aligned* as well as nesting a split environment
inside an equation environment; try to just find an example in one of my files.

• Bibliography: the actual bibliographic information is in a separate .bib file, so you
just need \bibliographystyle{jpe} to set the style and \bibliography{_bib} if
your other file is named _bib.bib.

1.2 Writing Advice

These are my current opinions on effective academic writing. I think they’re good opin-
ions, but they’re still just opinions, not absolute truths.

Below I refer repeatedly to the well known Gopen and Swan (1990) article, “The
Science of Scientific Writing.” 4

Another great resource (i.e., whose advice overlaps with mine) is from the finance
professor John Cochrane.5

Try to remember the following five S’s when you write (and revise, and revise again,
and revise again. . . ): Striving, Suppositions, Structure, Simplicity, and Segues. (Ok,
some of those are not the best words, but I enjoyed starting all with S.) The first two are
more high-level perspectives; the others mix in more concrete suggestions.

One over-arching theme is that the reader has a fixed time/effort budget, and you want
to maximize how much they learn (about your research) subject to the budget constraint.

4http://stat.wharton.upenn.edu/~buja/sci.pdf
5https://drive.google.com/file/d/19S5BJFUY0JIMW4SQloKRVy6iMiIN7xXS/view

http://stat.wharton.upenn.edu/~buja/sci.pdf
https://drive.google.com/file/d/19S5BJFUY0JIMW4SQloKRVy6iMiIN7xXS/view
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You don’t want to waste their mental budget on tasks like parsing complex grammar or
staring at a results table with 200 numbers in it.

1.2.1 Striving

What is your goal when writing? That is, what are you striving for? When I was an
undergrad, my goal was to convince my professors that I was smart and deserved a good
grade. Although I indeed got good grades, the writing was not something I’d want to
read: it was too long and complex.

Instead of trying to convince the reader that you’re smart, I suggest trying to make
the reader feel smart. This is partly a goal in itself (people like feeling smart), but also
a proxy for the goal of effectively communicating your research to the reader. Think
about when you’ve tried to read academic papers. As a reader, which type of writing
do you prefer: long, complicated, unconnected, unintuitive details, or a concise, intuitive
narrative?

This emphasis on the reader (instead of the writer) and on communication (instead of
presentation) appears in the aforementioned article by Gopen and Swan. In their second
paragraph, they put it this way:

The fundamental purpose of scientific discourse is not the mere presentation
of information and thought, but rather its actual communication. It does not
matter how pleased an author might be to have converted all the right data
into sentences and paragraphs; it matters only whether a large majority of
the reading audience accurately perceives what the author had in mind.

I hope the specific suggestions in subsequent sections help you achieve the writing
goals that you (should) strive for.

Summary: think about the reader, and how to help them learn something and feel
smart.

Discussion Question 1.1 (writing: striving). In light of Section 1.2.1, discuss the fol-
lowing sentences that could be included in an academic paper. Suggest improvements.

a) As the reader can easily surmise from the Monte Carlo simulation study results
exhibited in Tables 102–119 in the Appendix of this manuscript, an idiosyncratic
pattern is manifest amongst the panoply of DGPs, wherein some computation times
reflect superlative celerity yet others demonstrate inordinately pronounced dura-
tions.

b) Although this infinite-dimensional result requires additional technical considera-
tions, the intuition follows from the following finite-dimensional example.

c) Subsequent to considerable deliberation and excessive pontification, random forest
has been designated as the ML (which stands for Machine Learning) algorithm of
choice in our modeling efforts to appropriately discern the complex, sophisticated
relationship between the raw textual document data and the corresponding HMV
(our novel acronym for “h-metric values”).
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1.2.2 Suppositions

Don’t suppose your reader knows anything you didn’t know before you started working
on your topic. Of course, readers all have different background knowledge, but you only
have one paper, so it will not be perfectly tailored to each reader. If you structure your
paper well (see Section 1.2.3), it should make it easy for more familiar readers to quickly
skim the parts they already know, while less familiar readers can still have enough to
learn about your topic and results.

Imagining yourself as the reader helps, but it is difficult. The biggest difficulty is
that you think you are a dumb grad student and the reader is a really smart professor.
I don’t necessarily disagree, but it is more relevant that you have spent a year (or more)
working on the same, specific topic, whereas the reader may not be very familiar with
your topic, let alone your specific results. Try to remember before you started working
on your research: what was difficult for you to understand, what was most helpful, etc.
Through your writing, you are trying to condense your year+ of learning into just minutes
for your reader.

Summary: imagine going back in time to talk to yourself before you started working on
your current research topic; how would you quickly and intuitively explain the background
and results?

1.2.3 Structure

The most important S in writing is structure. Even if your diction, grammar, and
spelling are bad, if your ideas are presented in an effective structure, then your reader
will understand what you mean. (Even if you write “casual” when you mean “causal”!)

The structure should make it easy for the reader to skim your paper to find the content
they care most about. It should be easy for them to find the “low-hanging fruit,” the parts
with the highest marginal benefit, which may be different parts for different readers. How
often do you (yes, you) read an entire paper carefully from beginning to end? More often,
you are trying to find something specific: an empirical result related to yours, a model
description, a lit review, etc.

Part of making your paper easy to skim is using a conventional structure. For example,
theoretical econometrics papers usually have an introduction (with lit review toward the
end, along with paper structure and sometimes notation), a section with the model and
assumptions, a section with theoretical results, a section with an empirical application,
and a section with simulation results, before a short conclusion that includes possible
extensions; and an appendix with proofs, and (now more commonly) a supplemental
appendix with more proof details and more simulation or empirical results. I’m less
familiar with conventional structures in other fields, but I presume they exist (ask your
advisor). Besides section order, other conventional structures include putting the main
theoretical results in theorems, labeling assumptions clearly, putting standard errors in
parentheses below point estimates (instead of t-statistics or p-values), etc. Imagine how
difficult it would be to find the main results if they were buried in the text instead of set
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out in a theorem or table.
=⇒ The next paragraph is the single most important one! Read it twice.
Another helpful, conventional structure allocates a single idea (“topic”) to each para-

graph, whose first sentence (“topic sentence”) states this idea. Of course, “topic” is
ambiguous: you could argue that an entire paper is about only one “topic.” Thus, length
is also a factor: paragraphs should not be too long (maybe a half-page at most, and
usually much shorter). If you notice yourself writing a sentence unrelated to the topic
in the topic sentence, congratulations: it’s time to start a new paragraph. Like other
structures, the topic sentence helps readers skim: they can just read the first sentence of
each paragraph, only reading further into the paragraph if the topic interests them. The
topic sentence should also help connect the new paragraph to the preceding paragraph,
as discussed in Section 1.2.5.

For paragraphs about figures or tables, I suggest putting the name of the figure or
table first in the topic sentence. (This is less important for theorems or other “text” since
you know where it will be; for “floats” like figures and tables, they may not even be on
the same page as the discussion in the text.) If somebody is trying to find the discussion
of Figure 1, it is very easy to find if “Figure 1” is the beginning of a paragraph. It also
makes clear that the entire paragraph is about Figure 1.

Conventional structures help not only because they are usually pretty good, but also
because they are what the reader expects. Gopen and Swan explicate the importance
of reader expectations in great detail, drawing from cognitive psychology and linguistics.
They apply the framework of reader expectations to structure at all levels: sections
within a paper, paragraphs within a section, sentences within a paragraph, and clauses
and phrases within a sentence. Discussion of lower-level structure is in Section 1.2.5
below.

Summary: use conventional structures, including topic sentences.

Discussion Question 1.2 (writing: structure). In light of Section 1.2.3, discuss the
following whole paragraphs that could be included in an academic paper. (That is, the
first sentence of each example is the topic sentence.) Suggest improvements related to
structure (not grammar, diction, etc.).

a) These estimates could be explained by statistical discrimination. That is, the es-
timates may reflect optimal decisions under uncertainty when conditioning on the
observable variables. The estimates decrease with experience in the first column of
Table 3. Each row in Table 3 is a cross-sectional regression for a different experience
level. Following convention, (potential) experience is age minus years of schooling
minus five. However, although it does not directly refute statistical discrimination,
the pattern in Table 4 makes taste-based discrimination seem more plausible.

b) To compare distributions, the most common statistical tests answer one of two
questions: (1) Are the distributions identical or different? (2) Do the distributions
differ at the median (or another pre-specified quantile)? Often, the more interesting
question is: (3) Across the entire distribution, at which quantiles do the distributions
differ? Figure 1 illustrates the difference among these questions. Alternatively,
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instead of quantile functions, one could compare CDFs. However, in two-sample
settings, the theory is simpler for CDFs, due to Donsker’s Theorem. This provides
an asymptotic Gaussian process approximation for the centered and scaled empirical
CDF.

c) Increasingly, economic datasets are too large to fit on a single computer. For exam-
ple, text data is often converted into many regressors using individual word or multi-
word phrase frequencies. A particular version of this known as term frequency–
inverse document frequency (TF–IDF) has been around for decades but proved
very successful. For example, TF–IDF has high accuracy for author classification,
at least for prose. For poetry, this so-called “bag-of-words” aproach is less appro-
priate. Instead, stylistic features like sound devices (rhyme, alliteration, etc.) and
part-of-speech frequencies take prominence.

1.2.4 Simplicity

Readers have (very) limited attention budgets. There may be outliers, but most will
spend only maybe 10 minutes with your paper. It requires mental energy to think about
your research results, and to read your paper. If you can write simply and minimize the
energy required for reading, then the reader has more energy to think about your actual
research, which is what you want.

Remember that while you (will) have spent 1–2 years working on your research topic,
most of your readers may not even be familiar with the topic at all. (This is especially true
when you are trying to get a job.) As suggested in Section 1.2.2, try to remember when
you were first learning about your research topic. Always think about ways to simplify,
while retaining the core implication or intuition of your results. Write mostly about a
special case that captures the intuition. Write mostly about an empirical specification
that’s a little too simple (in your opinion) but gets similar results. Then present your
general results or all your sensitivity checks and alternative specifications, maybe partly
in the appendix (or supplemental appendix).

Here are a few specific ideas for keeping things simple and easy to read.

• Put the subject and verb together. Gopen and Swan lament that having widely
separated subject and verb is an “all-too-common structural defect,” also noting,
“Readers expect a grammatical subject to be followed immediately by the verb.”

• Try to use as few commas as possible, and (almost) never use dashes. (The journal
Biometrika forbids dashes.) Obviously, you should use commas wherever grammat-
ically required, but sometimes you can move around phrases to eliminate the need
for commas.

• Use short words. English has many words, some with nearly identical meanings. For
example, write “use” instead of “utilize,” and “titled” instead of “entitled” (if referring
to a paper). Short words save the reader time and energy. Long words (with
identical meaning) make the reader think you’re trying to sound sophisticated at
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the expense of communicating your ideas efficiently. (Ok, probably not all readers,
but that’s how I feel.) Avoid sesquipedalian writing! (That was a joke.)

• Similarly: shorten excessively long phrases. Sometimes it’s not a single long word,
but a phrase of many short words, that can be replaced by something shorter.

• Paragraphs can be short. If you only need two short sentences to say what you want
about a topic, that’s fine. Don’t waste the reader’s time/attention with unnecessary
detail.

• Don’t write everything you know. Think about the most important 2–3 points you
want to communicate, and ask whether each sentence you write contributes to those
points. If not, maybe delete it, or at least relegate it to a footnote or appendix (that
only very motivated readers will look at).

Summary: simplify.

Discussion Question 1.3 (writing: simplicity). In light of Section 1.2.4, discuss the
following sentences that could be included in an academic paper. First, identify the
problem(s), using the above list. Second, suggest improvements.

a) Computational quagmires notwithstanding, I venture to put forth the suggestion
proposing that estimation utilize GMM.

b) The shortest of the unemployment durations, defined as the number of business
days without any reported earnings (regardless of “actively seeking” employment or
not), in the Current Population Survey 2010–2011 dataset are associated with the
lowest education levels, even controlling for wage and experience.

c) Such rates would, intuitively, be pro-cyclical, going down in recessions—defined,
e.g., per the NBER dates, which, though not perfect, are widely used—and in
expansions, going up, usually.

d) The important feature is the non-zero skewness, which can actually be derived
analytically by using Skorohod’s representation X = F−1

X (U) for U ∼ Unif(0, 1)
and the implication for order statistics Xn:k = F−1

X (Un:k) along with the skewness
2(β − α)

√
α+ β + 1/[(α + β + 2)

√
αβ] of the underlying Un:k ∼ Beta(α, β) with

(α, β) = (k, n + 1 − k), although the “central” order statistic asymptotics specifies
k/n → λ ∈ (0, 1) rather than allowing k/n → 0 or k/n → 1 as in the “intermediate”
or “extreme” order statistic asymptotics (the latter of which even allows fixed k or
fixed n− k as n → ∞).

1.2.5 Segues (and Sentence Structure)

Each sentence should have segues (transitions) to link the previous and current ideas.
This is especially true for “topic sentences” that link the prior paragraph to the current
paragraph.

These segues should appear in the “topic position” (Gopen and Swan’s term), i.e.,
the beginning of a unit of structure (like a paragraph or sentence). The first part of the
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sentence provides the context for the new information that you provide in the second
part of the sentence. Part of that context is the relationship with the prior sentence (or
paragraph): maybe you are adding supporting evidence, or moving to a different property
of the same estimator, or providing evidence that in fact contradicts what you just said,
etc.

Here are some examples of transition words or phrases, along with the relationship
they imply.

• “However”: something providing the opposite argument. Example: “The KS test
has all these great properties. However, it has low power in the tails.”

• “In contrast” or “Alternatively”: something different. Example: “The KS test only
tests ‘if’ two distributions differ. In contrast, distcomp tests ‘where’ two distribu-
tions differ.”

• “That is”: explaining the same idea another way. That is, offering a different per-
spective on the same substantive content.

• “For example”: providing an example to support the prior idea. For example, this
sentence.

• “More specifically” or “Specifically” or “Further” or “Moreover” or “Additionally”:
adding details to the prior idea. Example: “This model allows for observable het-
erogeneity through the interaction terms. Additionally, it allows for unobservable
heterogeneity through the random coefficients.”

• “More generally”: generalizing the prior idea. Example: “The first sentence of
a paragraph is called the topic sentence. More generally, the beginning of any
structural unit is called the topic position.”

• “The corresponding [something]”: like, “The KS MTP implicitly weights the tails
much less than the middle of the distribution. The corresponding uneven allocation
of pointwise power. . . .”

• “This [something]”: like, “. . . the beta CDF evaluated at τ . This CDF can be com-
puted by. . . .”

• “Therefore” or “Consequently”: a logical implication. Example: “Readers automati-
cally put emphasis on the last part of a sentence. Therefore, the last part of your
sentences should contain important information.”

The topic position ideally also provides a perspective from which to see the subsequent
information. That is, whose story is this? Gopen and Swan write:

Readers expect a unit of discourse to be a story about whoever shows up first.
“Bees disperse pollen” and “Pollen is dispersed by bees” are two different but
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equally respectable sentences about the same facts. The first tells us some-
thing about bees; the second tells us something about pollen. The passivity
of the second sentence does not by itself impair its quality; in fact, “Pollen
is dispersed by bees” is the superior sentence if it appears in a paragraph
that intends to tell us a continuing story about pollen. Pollen’s story at that
moment is a passive one.

(Note: “passivity” refers to the grammatical term “passive voice,” referring to verb con-
structions like “is dispersed” or “was increased,” contrasting the “active voice” like “dis-
persed” or “increased.”)

After establishing the context in the “topic position,” you can put the new information
in the “stress position” (Gopen and Swan’s term) at the end of the sentence. Gopen and
Swan write, “It is a linguistic commonplace that readers naturally emphasize the material
that arrives at the end of a sentence.” So, if readers emphasize the end of the sentence
simply due to its location, you need to make sure that the content you put there is worthy
of emphasis. More informally, Gopen and Swan describe this by the aphorism, “Save the
best for last.”

Summary (Gopen and Swan): “Put in the topic position the old information that
links backward; put in the stress position the new information you want the reader to
emphasize.”

Discussion Question 1.4 (writing: segues). In light of Section 1.2.5, consider the fol-
lowing sentence pairs. Suggest a transition word or phrase (e.g., “However,” or “That is”)
to add to the beginning of the second sentence.

a) Table 1 shows an increasing pattern. Table 2 shows a decreasing pattern.
b) Unemployment means zero hours worked. Earnings are zero.
c) Generally, returns to education depends on unobserved “ability.” College might

increase human capital more for individuals with high ability, which would result
in higher future earnings.

d) The problem is misspecification. The implicit assumption of constant partial effects
∂m(x)
∂xk

= βk is incorrect.
e) Latent stochastic dominance implies ordinal stochastic dominance. Ordinal domi-

nance is necessary (but not sufficient) for latent dominance.
f) An individual’s ordinal health status can be modeled in terms of a latent, continu-

ously distributed health value. Any ordinal variable can be modeled in terms of a
latent variable.

g) Asymptotically, OVB equals plim β̂−β = ρδ. OVB is zero if (but not only if) ρ = 0.

Discussion Question 1.5 (writing: sentence structure). In light of Section 1.2.5, dis-
cuss the following sentence pairs that could be included in an academic paper. Suggest
improvements.

a) Intuition may suggest a positive coefficient. This is wrong since such intuition
ignores the substitution effect, accounting only for the income effect, like how people
spend more on housing when their income increases.
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b) Sales tax receipts often form the majority of state government budget revenue. In
this paper, I examine annual revenue for 38 states, to see how they were affected
by the Great Recession.

c) In turn, this results in a phenomenon called “budget compression,” where salaries of
new and very senior employees are actually very similar. This actually accurately
reflects productivity, despite it seeming counterintuitive to have very similar salaries
for more and less experienced employees, who may also have different job titles.

1.2.6 Summary

These are the seven guiding principles from Gopen and Swan, plus a few more.

1. Follow a grammatical subject as soon as possible with its verb.

2. Place in the stress position the “new information” you want the reader to emphasize.

3. Place the person or thing whose “story” a sentence is telling at the beginning of the
sentence, in the topic position.

4. Place appropriate “old information” (material already stated in the discourse) in
the topic position for linkage backward and contextualization forward.

5. Articulate the action of every clause or sentence in its verb.

6. In general, provide context for your reader before asking that reader to consider
anything new.

7. In general, try to ensure that the relative emphases of the substance coincide with
the relative expectations for emphasis raised by the structure.

8. Use conventional structures for sections, tables, paragraphs (topic sentence), etc.

9. Consider the reader’s perspective (and limited attention), and try to make them
feel smart.

10. Simplify.

Try to follow all of these. If it seems too hard for a specific sentence you’re writing,
try again. If it still seems too hard, think about the overall goal (communicating with the
reader) and which principles best help achieve that in your specific sentence, and don’t
worry about ignoring the rest. You will certainly come back to that sentence again, and
you will probably understand your own research better when you do, which will make the
writing easier to revise, too.

Discussion Question 1.6 (writing: summary). In light of all you’ve now learned, discuss
the following whole paragraphs that could be included in an academic paper. Suggest
improvements.
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a) This identification strategy relies critically on the program’s staggered rollout sched-
ule being “as good as random.” For example, it is problematic if regions with the
largest treatment effects were treated first. In fact, any association (even if, say,
rollout depended on observables, which then, in turn, are correlated with treatment
effects) between rollout schedule and potential outcomes, whether directly causal
or a purely “statistical” association, precludes causal identification.

b) Despite this literature, the causal effect of stay-at-home orders during COVID-19 re-
mains an open question. Part of the difficulty is simply articulating the appropriate
counterfactual. For example, the stay-at-home order in Columbia, MO was initially
issued in late March. It essentially closed all businesses deemed non-essential, al-
though some residents disagreed with the stated classifications. Further, it closed
certain amenities like playgrounds and even tennis courts. Even the revised, more
lenient stay-at-home order a month later failed to re-open tennis courts. As far
as I can tell from the medical and epidemiological literature, there do not seem to
have been any documented cases of transmission due to tennis, or any other out-
door, net-based sports in which the ball is primarily (though not exclusively) only
contacted by implements such as racquets (i.e., pickleball).

c) However, this non-rejection of H0 : β = 0 does not mean the articulation agreement
has zero effect. Type II error could explain the non-rejection result. The standard
error is large. The 95% confidence interval includes negative values. The interval
includes values as large as 73 additional nursing bachelor of science degrees per year.
73 and negative together suggest bifurcated beliefs on burgeoning bachelors bereft
of bombast; quod erat demonstrandum.

1.2.7 Shawn’s Suggestions (bonus!)

These suggestions are courtesy of Shawn Ni. He has advised countless PhD students at
Mizzou and led the PhD Research Workshop for many years. I added some details, so
any errors are probably mine.

Outline: start with an outline. Write the names of each section, usually something
like:

• Introduction: what you do, why you do it, roughly how you do it (no math, very
few details), and what you discover

• Literature Review: for journal articles this would be shortened and moved inside
the Introduction, but for PhD research it helps to have a separate, longer lit review

– Purposes: make sure you’re doing something new/different; make sure it’s
important

– Organization: discuss papers in groups based on different issues related to your
own research (e.g., the data, the methodology, the relevant policy, etc.)

– If you can find a recent paper on generally the same topic, you can read their
literature review, as well as the (relevant) papers they cite

– Be complete: find all the existing papers with the same research question as
you

https://economics.missouri.edu/people/ni
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– Conversely: if something isn’t related to your research question, don’t cite it
(even if written by someone famous)

– Use Google Scholar to find related papers (published and unpublished)
– For good higher-level reviews with many references, check the Handbook of . . .

from Elsevier.6

• Model; Data (if applicable); Results; Conclusion
possibly with other sections inserted as needed (Simulations, Identification Strategy, etc.).
Then within each section, write an outline. For example, following the above suggestions
for the Introduction, your outline might be:

1. WHAT I DO: propose new statistical inference for “stochastic dominance” based on
expected utility comparisons

2. WHY: compared to existing CDF-based SD tests, has more statistical power/pre-
cision and more economic interpretation

3. HOW: establish Donsker property of utility function classes, apply empirical process
theory

4. DISCOVER: new, valid bootstrap confidence sets and multiple testing to compare
two distributions

I use UPPERCASE (sometimes for all the text) to indicate it’s the outline, not the
final text. Also, each block may cover multiple “topics” that may require multiple topic
sentences (e.g., confidence sets, multiple testing).

Reporting results: when you discuss tables/figures of results in the text, you should
(at minimum) discuss the following.

1. How they were constructed.
2. What do the numbers or lines mean?
3. Why are you presenting the table or figure; what are we learning?
Don’t claim too much. Empirically, you cannot conclusively prove or demonstrate

anything; you can show results that are consistent with some model, and you can estimate
values and quantify your degree of uncertainty. Theoretically, there is almost always a
trade-off: stronger assumptions are less realistic but allow stronger conclusions. Readers
appreciate you being honest and transparent about the assumptions; if you try to hide
your assumptions, they will be suspicious and not appreciate having to work harder to
understand your assumptions.

Use present tense, even for past papers in the literature and things you already did
in the past. (“I find,” “This shows,” “They propose,” etc.)

Be concise: “because” instead of “based on the fact that,” “now” instead of “at the
present time,” etc.

Change negatives to affirmatives: “similar” instead of “not different”; “different” instead
of “not the same”; “prevent” instead of “not allow”; etc.

Be precise.
“Use quoted material accurately and sparingly” (Ni, 2020). Usually, you should refer

6https://www.sciencedirect.com/browse/journals-and-books?contentType=HB&subject=
economics-econometrics-and-finance

https://www.sciencedirect.com/browse/journals-and-books?contentType=HB&subject=economics-econometrics-and-finance
https://www.sciencedirect.com/browse/journals-and-books?contentType=HB&subject=economics-econometrics-and-finance
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to others’ work in your own words instead of directly quoting them. In the rare case when
you want to use their words verbatim (exactly as written), make sure to put it in quotes.
You need to cite the other paper in either case; ideally, put the page number, partly for
your own reference (in case you later wonder, “Where did those authors talk about that
particular result again?”).

“Read what you have written out loud. If it sounds bad it probably is.” (Ni, 2020)
“When in doubt, look it up” (Ni, 2020): personally, I (Dave) use the Google dictionary

frequently to check if a word means what I think. That said, if you aren’t sure of the
meaning, then possibly many readers also would not know the meaning; if there is a
simpler word with basically the same meaning, then you should probably use that.

Citations and references: I use LATEX, specifying style \bibliographystyle{jpe}
before the \bibliography{_bib} at the end of my paper, where the file _bib.bib

contains all the bibliographic information; you can see examples of .bib entries in the
Overleaf projects linked in Section 1.1. I suggest including the URL for your own reference,
so you (and other readers) can easily click to the paper from your own paper. If you
need to cite something other than an article (e.g., a chapter within a Handbook), you
can ask me or Google it; you can see some examples of other entry types at https:
//verbosus.com/bibtex-style-examples.html

1.3 Plagiarism

Plagiarism is a very, very serious offense in academia, even if it is committed uninten-
tionally. Thus, it is your responsibility to understand it. The MU library website has
resources to help you understand and avoid plagiarism.7

1.4 Common Minor Mistakes

Here are some common minor mistakes I’ve seen in students’ research papers. But, when
you are starting, don’t worry too much about these; with writing, for now it is much
better to have high quantity and low quality than high quality and low quantity. It is
inefficient to worry about the small details when you are just starting a project and don’t
even know what your main results will be; even when you do, you will end up revising
many times (for other reasons), so you can wait until the end to really “polish” your paper
and perfect the details of grammar and spelling and everything.

1. Typos in authors’ names. If you use a bibliography manager (like BibTeX or BibLa-
TeX), you only type the authors’ names once (e.g., in the .bib file), so you are much
less likely to make a typo, and even if you do, you can easily fix it (just change the
.bib entry).

7https://libraryguides.missouri.edu/plagiarism

https://verbosus.com/bibtex-style-examples.html
https://verbosus.com/bibtex-style-examples.html
https://libraryguides.missouri.edu/plagiarism
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2. It is simply “University of Missouri” and not “University of Missouri–Columbia” as
stated in the official MU style guide.8

3. Always put a space before acronyms or other things in parentheses, like “ordinary
least squares (OLS)” instead of “ordinary least squares(OLS)”.

4. If you have an abbreviation with periods in it followed by a space, then you need to
put a backslash in the LATEX code after the last period, otherwise it thinks you’re
starting a new sentence and inserts too much space. Comparing Dr.\ K to Dr. K:
with backslash is Dr. K and without is Dr. K.

5. Double quotation marks: the opening one is `` (two backticks) and the closing
one is '' (two apostrophes). If you use " (double quote character) then it looks
different, and using '' for the opening one is backwards: "wrong" ”wrong” “right”
from code "wrong" ''wrong'' ``right''.

6. Percent and percentage point are different units; be careful.

7. Numerical ranges: use an “en dash” like 5–8 (made by typing two hyphens -- in the
.tex file) instead of a hyphen like 1-3. This applies to calendar years, too.

8. If you have an acronym in an equation, don’t just type it, or it gets interpreted by
LATEX as the product of variables; use something like \mathrm or \textup. Example:
instead of FWER = α, write FWER = α; note the spacing is more even in the
second example (the first one has too much space between W and E).

9. It can be confusing when to use “that” instead of “which” (and when to have a
comma).9

10. Citations: pretend the year isn’t even there, and you are just referring to the authors;
and use present tense. So, write things like “Kaplan and Blei (2007) analyze poetry”
(not “analyzed” or “analyzes”), or “Kaplan (2015) establishes an Edgeworth expan-
sion” (not “established” or “establish” or “contains”). But sometimes the present
tense feels really weird and I use past tense. Like, “Well over a century before more
sophisticated analysis like that of Banks, Blundell, and Lewbel (1997), the idea
originally was explored by Engel (1857)”; it would not make sense to say, “Long
before this, the idea is explored by Engel (1857).” But when in doubt, use present
tense.

11. Plurality of “data”: whatever. Either is fine (if you are consistent with your choice).
“The data say. . . ” or “The data shows. . . ,” well, unless you interview with NERA,
then always treat it as plural =)

8https://styleguide.missouri.edu/term/university-identification
9http://blog.apastyle.org/apastyle/2012/01/that-versus-which.html

https://styleguide.missouri.edu/term/university-identification
http://blog.apastyle.org/apastyle/2012/01/that-versus-which.html
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12. An elipsis is written by \ldots not ..., otherwise the spacing is wrong, whether in
text or math mode. Compare (right then wrong): this. . . and...that; 1, . . . , k, ..., n.

13. In math mode, I’d suggest just using \dots instead of guessing whether to use
\ldots or \cdots, since it usually gets it right automatically; using only \dots:
1, . . . , n and 1 + · · ·+ n.

14. Not using BibTeX (or BibLaTeX) always leads to typos and other problems. But
even with BibTeX, double-check the capitalization and such in your references.
Google Scholar’s .bib entries are usually close but often slightly wrong. For example,
journal titles should always be title case, like “Journal of Health Economics” instead
of “Journal of health economics”. And usually the leading “The” should be omitted
from journal titles (but isn’t on Scholar), like Review of Economic Studies instead
of The Review of Economic Studies.

15. I suggest writing probabilities like P(·) instead of P (·), since upright P looks like
an operator while slanted P looks like a variable. Similarly for E(·) and Qτ (·).
But CDFs and quantile functions are functions, not operators on random variables,
hence FY (·) and QY (·).

16. Don’t use ∗ for multiplication. If you really need an explicit symbol (e.g., if you
have a product continued over multiple lines), use ×.

17. It’s “et al.” (not et al, et. al, or et. al.); “et” means “and” in Latin, and “al.” is an
abbreviation of alia/alii/aliae. But: you should almost never be typing this yourself
anyway, because the \citet and \citep commands will do it for you.

18. You should put punctuation around (and in) math as if you had written the math
out in words. For example, sentences end with periods, so even if your sentence
ends with math, it should always have a period. For inline math, the period should
be outside the inline math environment (otherwise LATEX thinks it’s a decimal point
and the spacing is wrong); for “display math,” the period goes inside the equation
environment (or align or gather or whatever environment). Example: this properly
ends with x = 0. Incorrectly: x = 0. Note the different spacing. Other example:
if when reading your paper you’d say, “The equation ‘y equals x’ is interesting,”
then you should not put a comma or colon or anything after the word “equation”
even if you write y = x in an equation environment; e.g., you shouldn’t write “the
equation: y = x is interest” or “the equation, y = x is interesting.”

19. Periods always go inside quotation marks. (This is not 100% true, but probably at
least 99% for economics writing.) So, “Inside here.” Not, “Outside”.

20. Never start a sentence with math. (I don’t think this is a great rule, but some
people care deeply about it.)
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21. The Latin abbreviation for “exempli gratia” (“for example”) is e.g., and it should
usually be followed by a comma, e.g., like this. The Latin abbreviation for “id est”
(“that is”) is i.e., and the same comment applies, i.e., it should usually be followed
by a comma. At the beginning of a sentence, it’s better to write out the English
“For example” or “That is.” For example, this sentence.

22. After a colon, do not capitalize the next word: just lowercase since it’s the same
sentence.
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Exercises

Exercise E1.1. At https://www.overleaf.com/read/gtfzpkwrzhhw get the template
JMC_cv.tex. Use it to create a CV for yourself.

Exercise E1.2. At https://www.overleaf.com/read/gtfzpkwrzhhw get the template
_paper.tex. Use it to type up one day of your lecture notes from ECON 9474 or ECON
9477 (if you’ve taken it yet) or any other ECON 9xxx class that does not already have
typed lecture notes.

Exercise E1.3. At https://www.overleaf.com/read/gtfzpkwrzhhw get the template
_talk.tex. Use it to create slides based on one day of lecture for any ECON 9xxx class
you’ve had that did not have lecture slides (i.e., professor just wrote on blackboard).

https://www.overleaf.com/read/gtfzpkwrzhhw
https://www.overleaf.com/read/gtfzpkwrzhhw
https://www.overleaf.com/read/gtfzpkwrzhhw


Chapter 2

R: Some Basics

Unit learning objectives for this chapter

2.1. Download, run, and maintain R software [TLO 4]

2.2. Write/run/save new data analysis with .csv or .dta data [TLO 4]

2.3. Write/run/save new Monte Carlo simulations [TLO 4]

2.4. Learn new things on your own [TLO 4]

Warning: this chapter has lots of simplifications, which generally I dislike, but you
can always look at the help file for any function I mention to learn more details, or Google
any topic.

Optional resources for this chapter

• Chapter 1 of Kaplan (2022b), especially for details about getting started (in-
cluding linked video)

2.1 Getting Help

At first, it may help to have some quick reference “cheat sheets.” 1,2

Eventually you’ll just Google to learn, but one of the following free tutorials may help
you get started.

1. Section 2.3 (“Lab: Introduction to R”) in James, Witten, Hastie, and Tibshirani
(2013)

1https://www.rstudio.com/resources/cheatsheets/
2https://cran.r-project.org/doc/contrib/Short-refcard.pdf
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2. Section 1.1 in Hanck, Arnold, Gerber, and Schmelzer (2018)
3. Sections 1.1–1.3 in Heiss (2016)
4. Sections 2.1–2.5 in Kleiber and Zeileis (2008) [Chapter 2 is available free on their

website]
5. Cyclismo3

6. CRAN4

7. No longer free beyond first chapter: courses at datacamp.com like Introduction to
R.5

Help within R is usually helpful. For example, type help(lm) or ?lm to learn about
the lm function.

2.2 Getting Started

2.2.1 Running R

In a web browser: currently (Fall 2020) the best option seems to be RStudio Cloud.6 A
free account is required to sign in. However, there is a limit to how many hours you can
use it for free each month. There are also other free online options like CoCalc.7

Download R for Windows: Google “r windows” and try the first result.8

Download R for Mac: Google “r mac” and try the first result to find the newest .pkg.9

Download RStudio (free, nicer interface): Google “rstudio download” and try the first
result.10

2.2.2 Packages

In addition to “base” (or “core”) R, there are freely downloadable packages for additional
functionality. These are like Matlab toolboxes (but free), or like the Stata commands that
you download with ssc install. You can download/install/update R packages easily
through RStudio (in the Tools menu) or the install.packages() function.

Both the base and (many) packages are being constantly updated (every month?).
Updating is usually not critical, but one time I sent a silly email to one of the package
owners (sorry Jeff Racine!) about a “bug” that was simply due to my not having fully
updated both the base and package; please learn from my mistake.

Even after you download/install a package, you must still explicitly load it in each R
script in which you want to use it. You can also load code (say, function definitions) from

3http://www.cyclismo.org/tutorial/R
4http://cran.r-project.org/doc/manuals/r-release/R-intro.html
5https://www.datacamp.com/courses/free-introduction-to-r
6https://rstudio.cloud
7https://cocalc.com
8Currently https://cran.r-project.org/bin/windows/base
9Currently https://cran.r-project.org/bin/macosx

10https://rstudio.com/products/rstudio/download

https://datacamp.com
http://www.cyclismo.org/tutorial/R
http://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://www.datacamp.com/courses/free-introduction-to-r
https://rstudio.cloud
https://cocalc.com
https://cran.r-project.org/bin/windows/base
https://cran.r-project.org/bin/macosx
https://rstudio.com/products/rstudio/download


2.2. GETTING STARTED 31

another .R file. For example, imagine you have already installed the quantreg package
with the command install.packages('quantreg'). To load the quantreg package as
well as the functions in file ivqr_see.R:

library(quantreg)
source("ivqr_see.R")

This assumes the .R file is in the “working directory”; you can check the current working
directory with getwd() and set it with setwd(). If you double-click a .R file to open
RStudio, I think RStudio sets the working directory to wherever that .R file is.

2.2.3 RStudio Interface

When you open RStudio, you should see a few panes within the window. The console
should show some basic info on your version of R, and have a command prompt below
that, which is a single > symbol. If you type a statement here and hit enter, then R will
do something in response. There should be another two panes that have multiple uses,
like showing graphs (plots) and help. You can customize in the RStudio options what
these display.

You can also open an editor pane for editing .R files (like .do or .m or .sas files),
by going to File–New File–R Script. You can also run commands from the editor in the
console, by highlighting one or multiple lines and hitting Control-Enter (in the menus:
Code–Run Line(s)). So when you are first writing a .R file, you can test each new line
of code this way (or just copy-paste into the console if you wish). There are keyboard
shortcuts to toggle the focus across different panes (e.g., Windows Control-1 puts the
cursor in the editor pane, Control-2 puts it in the console), which I find very helpful. You
can also set an RStudio option for whether or not to toggle the focus to the console after
running code from the editor pane.

Following convention, I usually show the command prompt when showing R code and
results. If you copy-paste code to run yourself, then don’t copy the command prompt.
For example, if I show

> ?help

then just type ?help into the console and hit Enter. Incidentally, if you do this, then you
should see a help file on “help” itself appear in one of the panes.

2.2.4 Readability

Making your code “readable” is important, for multiple reasons. It will help you structure
your code better, and help you debug more easily. If you’re working with somebody else,
it helps them if it’s easier to understand what your code does (or, is supposed to do). Even
if you’re working alone, academic research projects take a very long time to complete,
so you’re basically still working with “somebody else”: your future self! Especially as a
beginner, you should use lots of comments to remind your future self of what you were
trying to do with each piece of code. For example: http://xkcd.com/1421

http://xkcd.com/1421
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There are some basic ways to improve readability. The best way is to add comments
to your code (like in the linked xkcd comic). The symbol # makes the rest of a line
(after the symbol) into a comment that is ignored by R. This allows you to write notes to
yourself about what a line/block of code is supposed to do, or what assumptions you’re
making, etc.

Structuring your code visually can also help. You can put multiple expressions in the
same line if they are separated by a semicolon. This has potential to improve readability
if you have lots of very short lines consecutively, since then you can see more of the code
in one screen. But, this may also make it harder to see certain “lines” of code; there is
a tradeoff. In fact, it is often helpful to do the opposite: insert blank lines to divide
sections of code. Another perk of RStudio is that it automatically indents code inside
loops (and such), which improves readability. Putting spaces after commas (in comma-
separated lists, e.g., arguments to a function) can help. You can also break long lines
into multiple lines as long as it’s “obvious” to R that the line isn’t finished; e.g., if the
first line is x <- rbeta(n=5, then R knows it’s continued on the next line because you
haven’t closed the parentheses yet.

Finally, it can help to write your own functions. For example, imagine you need code
to load and prepare raw data, run regressions, and then save results. You could just write
this all into one long script. Alternatively, you could define three new functions, say load
.prep.data(), run.regressions(), and save.results(). Then, your script would call
these three functions (after setting directories and such), so the high-level structure would
be clear. The functions would then be defined below, or possibly even in other files, which
could be loaded with source(). However you choose to do it, explicitly clarifying the
high-level structure makes it easier to understand each individual line of code.

2.3 Data Types

See also:
• Cyclismo: data types11

• CRAN: commands, case sensitivity12

• CRAN: simple numerical manipulations13

• CRAN: arrays and matrices14

• CRAN: lists and data frames15

• Cyclismo: vector indexing16

11http://www.cyclismo.org/tutorial/R/types.html
12http://cran.r-project.org/doc/manuals/r-release/R-intro.html#R-commands_003b-case-

sensitivity-etc
13http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Simple-manipulations-

numbers-and-vectors
14http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Arrays-and-matrices
15http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Lists-and-data-frames
16http://www.cyclismo.org/tutorial/R/vectorIndexing.html

http://www.cyclismo.org/tutorial/R/types.html
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#R-commands_003b-case-sensitivity-etc
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#R-commands_003b-case-sensitivity-etc
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Simple-manipulations-numbers-and-vectors
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Simple-manipulations-numbers-and-vectors
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Arrays-and-matrices
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Lists-and-data-frames
http://www.cyclismo.org/tutorial/R/vectorIndexing.html
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You can define variables that can store different types of data. For example, the
value 4 can be assigned to variable x. Since 4 is a number, R infers that x should be a
“numeric” variable. Specifically, the data type of x is double:

> x <- 4
> x
[1] 4
> typeof(x)
[1] "double"
> is.numeric(x)
[1] TRUE

If we assign a different value, R will switch the data type accordingly; or we can coerce
a variable to a particular data type.

The <- is the assignment operator. It looks like a left-pointing arrow. As its shape
suggests, it assigns the value on the right-hand side to the variable on the left-hand
side. In RStudio, you may hold down the Alt key and hit the hyphen key - to insert this
operator (padded by a single space on each side). Historically, <- was the only assignment
operator, but now = also works. Although = has other meaning in other contexts, I think
the ambiguity is minimal.

Variable naming is similar to Stata/Matlab/etc. except that names can contain peri-
ods. (Historically, they could not contain underscores, but now they can.) To improve
readibility for people more familiar with other languages, you could consider only using
names that are valid in Stata/Matlab, too. Variable names are case sensitive, must begin
with a letter or period (but not period followed by number), and can contain letters and
numbers (and period and underscore).17 It is helpful (to your forgetful future self) to
give variables descriptive names. For example, state.abbrev.lookup may be easier to
understand than STlk; the time you save by typing 15 fewer characters may be lost later
trying to remember what STlk is.

There are three kinds of special values for numeric types: NA, Inf, and NaN. NA means
“missing data” like the . value in Stata. Inf is positive infinity, while NaN stands for “not
a number”; type ?NA or ?NaN for more.

Another special value is NULL. It is the ultimate nothing, beyond even NA and NaN. It
is mostly helpful for error handling. There is an is.null() function:

> is.null(NULL)
[1] TRUE
> is.null(NA)
[1] FALSE
> is.null(4)
[1] FALSE

17http://cran.r-project.org/doc/manuals/r-release/R-intro.html#R-commands_003b-case-
sensitivity-etc

http://cran.r-project.org/doc/manuals/r-release/R-intro.html#R-commands_003b-case-sensitivity-etc
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#R-commands_003b-case-sensitivity-etc
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There are other types of variables we can have. A variable can store text; either
double-quotes or single-quotes are fine for text expressions ('this' or "that"). A logical
variable stores TRUE or FALSE (or NA) values. You can store calendar dates or times. You
can have a vector (like a vector in math) of any of these, or a two-dimensional matrix,
or a higher-dimensional array; see ?matrix or ?array for help. You can also have a list
containing elements with different data types; see ?list. A data frame is similar to a
Stata dataset: like a matrix, where each element within a column has the same data type,
but different columns can have different data types, and you can refer to each column
(i.e., each variable in your dataset) by its name, like dataset$var1 or dataset[,'var1'].
Built-in functions that load data usually return a data frame.

Square brackets [] are used to index vectors, matrices, arrays, and data frames, i.e.,
to extract a subset of the elements. You can find many examples online, but for example
m[3,2] returns the row 3, column 2 element of matrix m, whereas m[,2] extracts the
entire second column. Logicals can also be used for indexing; e.g., x[c(FALSE,TRUE,
TRUE)] returns the 2nd and 3rd elements of x. You can extract multiple named columns
from a data frame with something like d[,c('age','edu','wage')].

2.4 Basic Data Manipulation

See also: http://www.cyclismo.org/tutorial/R/basicOps.html

2.4.1 Numerical Operations

Most of the numerical operators are relatively intuitive. For example, 2+2, 4/2, 2*2, 2^2,
sqrt(4), exp(1), log(2.71), log10(100), abs(-2), floor(2.9), ceiling(1.1), round
(2.49). A few less intuitive things: %% for modulo/remainder; round(2.5) is actually 2
(numbers ending in 0.5 are rounded to the nearest even integer); matrix multiplication is
%*% whereas element-wise matrix multiplication is simply * (unlike Matlab).

You can generate consecutive integers with a colon like 1:3, or just write out c(1,2,3)
, or use seq(from=1,to=3,by=1). You can repeat values/sequences like rep(1:3,each
=2) or rep(1:3,times=2) (these results differ; try them). You can fill a matrix like
matrix(1:6,nrow=3) or equivalently matrix(1:6,ncol=2).

2.4.2 Combining Data

For combining vectors and matrices, rbind() (appending rows) and cbind() (append-
ing columns) are helpful. Matrix transpose is t(). E.g., compare the results of cbind
(1:3,4:6) versus rbind(1:3,4:6) versus t(cbind(1:3,4:6)).

2.4.3 String Manipulation

In principle you could just Google all this, too, but personally I’ve found it more difficult
to Google things related to string manipulation, so I’ve included more examples in this

http://www.cyclismo.org/tutorial/R/basicOps.html
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particular subsection.
To combine strings, I suggest paste0():

> paste0("Hello, ","world")
[1] "Hello, world"
> paste0(c("Hello,","world"))
[1] "Hello," "world"
> paste0(c("Hello,","world"),collapse=" ")
[1] "Hello, world"

Substring:

> substr("abcdefghij",start=3,stop=6)
[1] "cdef"

Substitution:

> sub(pattern=".txt",replacement=".pdf",x="filename.txt")
[1] "filename.pdf"

Length:

> nchar("abcde")
[1] 5
> length("abcde")
[1] 1

The sprintf() function is very helpful. It helps you construct strings using values
from variables computed in your code. If you just have single numbers (not vectors), use
%d as a placeholder for integers and %g for decimal numbers, followed by the variables (in
the same order):

> x <- 41; y <- 5.2
> sprintf("x=%d and y=%g", x, y)
[1] "x=41 and y=5.2"

If you are trying to align things, you can specify, for example, that an integer be
padded with whitespace to take up 5 characters (even if it’s only two characters) by %5d.
To pad with zeros instead, %05d. You can also specify for decimal numbers the total
number of characters and how many should come after the decimal, like %5.2f for five
total and two after the decimal. Continuing from above:

> sprintf("x=%5d and y=%5.2f", x, y)
[1] "x= 41 and y= 5.20"
> sprintf("x=%05d and y=%5.1f", x, y)
[1] "x=00041 and y= 5.2"

Alternatively, you can just have R print lots of decimals and take care of rounding in
LATEX with the S column type from the siunitx package.

You can also insert strings:
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Table 2.1: Table generated from R output.

Bias Variance

Method DGP1 DGP2 DGP3 DGP1 DGP2 DGP3

OLS −1.48 −1.39 1.13 2.05 −0.86 −0.51
GMM 0.73 −0.42 0.38 −1.40 0.91 −0.52

> w="world"; sprintf("Hello, %s", w)
[1] "Hello, world"

Strings also support the fixed-width specification, and you can add a minus sign to add
the space padding to the right instead of left:

> sprintf("%11s","what")
[1] " what"
> sprintf("%-11s","what")
[1] "what "

You can also pass vectors to sprintf(), in which case the output is a vector of type
character:

> sprintf("Hello, %s",c("world","Dave"))
[1] "Hello, world" "Hello, Dave"

These can in turn be combined into a single text string with paste0:

> paste0(sprintf("Hello, %s",c("world","Dave")),collapse="; ")
[1] "Hello, world; Hello, Dave"

Table 2.1 is generated partly from the following R output. The R output is formatted
to be pasted directly into the .tex file:

> set.seed(112358)
> head0 <- "\\begin{tabular}{lSSSlSSS}\n\\toprule"
> head1 <- paste0(" & \\multicolumn{3}{c}{Bias}",
+ " && \\multicolumn{3}{c}{Variance} \\\\")
> head2 <- "\\cmidrule{2-4}\\cmidrule{6-8}"
> s <- "{DGP1} & {DGP2} & {DGP3}"
> head3 <- sprintf("Method & %1$s\n && %1$s \\\\", s)
> head4 <- "\\midrule"
> bias <- list(OLS=rnorm(3), GMM=rnorm(3))
> SE <- list(OLS=rnorm(3), GMM=rnorm(3))
> OLSstr1 <- paste0(sprintf("%5.2f", bias$OLS), collapse=" & ")
> OLSstr2 <- paste0(sprintf("%5.2f", SE$OLS), collapse=" & ")
> OLSstr <- paste0(OLSstr1, " && ", OLSstr2)
> body1 <- paste0("OLS & ", OLSstr, " \\\\")
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> GMMstr1 <- paste0(sprintf("%5.2f", bias$GMM), collapse=" & ")
> GMMstr2 <- paste0(sprintf("%5.2f", SE$GMM), collapse=" & ")
> GMMstr <- paste0(GMMstr1, " && ", GMMstr2)
> body2 <- paste0("GMM & ", GMMstr, " \\\\")
> cat(paste0(c(head0,head1,head2,head3,head4,body1,body2,
+ "\\bottomrule"),collapse="\n"))
\begin{tabular}{lSSSlSSS}
\toprule
& \multicolumn{3}{c}{Bias} && \multicolumn{3}{c}{Variance} \\
\cmidrule{2-4}\cmidrule{6-8}
Method & {DGP1} & {DGP2} & {DGP3}

&& {DGP1} & {DGP2} & {DGP3} \\
\midrule
OLS & -0.47 & 1.15 & 0.53 && -0.36 & 0.38 & -0.86 \\
GMM & -0.39 & 1.26 & -1.84 && 0.74 & -1.33 & -0.32 \\
\bottomrule

The + starting two of the lines (rather than >) indicates that the prior line is not a
complete statement and is continued on the next line. R knows it is not complete because
we have not closed all the open parentheses (three open, two closed). Function cat()
treats backslash as an escape character, so we need two in order for it to print one, or
four to print two. While this seems annoying, by the same token we can write \n and
cat() inserts a newline character; the collapse="\n" tells it to print each text string on
a new line, to make it more readable (to humans; LATEX wouldn’t care either way).

2.5 Functions

See also: http://www.cyclismo.org/tutorial/R/scripting.html
A function takes input (arguments or parameters), does something(s), and might

return output.
You can define your own function and store it in a variable for later use. You can call

abs.sqrt.fn(-4) after defining

abs.sqrt.fn <- function(x) {
tmp <- abs(x)
return(sqrt(tmp))

}

The variable named abs.sqrt.fn is a function. Using return() explicitly helps read-
ability.

Some functions affect more than just the return value. For example, the library()
function loads a package.

Arguments can be passed by name, as well as by order. Using names is generally
better for readability (and avoiding errors). For example:

http://www.cyclismo.org/tutorial/R/scripting.html
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> log(x=100, base=10)
[1] 2
> log(base=10, x=100)
[1] 2
> log(100, 10)
[1] 2
> log(10, 100)
[1] 0.5

Arguments may have default values. If the user does not specify a particular argument,
the default value is used. When writing your own function, it sounds tempting to give
everything a default value (partly just because it seems sophisticated), but it may be
better to tell the user that they forgot an argument rather than proceeding with a default
value (that may not be desired). For example:

> power.fn <- function(base,power=2) { return(base^power) }
> power.fn(3)
[1] 9
> power.fn <- function(base,power) { return(base^power) }
> power.fn(3)
Error in power.fn(3) : argument "power" is missing, with no default

2.6 Data File Input

See also: http://www.cyclismo.org/tutorial/R/input.html
I’ll cover input of two common file formats; others are supported (you can Google it).
First we need to know in which directory R is looking. We can see what the working

directory is by

> getwd()
[1] "C:/Users/kaplandm/Documents"

If we want to be in a different directory, we can use setwd():

> setwd('C:\\Users\\kaplandm\\Google Drive\\Teaching\\9476')
> getwd()
[1] "C:/Users/kaplandm/Google Drive/Teaching/9476"

Note again the double backslashes to get single backslashes, due to escaping.
For comma-separated values (CSV) files, you can use the function read.csv(). For

example, try downloading the file OXY_daily_data_no_holidays.csv into your working
directory from my website.18 Then,

> VaR.data.raw <- read.csv("OXY_daily_data_no_holidays.csv")

18https://drive.google.com/file/d/0B-_LUSJVBv20anFLdTZpQlJfbms/view

http://www.cyclismo.org/tutorial/R/input.html
https://drive.google.com/file/d/0B-_LUSJVBv20anFLdTZpQlJfbms/view
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The return variable is a data frame. We can see what the different columns are named,
and a snippet of the data:

> names(VaR.data.raw)
[1] "Date" "Year" "Close" "DailyLnRet" "LagLnRet"
> head(VaR.data.raw)

Date Year Close DailyLnRet LagLnRet
1 31-Aug-12 2012 85.01 0.00862431 -0.02287356
2 30-Aug-12 2012 84.28 -0.02287356 -0.01404906
3 29-Aug-12 2012 86.23 -0.01404906 -0.00057159
4 28-Aug-12 2012 87.45 -0.00057159 -0.00456101
5 27-Aug-12 2012 87.50 -0.00456101 0.00730764
6 24-Aug-12 2012 87.90 0.00730764 -0.01783226

Much economic data is available in Stata .dta format. Over the years, different R
packages have figured out how to read .dta files, but there is always a lag after a new
Stata version comes out. As of Spring 2020, the function read_dta() in package haven
supports through Stata version 15. If you have access to Stata, you could just work with
the raw data in Stata, then export to .csv or save a .dta in version 15 (or earlier) format.
For example, with some census (Current Population Survey) data,19

> library(haven)
> cps80 <- read_dta("census80.dta")
> head(cps80)
# A tibble: 6 x 7

age educ logwk perwt exper exper2 black
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 47 16 6.97 1.00 25 625 0
2 42 12 6.17 1.00 24 576 0
3 47 16 6.44 1.00 25 625 0
4 40 12 7.06 1.00 22 484 0
5 40 19 7.07 1.00 15 225 0
6 44 12 7.06 0.991 26 676 0

2.7 Basic Statistics

See also: Cyclismo tutorials on basic operations20 and OLS.21

R has a lot of statistical functions. Generally, these take a vector as input. If you pass
them a matrix, they (usually) treat the matrix as a big vector; to operate row-by-row or
column-by-column, see apply() below.

19http://economics.mit.edu/faculty/angrist/data1/data/angchefer06
20http://www.cyclismo.org/tutorial/R/basicOps.html
21http://www.cyclismo.org/tutorial/R/linearLeastSquares.html

http://economics.mit.edu/faculty/angrist/data1/data/angchefer06
http://www.cyclismo.org/tutorial/R/basicOps.html
http://www.cyclismo.org/tutorial/R/linearLeastSquares.html
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For example, there is mean(), median(), sd(), quantile(), sum(), min(), max(),
etc. Note if you want a “parallel” (element-wise) min or max, then use pmin() or pmax():

> min(matrix(1:6,ncol=2))
[1] 1
> pmin(1:3,4:2)
[1] 1 2 2

See also which.min() and which.max(), which return the index of the minimum and
maximum. There’s also a which() that returns the indices of TRUE elements in a logical
vector.

One thing to be aware of is the treatment of missing data (NA values). If you have
missing data, you should probably think about why there is missing data; see Chapter 21.
But, sometimes you just want to remove all the NA. Compare:

> mean(c(1:5,NA),na.rm=FALSE)
[1] NA
> mean(c(1:5,NA),na.rm=TRUE)
[1] 3

See Section 21.4 for more.
To apply statistical functions to matrices, apply() is useful. The application can be

row-by-row (MARGIN=1) or column-by-column (MARGIN=2):

> (m <- matrix(1:6, nrow=2))
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> apply(m, MARGIN=1, FUN=sum)
[1] 9 12
> apply(m, MARGIN=2, FUN=sum)
[1] 3 7 11

OLS is run with lm() (which stands for “linear model”). Unfortunately, the default
SE are not even robust to heteroskedasticity, but there are packages for that (and cluster-
robust SE, etc.). But if you just want to run OLS, I’d suggest using Stata.

2.8 Basic Plotting (Graphs)

See also: plot tutorials from Cyclismo22 and CRAN.23

In RStudio, you can just call plot() and a plot appears:

> plot(x=1:10,y=11:20)

22http://www.cyclismo.org/tutorial/R/plotting.html
23http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Graphics

http://www.cyclismo.org/tutorial/R/plotting.html
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Graphics
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Without RStudio, you have to first open a graphics device by calling x11() or something,
or on a Mac, quartz().

This is fine for exploring, but for a paper, always save your graphs into a PDF file. It
is even better than lossless (e.g., bitmap, PNG, GIF) let alone lossy compression (e.g.,
JPEG) because it stores the underlying lines in your graph rather than pixel-by-pixel (as
a simplification). So even if you (later) increase its size or zoom in a lot, it will still look
very nice. You can include .pdf images easily in (pdf)LATEX using \includegraphics{}.
In R, you need to first call pdf() to tell R to start drawing to a PDF file, then when
you’re done call dev.off().

You can look at many examples including my preferred formatting styles on my web-
site, e.g., the .R file that generates all the plots in this text.

2.9 Saving Text Output

I find it helpful to save text output/results directly to a .txt file rather than copy-pasting
from the console. You can do this with cat(), specifying the output filename:

> (OUTFILE <- paste0(format(Sys.time(),"%Y_%m_%d"), "_out",".txt"))
[1] "2020_04_21_out.txt"
> cat("results from regression: 12",
+ file=OUTFILE,sep="\n",append=TRUE)

2.10 Probability Distributions and Random Numbers

See also: Cyclismo tutorial.24

R has four types of functions for a variety of probability distributions, and you may
create your own. The four types correspond to four letters: p for a CDF (confusing?
perhaps), d for PDF (“density”), q for quantile, and r for random. So the CDF functions
are punif() for a (continuous) uniform distribution, pnorm() for a normal, etc.; see ?
Distributions. For a normal CDF, for example, we need to pass arguments for the
point of evaluation, the mean of the distribution µ, and the standard deviation σ, like
pnorm(0,mean=0,sd=1). For the PDF, the first argument is also the point of evaluation;
for the quantile function, the first argument is the probability (e.g., 0.5 for the median);
and for the random generation, the first argument is the number of numbers desired. Be
aware that most distributions have default parameters if you don’t specify them, e.g.,
N(0, 1) (standard normal) is the default normal.

Another important function for randomization is sample(). My most common use
of it is the special case of drawing (with or without replacement; e.g., for bootstrap or
subsampling) subsets of integers from 1, . . . , n. For example,

24http://www.cyclismo.org/tutorial/R/probability.html

http://www.cyclismo.org/tutorial/R/probability.html
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> set.seed(112358)
> sample(x=1:6, size=6, replace=FALSE)
[1] 2 4 6 5 3 1
> sample(x=1:6, size=6, replace=TRUE)
[1] 5 3 6 3 2 3

For replicability, you should always call set.seed() before using any randomization
code. This starts the (pseudo) random number generator at a particular point, so that
somebody else can run your file and get the same random numbers that you did. You
should (in my opinion) pick a single seed number that you always use, so that you do not
try different seeds to make your results look better (which is dishonest and unscientific).
For example, I always use 112358; if you ever see a file of mine (which I always post on
my website, too, for added accountability) with a different seed, you should ask me why
it’s not 112358, and alert someone if you’re not satisfied by my response! Example:

> set.seed(112358)
> runif(3)
[1] 0.3187551 0.7404076 0.8741024
> set.seed(112358); runif(3)
[1] 0.3187551 0.7404076 0.8741024
> set.seed(112358); rnorm(1)
[1] -0.4711828
> set.seed(112358); qnorm(runif(1))
[1] -0.4711828

You should see these same exact numbers if you run this code, even if you are using a
different computer/operating system/R version/etc. (As long as you haven’t changed the
default random number generator.)

2.11 Control Flow: If, Loops, Errors

See also: tutorials from Cyclismo25 and CRAN.26

2.11.1 If-Else Statements

Sometimes we want to run one piece of code if some condition is true, but a different
piece of code if it’s false. An if-else statement executes the first block if the condition
is true, and the latter if not. Beware if the condition is neither true nor false, but NULL
or NA. The condition needs to be inside parentheses (unlike Matlab, etc.). You can also
insert any number of else if blocks. Some examples:

25http://www.cyclismo.org/tutorial/R/scripting.html
26http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Loops-and-conditional-

execution

http://www.cyclismo.org/tutorial/R/scripting.html
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Loops-and-conditional-execution
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Loops-and-conditional-execution
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> animal <- 'dog'
> if (animal=='cat') {
+ cat("meow\n")
+ } else if (animal=='dog') {
+ cat("woof\n")
+ } else {
+ stop("unknown animal")
+ }
woof
> if (TRUE) cat("meow\n")
meow
> if TRUE cat("meow\n")
Error: unexpected numeric constant in "if TRUE"
> if (NULL) cat("meow\n")
Error in if (NULL) cat("meow\n") : argument is of length zero
> if (NA) cat("meow\n")
Error in if (NA) cat("meow\n") : missing value where TRUE/FALSE needed

The more complicated part is often constructing the appropriate condition, which may
involve logical functions of many variables’ values.27 R includes all of the usual logical
operators like “and” and “or,” and numerical comparisons like “less than.” Note R has
separate elementwise “and” and “or” for vectors, similar to the difference between min()
and pmin(). Some examples:

> 2!=2 #"not equal to"
[1] FALSE
> 2==2 #"equal to"
[1] TRUE
> 2<=2 #"less than or equal to"
[1] TRUE
> 2<2 #"strictly less than"
[1] FALSE
> (1:3)<c(2,2,2)
[1] TRUE FALSE FALSE
> TRUE && FALSE #"and"
[1] FALSE
> TRUE || FALSE #"or"
[1] TRUE
> c(TRUE,TRUE,TRUE) & c(FALSE,TRUE,FALSE) #elementwise
[1] FALSE TRUE FALSE
> c(TRUE,TRUE,TRUE) && c(FALSE,TRUE,FALSE) #oops!
[1] FALSE

27See also http://www.cyclismo.org/tutorial/R/types.html#logical

http://www.cyclismo.org/tutorial/R/types.html#logical


44 CHAPTER 2. R: SOME BASICS

> 4 %in% 1:5
[1] TRUE

2.11.2 For and While Loops

I don’t use while loops much, but they’re simple: as long as some condition is true,
keep evaluating some block of code. Of course, there is a danger if the condition never
becomes false: your code will never finish running!

I commonly use for loops for simulations and for looping through elements in a vector
or list. A for loop has a counter variable whose value is different in each iteration of the
loop. The counter iterates over a set of specified (by you) values. Inside a for loop, the
value of an expression is not printed unless you do so explicitly with cat() or print().
Examples:

> for (i in 1:3) { cat(sprintf("%g",i)) }; cat('\n')
123
> x <- data.frame(a=1:3,b=4:6)
> for (ivar in c("a","b")) {
+ cat(sprintf("%g ",x[[ivar]]),"\n")
+ }
1 2 3
4 5 6
> for (ix in 1:length(x$b)) {
+ cat(sprintf("x$b[%d]=%d",ix,x$b[ix]),'\n')
+ }
x$b[1]=4
x$b[2]=5
x$b[3]=6

The keyword next skips directly to the (top of the) next iteration in a loop.
The keyword break instead breaks out of the loop completely.

2.11.3 Try-Catch, Warnings, Errors

There are warnings and errors in R. Errors are more severe and prevents any further
commands from running. Warnings are displayed, but the code continues executing.
Usually you’ll just look at warnings/errors from functions you’re using, but you can
instigate them yourself, too:

> for (i in 1:4) {
+ if (i%%2 == 0) { warning(sprintf("Even: i=%d",i)) }
+ cat(sprintf("%g ",i))
+ }
1 2 3 4
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Warning messages:
1: Even: i=2
2: Even: i=4
> for (i in 1:4) {
+ if (i%%2 == 0) { stop(sprintf("Even: i=%d",i)) }
+ cat(sprintf("%g ",i))
+ }
1
Error: Even: i=2

Errors and warnings are both displayed in red in RStudio (at least by default).
R supports try-catch statements, in which you can “try” to run a block of code,

and run additional code if you “catch” an error or warning. This allows your code to keep
running even if there’s an error (which otherwise stops all code), or allows your code to
stop running (or make modifications) if there’s a warning. You’ll probably never need
this unless you’re writing functions for other people to use. See ?tryCatch.

2.12 Time and Timing

See also: Cyclismo tutorial.28

You can get the current date/time or time differences like:

> (x <- Sys.time())
[1] "2020-04-21 19:50:41 CDT"
> format(x,"%A, %X")
[1] "Tuesday, 7:50:41 PM"
> Sys.time() - x
Time difference of 0.02297997 secs

You can also time how long a certain block of code runs:

> set.seed(112358); x <- rbinom(n=1e8, size=100, prob=0.5)
> system.time(expr=sort(x,method='radix'))
user system elapsed
2.20 0.11 2.31

> system.time(expr=sort(x,method='quick'))
user system elapsed
3.37 0.05 3.42

> system.time(expr=sort(x,method='shell'))
user system elapsed
5.36 0.09 5.45

28http://www.cyclismo.org/tutorial/R/time.html

http://www.cyclismo.org/tutorial/R/time.html
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2.13 Parallel Computing (On Your Laptop)

R supports parallel computing. These days, even your laptop (probably) has multiple
CPUs. In my personal experience, using parallel computing has sped things up by a
factor of two. This is not worth it if your code only takes a few minutes to run. But if
it takes 24 hours to run, then cutting this to 12 hours lets you run it overnight and see
results the next morning. Also: you will end up running your code many, many more
times than you anticipate.

There are different ways you can do this. Depending how you set it up, even the
random numbers are fully replicable:

> library(doRNG); library(doParallel)
> library(foreach); library(parallel)
> workers <- makeCluster(detectCores()) #use everything available
> registerDoParallel(workers)
> on.exit(stopCluster(workers),add=TRUE)
> N <- 5; res <- matrix(data=NA,nrow=2,ncol=N)
> # %dorng%: replicable
> for (i in 1:2) {
+ set.seed(112358)
+ res[i,] <- foreach(i=1:N, .combine=rbind, .inorder=TRUE) %dorng% {
+ rnorm(1)
+ }
+ }
> print(res)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.4143905 -0.49700764 1.286977 -1.29213296 0.5669822
[2,] 0.4143905 -0.49700764 1.286977 -1.29213296 0.5669822
> stopCluster(workers)

If you want to output to a file (e.g., some log message to a .txt to see your code’s progress),
see ?sink.

2.14 Simulation: Example #1

If you have never run a simulation (in R), the following code may be helpful. It is a simple
simulation looking at the sample average as an estimator of the mean of a distribution, in
terms of the bias and standard error (i.e., standard deviation) and RMSE of the estimator.
The DGP is normal. You should be able to run it as-is and see output (not shown below).

# Simulation example for
# "Distributional and Nonparametric Econometrics"
# by Dave Kaplan
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# Set seed for replicability (important!)
set.seed(112358)

# Constant parameters
OUTFILE <- "" #set this to something like "out.txt"

#to save output, otherwise outputs to console
NREP <- 1000 #start w/ something small (10?) to debug/time

#then increase to improve accuracy
N <- 10 #sample size
MU <- 0.2; SIGMA <- 1 #DGP parameters
#output the parameter values
cat(sprintf(paste0("NREPLIC=%d, N=%d, MU=%g, ","SIGMA=%g"),

NREP, N, MU, SIGMA),
file=OUTFILE, sep="\n", append=TRUE)

# Replication loop
start.time <- Sys.time() #get the current time
mu.hats <- rep(NA,NREP)
for (irep in 1:NREP) {
X <- rnorm(N,mean=MU,sd=SIGMA) # Generate data
mu.hats[irep] <- mean(X) # Compute estimator and store

}

# Compute results and save to OUTFILE
mu.hat.bias <- mean(mu.hats) - MU
mu.hat.sd <- sd(mu.hats)
cat(sprintf(paste0("bias=%6.4f, sd=%6.4f, RMSE=%g"),

mu.hat.bias, mu.hat.sd, sqrt(mu.hat.bias^2+mu.hat.sd^2)),
file=OUTFILE, sep="\n", append=TRUE)

# Output time elapsed to console
cat(sprintf("Time elapsed: %s",format(Sys.time()-start.time)),

sep="\n", append=TRUE)

Discussion Question 2.1 (R: simulation example 1). Carefully examine the R simula-
tion code in Section 2.14. Run it to see the results.

a) Inside the for-loop, why does the code have mu.hats[irep] instead of just mu.hats?
What would happen if it just said mu.hats?

b) Is mu.hat.bias a scalar or vector? How can you tell?
c) If you run the code a second time, will you get the same output? Why?
d) What would happen if inside the for-loop, just before the X <- line, you put set.
seed(1)? Explain why that would be worse.
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e) Are the observations iid? How can you tell?
f) What is the simulated bias, standard deviation, and RMSE?
g) Explain why/how you would expect the bias and standard deviation to change (or

not change) if you: increase NREP to 2000? increase N to 20? increase MU to 0.4?
increase SIGMA to 2? change the seed to set.seed(2246)?

2.15 Simulation: Example #2

Here is another simulation example. It examines the coverage probability of the standard
confidence interval for OLS regressors (using the default standard error) when there are
different numbers of regressors. Various parameters are stored in UPPERCASE variables;
nothing is hard coded (e.g., I always write ALPHA instead of 0.1 so that I can easily change
it to 0.05, or add a for loop over different values).

# Simulation example for
# "Distributional and Nonparametric Econometrics"
# by Dave Kaplan
# Coverage probability with many regressors

NREP <- 1e3; n <- 40; ks <- c(1,20,30:38)
BETA0 <- 0 #same for all X
ALPHA <- 0.10; CV <- qnorm(1-ALPHA/2)
START.TIME <- Sys.time()
OUTFILE <- "" #print to console if empty

CPs <- rep.int(NA,length(ks))
for (ik in 1:length(ks)) {
k <- ks[ik]
set.seed(112358) #for replicability
beta <- matrix(BETA0,k) #k-by-1 vector
Xs <- array(rnorm(NREP*n*k), c(n,k,NREP))
Us <- matrix(rnorm(NREP*n),NREP)
CIs <- matrix(NA,NREP,2)
for (irep in 1:NREP) {
X <- Xs[,,irep]; U <- Us[irep,]
Y <- BETA0 + X%*%beta + U
ret.lm <- lm(Y~X)
ret.sum.lm <- summary(ret.lm)
est <- ret.sum.lm$coef[2,1]
SE <- ret.sum.lm$coef[2,2]
CIs[irep,] <- c(est-CV*SE,est+CV*SE)

}
CPs[ik] <- mean(CIs[,1]<BETA0 & BETA0<CIs[,2])
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}
cat(paste0(sprintf("CP(k=%2d)=%5.3f", ks, CPs),

collapse='\n'), '\n',
file=OUTFILE, sep="", append=TRUE)

tmpt <- as.numeric(Sys.time()-START.TIME,units="secs")
tmps <- sprintf(paste0("Total time elapsed=%g seconds\n"), tmpt)
cat(tmps,file=OUTFILE,sep="",append=T)

The above code produces the below output.

CP(k= 1)=0.884
CP(k=20)=0.878
CP(k=30)=0.897
CP(k=31)=0.850
CP(k=32)=0.881
CP(k=33)=0.846
CP(k=34)=0.824
CP(k=35)=0.813
CP(k=36)=0.804
CP(k=37)=0.751
CP(k=38)=0.646
Total time elapsed=17 seconds

Discussion Question 2.2 (R: simulation example 2). Carefully examine the R simula-
tion code in Section 2.15. Run it to replicate the results shown.

a) What does NREP represent? (Where is it used?)
b) Where is sample size n used? Why is Y a vector of length n?
c) Would results change if set.seed were moved above the first for? Why/not?
d) Try changing ks to have 29:38 instead of 30:38, and re-run everything. Does the

simulated CP change for the already-existing k values? Why/not?
e) Modify the cat to include the sample size in each line of output. (Refer to the

variable n, don’t just hard code 40.)
f) Modify the code to use upper one-sided CIs instead of two-sided CIs.
g) Does the OLS model estimated with lm include an intercept term? How do you

know?
h) What does the code ret.sum.lm$coef[2,1] mean?
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Exercises

Exercise E2.1. The following is similar in spirit to Section 2.15. Design, code, and run
a simulation exploring the sensitivity of IV estimates and standard confidence intervals
to the strength of the instrument. Use sample size n = 100 observations per dataset. Let
Yi = β0 + β1Xi +Ui, Xi = γ0 + γ1Zi + Vi. Let (U, V ) be bivariate normal, with variances
both equal to one, and correlation ρ. So, ρ controls the degree of endogeneity (with
ρ = 0 for exogenous X), and γ1 controls the degree of relevance of the instrument, or the
“strength” of the instrument (with γ1 implying the instrument is not relevant and thus not
valid). Let ρ = 0.5. Try different values of γ1, seeing how small it must be to start affecting
the properties of the IV estimator and CIs. In each simulation replication, compute the
IV estimator; recall in matrix notation β̂ = (Z ′X)−1Z ′Y , where Z contains a column
of ones and a column of Zi, and X contains a column of ones and a column of Xi, and
Y = (Y1, . . . , Yn)

′. Compute the estimated covariance matrix like in (5.34) of Wooldridge
(2010), (X̂

′
X̂)−1

(∑n
i=1 Û

2
i X̂iX̂

′
i

)
(X̂

′
X̂)−1 where X̂i = (1, X̂i)

′ with X̂i = γ̂0 + γ̂1Zi

(estimated linear projection); the standard error for β1 is the square root of the (2, 2)
entry in that matrix. Compute a “95%” CI for β1 as β̂1 ± 1.96 SE(β̂1). In 100 (or 1000)
replications, store the β̂1 and CI from each replication. Afterward, make a histogram
of the β̂1 values; see if it seems concentrated around the true β1. Also compute the
proportion of replications in which the true β1 was inside your computed CI, to get the
simulated coverage probability; compare this to 95%.

Exercise E2.2. Design, code, and run a simulation exploring the sensitivity of another
econometric technique to violations of an assumption. Similar to E2.1, but you get to
choose what to simulate. Please ask me (in person or email) about your idea before you
start to code it, to make sure your time is well spent.



Chapter 3

Logic

Unit learning objectives for this chapter

3.1. Define and apply basic logic terms and relationships [TLO 1]

Some basic logic is useful for understanding certain parts of econometrics. First,
logic is useful for understanding the relationship among different conditions. Often these
conditions are assumptions used in various theorems. Second, logic is useful for under-
standing what a theorem actually claims. Third, logic is helpful for interpreting results.
The following may not be fully technically correct from a philosopher’s perspective, e.g.,
perhaps I conflate logical implication with the material conditional, but it suffices for
econometrics.

Optional resources for this chapter

• Section 6.1 of Kaplan (2022b) is very similar

3.1 Terminology

Many words and notations can refer to the same logical relationship. Let A and B be
two statements that can be either true or false. For example, maybe A is “Y ≥ 10” and
B is “Y ≥ 0.” Or, A is “this animal is a cat,” and B is “this animal is a mammal.” The
following ways of describing the logical relationship between A and B all have the same
meaning.

1. If A (is true), then B (is true)
2. A =⇒ B
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3. A implies B
4. B ⇐= A
5. B is implied by A
6. B is true if A is true
7. A is true only if B is true
8. A is a sufficient condition (or just sufficient) for B
9. B is a necessary condition (or just necessary) for A

10. A is stronger than B
11. B is weaker than A
12. It is impossible for B to be false when A is true (but it is fine if both are true, or

both are false, or A is false and B is true)
13. The truth table (T=true, F=false):

A B A =⇒ B

T T T
T F F
F T T
F F T

14.

AB

To state equivalence of A and B, opposite statements can be combined. Specifically,
any of the following have the same meaning:

1. A ⇐⇒ B (meaning both A =⇒ B and A ⇐= B)
2. A is true if and only if B is true (meaning A is true if B is true and A is true

only if B is true)
3. A is necessary and sufficient for B (or equivalently, B is necessary and sufficient for

A)
4. A is equivalent to B
5. It is impossible for A to be false when B is true, and impossible for A to be true

when B is false.
6. The truth table (T=true, F=false):

A B A ⇐⇒ B

T T T
T F F
F T F
F F T

Variations of A =⇒ B have the following names. Read ¬A as “not A”: ¬A is false
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when A is true, and ¬A is true when A is false.

• ¬A =⇒ ¬B is the inverse of A =⇒ B.

• B =⇒ A is the converse of A =⇒ B.

• ¬B =⇒ ¬A is the contrapositive of A =⇒ B.

Interestingly, the statement A =⇒ B is logically equivalent to its contrapositive. That
is, statements “A =⇒ B” and “¬B =⇒ ¬A” can be both true or both false, but it’s
impossible for one to be true and the other false. The statement A =⇒ B is not logically
equivalent to either its inverse or converse. (The inverse and converse are equivalent to
each other: the inverse is the contrapositive of the converse.)

Discussion Question 3.1 (logic). Let A be “X ≤ 0” and let B be “X ≤ 10.”
a) Explain why A =⇒ B.
b) State the contrapositive in terms of X, and explain why it is also true.
c) State the converse in terms of X, and explain why it is not true.
d) State the inverse in terms of X, and explain why it is not true.

3.2 Assumptions

To compare assumptions, the terms “stronger” and “weaker” are most commonly used.
Instead of assumption A and conclusion B, let A and B denote different assumptions.
For example, let A be E(Y 4) < ∞, and let B be E(Y 2) < ∞. Any random variable Y
with finite E(Y 4) also has finite E(Y 2), but some have finite E(Y 2) and infinite E(Y 4).
Logically, A =⇒ B. Thus, people say “E(Y 4) < ∞ is a stronger assumption than
E(Y 2) < ∞,” or equivalently, “E(Y 2) < ∞ is weaker than E(Y 4).”

As another example, consider the linear projection and linear CEF models. Consider
the linear model Y = β0 + β1X + U . Let assumption A be E(U | X) = 0, and let B
be E(U) = 0 and Cov(X,U) = 0; i.e., A says U is a CEF error, whereas B says U is a
linear projection error. Here, A =⇒ B, so A is a stronger assumption than B, and B
is weaker than A. Seen another way, the linear projection model is more general than
the linear CEF model: if the CEF is β0 + β1x, then so is the linear projection, but if the
linear projection is β0 + β1x, it is still possible to have a nonlinear CEF.

All else equal, weaker assumptions are better because then the theorem applies to
more settings (the results are “more general”).

3.3 Theorems

Theorems all have the same logical structure: if assumption A is true, then result (conclu-
sion) B is true. Sometimes A and B have multiple parts, like the four parts of Assumption
7.1 of Hansen (2020a, §7.1, p. 170) and the five conclusions in Theorem 7.1 of Hansen
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(2020a, §7.2, p. 172), but the logical structure of a theorem is always the same. The
theorem claims that if we can verify that A is true, then we know that B is also true.
But what if we don’t know about A, or we think it’s false? Then, B could be false,
or it could be true. This may be seen most readily from the picture version of the A
and B relationship. We could be somewhere inside B (where B is true) but outside A
(where A is false); or we could be outside both, where both are false. The theorem is not
equivalent to, “If A is false, then B is false” (the “inverse”). However, it is equivalent to
the contrapositive: “If B is false, then A is false.” Again, this is probably seen most
easily in the picture.

Discussion Question 3.2 (median theorem logic). Consider the statement, “If sampling
is iid, then the sample median consistently estimates the population median.”

a) What does this tell us about consistency of the sample median when sampling is
not iid?

b) What does this tell us about sampling when the sample median is not consistent?
Hint: draw a picture.

Discussion Question 3.3 (mean theorem logic). Consider the statement, “If sampling is
iid and the population mean is well-defined, then the sample mean consistently estimates
the population mean.”

a) What does this tell us about consistency of the sample mean when sampling is not
iid?

b) What does this tell us about sampling when the sample mean is not consistent?
Hint: draw a picture with A1 (iid), A2 (well-defined), and B (consistency).

Discussion Question 3.4 (logic with feathers). Consider two theorems. Theorem 1
says, “If X is an eagle, then it has feathers.” Theorem 2 says, “If X is a bird, then it has
feathers.”

a) Describe each theorem logically: what’s the assumption (A), what’s the conclusion
(B), what’s the relationship?

b) State Theorem 1’s contrapositive; is it true?
c) Compare: does Theorem 1 or Theorem 2 have a stronger assumption? Why?
d) Compare: which theorem is more useful? (Which applies to more situations?)



Part II

Quantile Methods
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Introduction

This part concerns econometric and statistical methods that look beyond the mean to
other features of (conditional) distributions. Specifically, features involving (conditional)
quantiles are considered. Depending on the setting and method, these methods may be
useful for descriptive, predictive, and/or causal analysis.
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Chapter 4

Unconditional Quantiles:
Description and Prediction

Unit learning objectives for this chapter

4.1. Interpret quantiles in terms of both optimal prediction and distributional description
[TLOs 1 and 2]

4.2. Understand differences between the mean and median in terms of estimation effi-
ciency, sensitivity to outliers and censoring, and statistical inference [TLOs 2 and 3]

Quantiles can be useful for both description and prediction. As description, they cap-
ture distributional features beyond the mean, especially features related to inequality and
heterogeneity. For prediction, although the mean is optimal for quadratic loss, quantiles
are optimal for alternative loss functions that allow asymmetry (over-prediction is worse
than under-prediction, or vice-versa). This chapter considers the unconditional distribu-
tion of Y to introduce concepts. Chapter 5 extends this to the conditional (on X = x)
distribution of Y .

Optional resources for this chapter

• Koenker (2005), http://laurel.lso.missouri.edu/record=b5328718~S1

4.1 Description

The cumulative distribution function (CDF) is a complete but complex description of the
probability distribution of Y . Because it is difficult (for humans) to discuss and compare
entire functions, usually the CDF is summarized by certain features.
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Conversely, summary features are convenient but lose information. Two popular fea-
tures are the mean and standard deviation. If Y ∼ N(µ, σ2), then the mean and standard
deviation fully describe the distribution. However, most variables are not Gaussian, so
such a summary loses potentially valuable information.

Quantiles complement the mean in summarizing a distribution. They can help capture
skewness, spread, tails, and other important aspects of the distribution’s shape.

4.2 Formal Definitions

The τ -quantile is the same as the 100τth percentile: the value for which τ proportion of
the population has a smaller value. (There are some caveats; see below.)

The τ -quantile’s formal definition and notation follow. Let τ ∈ [0, 1] denote the
quantile index (or quantile level). Let Qτ (Y ) denote the τ -quantile of random variable
Y , analogous to notation E(Y ) for the mean of Y . The informal definition above suggests
Qτ (Y ) satisfies P(Y ≤ Qτ (Y )) = τ , or equivalently FY (Qτ (Y )) = τ . This further suggests
Qτ (Y ) = F−1

Y (τ) if the CDF FY (·) is invertible. More generally,

Qτ (Y ) ≡ inf{y : FY (y) ≥ τ}. (4.1)

The quantile function QY (·) more explicitly expresses the quantiles of Y as a func-
tion of τ . That is,

QY (τ) ≡ inf{y : FY (y) ≥ τ}, 0 ≤ τ ≤ 1. (4.2)

If the CDF FY (·) is invertible, then QY (·) = F−1
Y (·). If FY (·) has a flat spot, then QY (·)

has a jump discontinuity. If FY (·) has a discontinuity (e.g., if Y is discrete), then QY (·)
has a corresponding flat spot. Whereas CDFs are right-continuous (with left limits),
quantile functions are left-continuous (with right limits).

−2 −1 0 1 2

0.
0

0.
4

0.
8

y

F Y
(y

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

y

F Y
(y

)

Figure 4.1: CDFs for DQ 4.1.

Discussion Question 4.1 (quantiles from CDF). For each of the CDFs shown in Fig-
ure 4.1, do each of the following.
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a) Verbally describe the distribution of Y .
b) Visually locate Q0.5(Y ).
c) Visually locate Q0.8(Y ).
d) Sketch QY (·).

4.3 Prediction

Like the mean, quantiles are optimal predictors under certain “loss functions.”

Discussion Question 4.2 (population minimization: quadratic and absolute loss). Let
Y be a discrete rv with P(Y = 1) = P(Y = 2) = P(Y = 99) = 1/3.

a) Compute θ1 = argmint∈R E[(Y − t)2].
b) Compute θ2 = argmint∈R E

(
|Y − t|

)
.

c) What are the common names for θ1 and θ2?

Some vocabulary is useful. In the frequentist framework, we repeatedly guess the same
value g for repeated random draws of Y , and we see “how bad” our guess is on average in
the long run. A loss function L(y, g) quantifies how bad it is to guess g when the true
value is y. The (infinitely) long-run average loss given fixed g is thus the expected loss
(also called risk), where the expectation is wrt the distribution of Y : E[L(Y, g)]. Given
this framework and a particular loss function, the optimal predictor minimizes risk.

Definition 4.1 (loss, risk, optimal prediction). Loss function L(y, g) quantifies how bad
it is to guess (predict) g when the true value is y. Given loss function L, the optimal
frequentist predictor minimizes risk (expected loss):

g∗L ≡ argmin
g

E[L(Y, g)]. (4.3)

Recall from Hansen (2020a, §2.11) that the population mean is the “best” uncon-
ditional predictor of Y given a certain definition of “best.” Specifically, consider the
quadratic loss function

L2(y, g) = ρ2(y − g) = (y − g)2. (4.4)

Then, the mean is optimal in that

E(Y ) = argmin
g

E[L2(Y, g)]. (4.5)

Equivalently, the mean E(Y ) minimizes the mean squared prediction error, where y−g is
the prediction error, (y−g)2 is the squared prediction error, and E[(Y −g)2] is the mean
squared prediction error (MSPE). This can be derived from the first-order condition:

0 =
d

dg
E[L2(Y, g)]

∣∣∣∣
g=g∗2

=
d

dg
E[(Y − g)2]

∣∣∣∣
g=g∗2

= 2E[Y − g∗2],
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so g∗2 = E(Y ).
There is no data here. Everything is in the population. More arguments would be

required to say that the sample mean is the optimal predictor. (I imagine somebody has
studied that, but I am ignorant of such results.) The weaker argument here is that the
sample mean consistently estimates the population mean, which in turn is the optimal
predictor for Y under quadratic loss.

As seen in DQ 4.2, replacing L2(y, g) with the alternative loss function L1(y, g) =
|y − g| yields a different optimal predictor, specifically the population median:

Q0.5(Y ) = argmin
g

E[L1(Y, g)]. (4.6)

A broader class of loss functions characterizes all quantiles over τ ∈ (0, 1). Given τ ,
the check function or tick function is

ρτ (u) ≡ u(τ − 1{u < 0}). (4.7)

With τ = 0.5, actually ρ0.5(u) = |u|/2, not |u|. However, scaling by a constant does not
affect minimization:

Q0.5(Y ) = argmin
g

E[L1(Y, g)] = argmin
g

(1/2)E[L1(Y, g)] = argmin
g

E[ρ0.5(Y − g)].

More generally,
Qτ (Y ) = argmin

g
E[ρτ (Y − g)]. (4.8)

That is, given Definition 4.1, the τ -quantile of Y is the optimal unconditional predictor
of Y under loss function L(y, g) = ρτ (y − g).

Discussion Question 4.3 (check function). Consider Figure 4.2.
a) Which function corresponds to which τ?
b) Does τ = 0.95 penalize over-prediction (g > y) or under-prediction (g < y) more

heavily?
c) Given the asymmetry in (b), explain intuitively why it makes sense that Q0.95(Y )

is a better predictor than Q0.5(Y ) given the τ = 0.95 loss function ρ0.95(·).

4.4 Estimation and Sample Quantiles

Discussion Question 4.4 (sample minimization: quadratic and absolute loss). Consider
a dataset with n = 3: Y1 = 1, Y2 = 2, Y3 = 99.

a) Compute θ̂1 = argmint∈R
1
n

∑n
i=1(Yi − t)2.

b) Compute θ̂2 = argmint∈R
1
n

∑n
i=1|Yi − t|.

c) What names do we call θ̂1 and θ̂2?
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Figure 4.2: Check functions ρτ (·) scaled by 1/
√
τ(1− τ), i.e., ρτ (·)/

√
τ(1− τ), for τ ∈

{0.5, 0.75, 0.95}, along with quadratic ρ2(·).

In DQ 4.4, we could solve an FOC to get an explicit formula for θ̂1, but not for θ̂2.
This hints at some of the computational difficulties of quantile estimators. Despite such
difficulties, there are functions in R and Stata to estimate a wide variety of quantile
models.

As with the mean, there are two approaches to estimating quantiles. First, related to
description: we could “plug in” the estimated CDF into a CDF-based definition. With
iid data, the “empirical CDF” is

F̂Y (y) =
1

n

n∑
i=1

1{Yi ≤ y}, ∀y ∈ R, (4.9)

i.e., the sample proportion of Yi below the point of evaluation y. This is the CDF for a
discrete distribution with probability 1/n on each observed Yi value (if values are unique).
The population mean is

E(Y ) =

∫
R
y dFY (y). (4.10)

The plug-in principle or analogy principle suggests “plugging in” F̂Y (·) for FY (·) to
get the sample analog of E(Y ):

Ê(Y ) =

∫
R
y dF̂Y (y) =

n∑
i=1

Yi(1/n) = Ȳn, (4.11)
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the familiar sample mean. For Qτ (Y ), we can replace FY (·) in (4.1) to get

Q̂τ (Y ) = inf{y : F̂Y (y) ≥ τ}, (4.12)

often called the sample τ -quantile.
The second quantile estimation approach relates to prediction: solve the sample ver-

sion of the population minimization problem. For the mean,

E(Y ) = argmin
g

E[(Y − g)2] (4.13)

in the population. Replacing the population expectation E[·] with the sample expectation
Ê[·] (i.e., sample average),

Ê(Y ) = argmin
g

Ê[(Y − g)2] = argmin
g

1

n

n∑
i=1

(Yi − g)2. (4.14)

This is the familiar “least squares” approach, minimizing the sum of squared residuals.
For quantiles, replacing E[·] with Ê[·] in (4.8) yields

Q̂τ (Y ) = argmin
g

Ê[ρτ (Y − g)] = argmin
g

1

n

n∑
i=1

ρτ (Yi − g). (4.15)

There are other approaches and variations; in R, I use the quantile() function with
argument type=6.

4.5 Censoring

Quantiles (and quantile regression) are useful when observations are censored. Censoring
means we do not always observe the true value. More specifically, the observed value is a
function of the true value, but this function is not injective (not one-to-one), so the true
values cannot be recovered exactly from the censored values.

One example of censoring is top-coding of earnings data, as in the Survey of In-
come and Program Participation (SIPP), the National Longitudinal Survey(s) of Youth
(NLSY), and Current Population Survey (CPS). The simplest version of top-coding re-
places earnings values above some threshold (like $150,000.00/yr) with the threshold
value.

One approach to top-coding is to impute values, i.e., guess the true values. After
imputation, the resulting dataset is treated like any other dataset. MU econ PhD alum Li
Tan published a paper on imputation that exploits the repeated observations in a panel
dataset, which seems to outperform methods developed with cross-sectional datasets in
mind; see Tan (2021).

Another approach to top-coding is to ask economic questions that don’t rely on the
very upper tail; such questions often involve quantiles. Consider income inequality. The
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qualitative idea of “inequality” can be quantified in many possible ways. One is the stan-
dard deviation, but it depends crucially on the very upper tail that we can’t observe with
top-coding. Alternatively, the difference between the 0.9-quantile and the 0.1-quantile
(the 0.9–0.1 interquantile range) does not require any knowledge about the top 10% of
the distribution, so top-coding is no problem.

Discussion Question 4.5 (inequality measures). Consider an income distribution’s vari-
ance and 0.9–0.1 interquantile range (IQR).

a) Which aspect(s) of income inequality can the variance capture that the IQR cannot?
b) Which aspect(s) of income inequality can the IQR capture that the variance cannot?

Before thinking about learning means and quantiles from top-coded data, a formal
definition of identification is given. The definition and subsequent examples are similar
to those of Hansen (2020a, §2.32). This definition has a microeconometric flavor since it
implicitly assumes that we can learn about the joint distribution of observable variables
(e.g., we can consistently estimate the population distribution). In a time series setting,
this may not make sense. The rough idea of identification is: assuming we can learn the
population distribution of observables, is that sufficient to learn about the parameter of
interest?

Definition 4.2 (identification). Let F be a set of possible joint distributions of observable
variables. Parameter θ ∈ R is identified on F if F uniquely determines θ for all F ∈ F .

Consider the following form of top-coding. An individual’s true earnings are Y ∗.
Constant c is the top-coding threshold. The observed Y is

Y =

{
Y ∗ if Y ∗ ≤ c
c if Y ∗ > c.

(4.16)

Since P(Y = c) = P(Y ∗ ≥ c), the distribution of Y may have a mass point at c even if
Y ∗ is continuous. This means the observable CDF F (·) may jump discontinuously at c
since F (c) = 1. More generally, the CDF of the observed Y is

F (y) =

{
F ∗(y) if y < c
1 if y ≥ c.

(4.17)

Discussion Question 4.6 (identification with top-coding: mean). Consider the top-
coding of (4.16). Show that the mean is not identified. Hint: a counterexample suffices
to disprove identification. Provide a counterexample where Y ∗ CDFs F ∗

1 (·) and F ∗
2 (·)

have different means but imply the same top-coded F (·), i.e., F (·) does not uniquely
determine the parameter of interest E(Y ∗).

Discussion Question 4.7 (identification with top-coding: median). Continue from
DQ 4.6.

a) Draw a graph of a pair of CDFs for possible Y ∗
1 and Y ∗

2 , say {F ∗
1 (·), F ∗

2 (·)}, with
the following properties: same top-coded CDF; different mean; same median.
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b) Repeat (a) but where Y ∗
1 and Y ∗

2 have different medians.
c) How can F be restricted to ensure they always have the same median?

Extending DQ 4.7, there are conditions under which Qτ (Y
∗) is identified for 0 ≤ τ ≤ b

for some constant b. If b ≥ 0.9, then both Q0.9(Y
∗) and Q0.1(Y

∗) are identified, and thus
the 0.9–0.1 IQR Q0.9(Y

∗)−Q0.1(Y
∗) is also identified.

This idea can be extended to quantile regression (and extensions like quantile duration
models), too.

4.6 Robustness and Efficiency

You may hear that the median is more “robust” than the mean. Any time you hear
“robust,” you should ask: robust to what? Here, people would say, “robust to outliers.”
But that begs the question: what’s an “outlier”?

The median is well defined for any probability distribution, whereas the mean is not.
For example, a Cauchy distribution has median zero, but its mean is undefined.

Even if the mean is defined, “fat tails” may make the sample mean’s variance much
larger than the sample median’s variance (because the sample mean is more sensitive to a
single very large value than the sample median). That is, the median could be preferred
because of better estimation efficiency (i.e., smaller standard error).

In both the population and sample, the median is less sensitive than the mean to very
large but unlikely values. For example, imagine a discrete distribution with

P(Y = j) = 1/99 for j = 1, 2, . . . , 98, J. (4.18)

As J → ∞, the median remains 50, but E(Y ) = (1/99)(1 + 2 + · · ·+ 98 + J) → ∞.

Discussion Question 4.8 (robustness to outliers: population). Consider (4.18) as a
population income distribution, with very large J .

a) What does the mean capture that the median doesn’t?
b) What does the median capture that the mean doesn’t?

We can also interpret (4.18) as a sample distribution based on Yi = i for i = 1, . . . , 98
and Y99 = J . As J → ∞, the sample mean Ê(Y ) = Ȳn → ∞ for the same reason
as before. In contrast, the sample median remains 50. If we are worried that sample
“outliers” may be due to bad data (measurement error), then we may prefer an estimator
like the median that’s less sensitive to outliers.

However, for regression, quantile regression is only robust to outliers in Y , not X. As
with OLS, the quantile regression slope estimate can be made arbitrarily large (or small)
by changing just a single point (Yi,Xi). There are more “robust” regression methods
like the “least median of squares” (Rousseeuw, 1984), and Koenker (2005, §8.5) discusses
proposals for higher-breakdown quantile regression.
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4.7 Inference

For the population mean, the usual procedure to construct a confidence interval (CI)
is: 1) show the sample mean is asymptotically normal,

√
n(Ȳn − E(Y ))

d→ N(0, σ2), 2)
estimate the unknown σ2 by σ̂2, 3) use a formula like Ȳn ± 1.96σ̂/

√
n for a 95% CI.

In principle, the same can be done for a population quantile. With iid sampling,

√
n(Q̂τ (Y )−Qτ (Y ))

d→ N(0, σ2), σ2 = τ(1− τ)/[fY (Qτ (Y ))]2, (4.19)

where fY (·) is the PDF of Y . Thus, given σ̂
p→ σ, the CI Q̂τ (Y )±1.96σ̂/

√
n has coverage

probability approaching 95% as n → ∞.
However, the PDF estimate in σ̂ may be inaccurate in finite samples, so many alter-

natives for quantile CIs have been explored. One approach is to explicitly account for
the estimation error in the nonparametric σ̂ to improve accuracy, as in Kaplan (2015).
Various bootstraps have been studied. For example, a variant of the Bayesian bootstrap
(as in Chapter 14 and Section 13.1) produces very accurate quantile CIs; see Kaplan and
Hofmann (2020). CIs based on order statistics are also very accurate; see Goldman and
Kaplan (2017) and Goldman and Kaplan (2018b).

Plot twist: despite the added difficulty, you can (sometimes) nonparametrically com-
pute CIs with known exact finite-sample coverage probability (using order statistics),
which is impossible for the mean!
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Chapter 5

Quantile Regression:
Description and Prediction

Unit learning objectives for this chapter

5.1. Interpret quantile regression in terms of description and prediction, including under
misspecification [TLO 1]

5.2. Develop intuition about conditional quantile functions and prediction with asym-
metric loss functions [TLO 2]

5.3. Evaluate the (dis)advantages of quantile regression compared to OLS [TLO 3]

Like unconditional quantiles, quantile regression (QR) aids both description and
prediction. For description, QR captures more of the conditional distribution of Y given
X = x than just the mean. For prediction (guessing Y given X = x), although the con-
ditional expectation function is optimal for quadratic loss, conditional quantile functions
are optimal for “check function” loss that allows asymmetry. Some results in this chapter
for QR are analogous to results in Chapter 2 of Hansen (2020a) for mean regression.
Parallel to how the word “regression” is used with multiple meanings (the population con-
ditional mean, the estimation procedure, the sample results, etc.), the phrase “quantile
regression” is also used with multiple meanings, so beware.

Optional resources for this chapter

• Koenker (2005), http://laurel.lso.missouri.edu/record=b5328718~S1

• Handbook of Quantile Regression

• Survey: http://www.econ.uiuc.edu/~roger/research/QR40/QR40.pdf

• Angrist, Chernozhukov, and Fernández-Val (2006)
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• R: package quantreg by Koenker (2019)

• R: other code strewn about, like function npqreg in package np

• R and Stata code on Blaise Melly’s website

• Additional R code: https://kaplandm.github.io

Discussion Question 5.1 (context for QR). Before learning more about QR, recall
what you know about non-quantile regression.

a) What does “conditional mean” or “conditional expectation function” (CEF) mean?
b) How can we estimate a CEF?
c) Why do economists estimate CEFs?

Discussion Question 5.2 (motivation for quantile regression). Explain why we might
care about anything besides the CEF, in terms of each of the following.

a) Description (of the joint distribution of observable variables)
b) Prediction (guessing Y based on X)
c) Causality

5.1 Description

Consider the conditional distribution of Y given X = x. That is, within the overall
population, there is a subpopulation with X = x, and there is some distribution of Y
within that subpopulation. For example, the subpopulation could be individuals with
a certain education level, age, and occupation; or firms of a certain size in a particular
industry; etc.

5.1.1 Conditional Quantile Function

Previously, you learned about the conditional expectation function (CEF), E(Y |
X = x). The CEF tells us the mean of the conditional distribution of Y given X = x,
for any x, showing how the mean of Y varies with x.

Complementing the CEF, the conditional quantile function (CQF) captures other
features of the conditional distributions. The conditional τ -quantile of Y given X = x is

Qτ (Y | X = x) ≡ inf{y : FY |X(y | X = x) ≥ τ}, (5.1)

parallel to (4.1) but now conditioning on x. When specifying τ explicitly is important, I
write τ -CQF. Also, parallel to (4.2), the quantile function of Y conditional on X = x is

QY |X(τ | X = x) ≡ inf{y : FY |X(y | X = x) ≥ τ}, 0 ≤ τ ≤ 1. (5.2)

Like the CEF, the CQFs describe how the distribution of Y varies with x, without
overwhelming us with the full conditional CDF. The conditional CDF is essentially a

https://sites.google.com/site/blaisemelly/home/computer-programs
https://kaplandm.github.io
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function-valued function of x, i.e., a different function (CDF) at each possible x. More
simply, the CEF and CQFs are scalar-valued functions of x. With scalar x, these are
easily plotted. With vector x, usually either (average) partial derivatives are reported,
or the function is structured to be summarized by a vector β. As with unconditional
distributions, quantiles capture features of conditional distributions that the mean alone
does not: skewness, spread, tails, and other aspects of the conditional distribution’s shape.

5.1.2 CQF Models

As with CEF models, there are different ways to write a CQF model. (These could be
called “quantile regression” models, but CQF is less ambiguous.) Without specifying a
functional form, we can characterize the CQF qτ (x) by any of these:

qτ (x) = Qτ (Y | X = x), (5.3)
Y = qτ (X) + V, Qτ (V | X) = 0, (5.4)
τ = P(Y ≤ qτ (X) | X). (5.5)

If a linear model is (optimistically) specified, then

qτ (x) = Qτ (Y | X = x) = x′β(τ), (5.6)
Y = X ′β(τ) + V, Qτ (V | X) = 0, (5.7)
τ = P(Y ≤ X ′β(τ) | X). (5.8)

5.1.3 Monotonicity

Without further assumptions, the CQFs could have any shape with respect to x, but they
must obey a certain monotonicity in τ . Let 0 < s < t < 1. In the unconditional case, by
definition, Qs(Y ) ≤ Qt(Y ). This remains true conditional on any X = x:

Qs(Y | X = x) ≤ Qt(Y | X = x).

That is, the s-CQF lies weakly below the t-CQF.
Alternatively, monotonicity can be written in terms of (conditional) quantile functions,

which increase monotonically. Again let 0 < s < t < 1. Unconditionally, by definition,
QY (s) ≤ QY (t). Conditionally, QY |X(s | X = x) ≤ QY |X(t | X = x) for any x.
This is analogous to CDF monotonicity: for c < d, FY (c) ≤ FY (d) unconditionally, and
FY |X(c | X = x) ≤ FY |X(d | X = x) for any x.

Monotonicity plays a large role in Chapter 6.

Discussion Question 5.3 (QR monotonicity). Consider the model Qτ (Y | X = x) =
α(τ) + xβ(τ), for all 0 < τ < 1. That is, the intercept and slope can be different for
different τ , according to the functions α(·) and β(·).

a) Does quantile monotonicity imply β(0.25) < β(0.5)? Why/not?
b) Draw a picture (of conditional quantile functions) where β(0.25) > β(0.5); does it

look wrong? Why/not?
c) What is the “economic” interpretation of β(0.25) > β(0.5)?
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5.2 Prediction

Recall from Hansen (2020a, §2.11) that the conditional mean provides the “best” predictor
under quadratic loss. If we imagine repeated draws of Y given a single fixed X = x, then
we are essentially in the unconditional setting: we simply treat the subpopulation with
X = x as the population and apply (4.5). If instead we imagine repeated draws of (Y,X ′)
from the joint population distribution, then as shown by Hansen (2020a, §2.11),

E(Y | X) = argmin
g(X)

E[L2(Y, g(X))] = argmin
g(X)

E[ρ2(Y − g(X))]

= argmin
g(X)

E[(Y − g(X))2]. (5.9)

Here, E(Y | X) is a random variable rather than a function of x: it conditions on the
random variable X, not on a particular value X = x. The “best” predictor g(·) gets the
random variable g(X) “closest” to Y in the stochastic sense of minimizing mean squared
prediction error, E[(Y − g(X))2].

Parallel to the unconditional result in (4.8), replacing the quadratic loss function in
(5.9) with the check function ρτ (·) makes the τ -CQF the optimal predictor:

Qτ (Y | X) = argmin
g(X)

E[ρτ (Y − g(X))]. (5.10)

The check function allows asymmetry in how bad it is to over-predict versus under-
predict. Like before, when τ is closer to 1, it is very bad to under-predict (g < y), so it is
optimal to guess relatively high values, i.e., high conditional quantiles. Conversely, when
τ is near 0, over-prediction is very bad, so low conditional quantiles are better because
they more often avoid over-prediction.

5.3 QR with Misspecification

With mean regression, even if the CEF is misspecified, the OLS estimator’s probability
limit has some meaningful interpretations: OLS estimates the linear projection of Y on
X, and the the linear projection is both the “best” linear approximation of the CEF as
well as the “best” linear predictor of Y given X. QR has analogous properties.

5.3.1 “Best” Linear Predictor

Recall from Hansen (2020a, §2.18) that even if the CEF is not of the form x′b, OLS still
consistently estimates the “best” linear predictor, meaning the predictor of the form X ′b
that minimizes expected quadratic loss.

QR also has a best linear predictor interpretation. From Theorem 5.1, even if the
CQF is not linear in x, QR is consistent for the population vector

β(τ) = argmin
b

E[ρτ (Y −X ′b)].
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That is, among predictors of the form X ′b, the predictor X ′β(τ) minimizes risk (expected
loss) under the loss function L(y, g) = ρτ (y − g). Thus, X ′β(τ) is the “best” linear
predictor if we define “best” according to ρτ (·), just as the OLS plim is the “best” linear
predictor if we define “best” according to ρ2(u) = u2.

5.3.2 “Best” Linear Approximation

Recall from Hansen (2020a, §2.25) that the OLS plim (the linear projection) is also
the “best” linear approximation of the CEF (in terms of mean squared error). Writ-
ing the CEF as m(x) ≡ E(Y | X = x) and the linear projection coefficient as β =
[E(XX ′)]−1 E(XY ),

β = argmin
b

E[(X ′b−m(X))2], (5.11)

where the expectation is wrt the distribution of random vector X.
Angrist, Chernozhukov, and Fernández-Val (2006, Thm. 1) provide a similar result

for QR. Given the QR plim β(τ), x′β(τ) is the “best” linear approximation of the true
CQF in terms of a weighted mean squared error. Skipping the (complicated) definition
of the weight,

β(τ) = argmin
b

E{weightτ,X,b × [Qτ (Y | X)−X ′b]2}. (5.12)

This is not as easy to interpret as an unweighted mean squared error, but it’s something.

5.4 Estimation

The same approaches from Section 4.4 can be used for QR. R function rq() in package
quantreg (Koenker, 2019) is essentially the quantile analog of lm().

Analogous to (4.15), the standard QR estimator is

β̂(τ) = argmin
b

Ê[ρτ (Y −X ′b)] = argmin
b

1

n

n∑
i=1

ρτ (Yi −X ′
ib). (5.13)

This is OLS but with ρτ (·) replacing the function ρ2(u) = u2. Instead of minimizing the
sum of squared residuals, (5.13) minimizes the sum of “checked” residuals.

Computationally, (5.13) is more difficult than OLS. For OLS, the first-order condi-
tion leads to a closed-form expression for β̂. This is not possible for QR: ρτ (·) is not
differentiable at zero. However, some clever algorithms make QR very fast in practice.

Discussion Question 5.4 (quantile crossing problem). Let Y and X be scalars. You
estimate quantile regressions of the form β0(τ) +Xβ1(τ) for τ = 0.5 and τ = 0.75. You
estimate β̂1(0.75) = 2 and β̂1(0.5) = 1 for the slope coefficients. Picking any β̂0(0.75) and
β̂0(0.5), can you draw the two estimated functions such that monotonicity is preserved,
i.e., β̂0(0.75)+xβ̂1(0.75) > β̂0(0.5)+xβ̂1(0.5) for all values x in the support of X? Explain
why or why not, or any other considerations.
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Similar to OLS being consistent for the LP/BLP/BLA rather than the CEF, QR is
generally consistent for the population objects in Section 5.3 rather than the CQF. To
estimate the true CEF or CQF, nonparametric methods are best; see Chapters 16 and 17
(in Part V) for general nonparametric estimation approaches and R packages (e.g., np
has function npqreg for nonparametric QR).

5.5 Asymptotic Properties

Angrist, Chernozhukov, and Fernández-Val (2006, Thm. 3, p. 549) establish consis-
tency and asymptotic normality of β̂(τ) (for the corresponding population minimizer),
uniformly over a continuum of τ , under certain assumptions (sufficient conditions). I
comment on some of the assumptions and state the results, but refer to Angrist, Cher-
nozhukov, and Fernández-Val (2006) for details.

Let T = [ϵ, 1 − ϵ] for some ϵ > 0. (To learn about “extreme” quantiles like τ = 1/n,
different methods are required.)

Condition (i) in Theorem 3 of Angrist, Chernozhukov, and Fernández-Val (2006) is
iid sampling. This is sufficient, but not necessary (time series QR results also exist).

Condition (ii) is about the smoothness of the conditional PDF of Y , fY (y | X = x).
This PDF’s very existence excludes discrete Y .

Condition (iii) is a rank condition, similar to E(XX ′) being invertible for OLS. Here,
the conditional PDF of Y is also involved: E[fY |X(X ′β(τ) | X)XX ′] must be invertible.

Condition (iv) requires finite variance (slightly stronger) for X, but not for Y . Unlike
with OLS, here it is fine if Y does not even have a well-defined mean.

Theorem 5.1 (Theorem 3 of Angrist, Chernozhukov, and Fernández-Val (2006)). Let
β(τ) = argminb E[ρτ (Y − X ′b)]. Under conditions (i)–(iv) in Theorem 3 of Angrist,
Chernozhukov, and Fernández-Val (2006),

β̂(τ)
p→ argmin

b
E[ρτ (Y −X ′b)]. (5.14)

More strongly than the pointwise consistency of (5.14), there is uniform consistency:

sup
τ∈T

∥β̂(τ)− β(τ)∥ p→ 0. (5.15)

For intuition about uniform consistency, recall Wn
p→ w is equivalent to Wn−w

p→ 0.
Similarly, β̂(τ) p→ β(τ) is equivalent to ∥β̂(τ)−β(τ)∥ p→ 0. Theorem 5.1 extends this by
taking a supremum over τ ∈ T .

Angrist, Chernozhukov, and Fernández-Val (2006, Thm. 3) also establish asymptotic
normality of the QR estimator under misspecification. This includes “pointwise” asymp-
totic normality of the vector β̂(τ) for a single τ . They also show that the random function
β̂(·) over τ ∈ T is “asymptotically normal,” i.e., when centered and scaled it converges to
a (multivariate) Gaussian process. A (scalar) Gaussian process is a random function
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G(·) whose finite-dimensional marginals follow multivariate normal (Gaussian) distribu-
tions, i.e., (G(t1), . . . , G(tk)) is multivariate normal. Besides being fancy, this allows us to
quantify our statistical uncertainty about the relationship among β(τ) for different τ . For
example, we could construct a uniform confidence band that includes the true func-
tion β(·) with 1− α probability (asymptotically), or test a hypothesis involving multiple
τ .

5.6 Inference

One option for inference (confidence intervals, hypothesis testing) is to use the Gaussian
limit distribution. However, the asymptotic covariance matrix is difficult to estimate
accurately due to the conditional PDF term.

There are many other approaches to QR inference in the literature, although many of
them historically have assumed homoskedasticity, which economists usually avoid.

Angrist, Chernozhukov, and Fernández-Val (2006) suggest subsampling for inference
on the function β(·); see their Section 3 (and see my Section 13.4 for a basic introduction).

For pointwise (single τ at a time) inference, Bayesian bootstrap is one possibility; see
Chapter 14 and Section 13.1 and Hahn (1997), for example.

Chernozhukov, Hansen, and Jansson (2009) offer a clever approach that’s exact even
in finite samples. However, it relies on having a properly specified conditional quantile
function. The general idea is: if qτ (x) = Qτ (Y | X = x), then P(Y ≤ qτ (X)) = τ , so
(with iid sampling) 1{Y ≤ qτ (X)} are iid Bernoulli(τ).

5.7 Censoring

The ideas in Section 4.5 extend to QR. In Stata, try the cqiv command available in SSC.
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Chapter 6

Quantile Regression: Causality

Unit learning objectives for this chapter

6.1. Interpret the structural and treatment effect parameters that can be estimated with
quantile methods [TLO 1]

6.2. Develop intuition for random coefficients models and potential outcomes [TLO 1]

6.3. Judge whether conditional or unconditional quantile regression better answers a
particular economic question [TLO 3]

There are two primary frameworks for learning about causality with quantiles. First,
the quantile treatment effect extends the average treatment effect, within the potential
outcomes framework. Second, QR can estimate a structural random coefficients model
under certain assumptions. Both approaches can allow endogeneity as in Chapter 7.

Optional resources for this chapter

• Handbook of Quantile Regression

• R and Stata code on Blaise Melly’s website

6.1 Background: Potential Outcomes and ATE

The following is a very brief review; see Section 4.4 of Kaplan (2022b) for details.
Sometimes, there is a binary “treatment” that only affects the treated individual (or

firm, or county, or whatever unit) and nobody else. This makes sense for something like
a medical intervention (e.g., knee surgery), but it is often unrealistic in economics since it
excludes peer effects, general equilibrium effects, spillovers, etc. Nonetheless, economists
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study many areas, and sometimes it’s plausible. This assumption (that one individual’s
treatment does not affect anyone else) is sometimes called “no interference” and is part of
the stable unit treatment value assumption (SUTVA).

Let Y1 denote an individual’s treated potential outcome and Y0 her untreated po-
tential outcome. These refer to the individual’s outcome in two parallel universes: one in
which the individual is treated, and another in which the individual is not treated, but
where everything else is identical between the two parallel universes.

Different population objects can be formed from these potential outcomes (Y1, Y0).
The treatment effect for an individual is Y1−Y0. (Or, the treatment effect for individual
i is Y1i − Y0i.) The average treatment effect (ATE) takes the population mean of the
individual treatment effect: ATE = E(Y1−Y0). By linearity of expectation, E(Y1−Y0) =
E(Y1)− E(Y0), the treatment effect on the mean. That is, E(Y1) is the mean outcome in
the parallel universe where everyone is treated, E(Y0) is the mean outcome in the parallel
universe where nobody is treated, and E(Y1)−E(Y0) shows how the mean outcome changes
(the effect on the mean) when we move from the all-untreated universe to the all-treated
universe. Even though the interpretation differs, this is often just called the ATE since
it is mathematically equivalent.

The difficulty is: for any individual, usually we only observe one potential outcome or
the other, not both; we cannot travel to the parallel universe. Thus, we cannot observe
Y1 − Y0 for any individual. Thus, we cannot estimate E(Y1 − Y0) by Ê(Y1 − Y0).

However, we can get more traction on the equivalent formulation E(Y1)− E(Y0). We
can take the sample average outcome of treated individuals, and subtract the sample
average outcome of untreated individuals. But, more assumptions are required for this
to work well.

Assumptions are required for the ATE to be identified. There are multiple ways to
think about identification in this case. Let X = 1 if the individual is treated and X = 0
otherwise. The observed outcome is Y = Y0+X(Y1−Y0). This could be seen as a simple
regression model with random intercept Y0 and random slope Y1 − Y0. If the random
coefficients (Y0, Y1 − Y0) are independent of the regressor X, then OLS can estimate
E(Y0) and E(Y1 − Y0); e.g., see Theorem 2.11 in Hansen (2020a, §2.29).

Alternatively, if Y0, Y1 ⊥⊥ X, then

E(Y | X = 1)− E(Y | X = 0) = E(Y1 | X = 1)− E(Y0 | X = 0) = E(Y1)− E(Y0), (6.1)

where the first equality uses Y = Y0 +X(Y1 − Y0) (which implies Y = Y1 if X = 1, and
Y = Y0 if X = 0), and the second equality uses independence (so conditioning on X does
not change the mean of Y1 or Y0; X “has no information” about Y0 or Y1). The ATE
is “identified” because it is equal to an expression that depends only on the population
joint distribution of the observable (Y,X). That is, given the independence assumption
Y0, Y1 ⊥⊥ X, the distribution of (Y,X) uniquely determines the ATE because the ATE
equals the difference of observable conditional means, as seen in (6.1).

Thus, given independence, the ATE can be estimated by Ê(Y | X = 1)−Ê(Y | X = 0),
the difference of the subsample averages.
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Table 6.1: Potential outcomes example for DQ 6.1.

Y0 Y1 Y1 − Y0 Probability

0 1 1 0.25
1 2 1 0.25
2 4 2 0.25
3 0 -3 0.25

6.2 Quantile Treatment Effects

Discussion Question 6.1 (ATE, QTE). Table 6.1 describes a population with four types
of individuals, each with probability 0.25. Each “type” has a different (Y0, Y1) potential
outcome pair.

a) Compute E(Y0).
b) Compute E(Y1).
c) Compute E(Y1)− E(Y0).
d) Compute E(Y1 − Y0).
e) Compute Q0.4(Y1)−Q0.4(Y0).
f) Compute Q0.4(Y1 − Y0).

Hint: here, Q0.4 is simply the second-smallest value, per (4.1).

As DQ 6.1 illustrates, Qτ (Y1−Y0) ̸= Qτ (Y1)−Qτ (Y0). Unlike the expectation opera-
tor, the quantile operator is nonlinear. Thus, the τ -quantile of the population distribution
of individual treatment effects Y1 − Y0 differs from the treatment effect on the τ -quantile
of the outcome distribution.

For the same reasons as in Section 6.1, it is difficult to learn about Qτ (Y1−Y0) because
we never observe Y1 − Y0. In fact, even if we know the population marginal distributions
of Y1 and Y0, we can only learn bounds for Qτ (Y1 − Y0); see Fan and Park (2010, 2012).

This is one of two reasons to focus on Qτ (Y1)−Qτ (Y0), called the quantile treatment
effect (QTE), or more specifically the τ -QTE. The other reason is that QTEs describe
how the treatment affects quantiles of the population outcome distribution. If we have a
social welfare function whose input is the population distribution of Y , and we wish to
learn the effect of a treatment on social welfare, then it is more relevant to look at QTEs
than quantiles of treatment effects.

QTE identification parallels (6.1) given Y0, Y1 ⊥⊥ X:

Qτ (Y | X = 1)−Qτ (Y | X = 0) = Qτ (Y1 | X = 1)−Qτ (Y0 | X = 0)

= Qτ (Y1)−Qτ (Y0) ≡ τ -QTE. (6.2)

Thus, the τ -QTE can be estimated by Q̂τ (Y | X = 1)− Q̂τ (Y | X = 0), the difference of
treated and untreated sample τ -quantiles.
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More generally, independence identifies the full marginal distributions of Y1 and Y0,
so any summary of these distributions is also identified. Beyond the mean and quantiles,
this includes how treatment affects the standard deviation, interquantile ranges, upper
tail, lower tail, etc.

Discussion Question 6.2 (effect heterogeneity). For the following, try to define a rel-
evant object of interest in terms of Y1, Y0, X (treatment dummy), and possibly other
variables. That is: ideally, what do we want to learn? Also: is this related to QTEs at
all, and if so, how? Hint: who is actually affected by the policy change?

a) The Missouri state legislature is considering increasing funding to increase the num-
ber of college scholarships (to increase college degree attainment); they want to know
the effect of such a policy change on individuals’ annual earnings.

b) The Missouri state legislature is considering lowering the income threshold for Med-
icaid (health insurance for low-income individuals and families) so fewer people are
eligible; they want to know the effect on total annual emergency room visits in
Missouri.

c) Expanding public pre-school: they want to know the effect on 5th-grade math scores.

As DQ 6.2 suggests, there are different types of heterogeneity in treatment effects.
QTEs capture more heterogeneity than the ATE, but there is also (for example) het-
erogeneity along the dimension of propensity to be treated; e.g., see the (conditional,
average) marginal treatment effect (MTE) of Heckman and Vytlacil (2001, 2007).

6.3 Background: Random Coefficients

Previously, you’ve seen the structural model Y = X ′β+V , in which the uppercase letters
denote random variables, whereas the coefficient vector β is non-random. The model is
also written with subscripts as Yi = X ′

iβ+Vi, where the random variables have individual
i subscripts but the coefficient vector β does not. “Random” essentially means that each
individual i has their own (Yi,Xi, Vi) drawn from the population distribution of random
vector (Y,X, V ). In contrast, β is a constant, the same for all individuals.

Alternatively, different individuals may have their own different coefficients. For ex-
ample, some individuals may have a higher “return to education” than others, or firms
may have different parameters in their production functions. Such individual-specific co-
efficients are usually called random coefficients. To model this, the constant β can be
replaced with random vector B.

The resulting structural model is Y = X ′B. An additive error V would be re-
dundant if X includes an intercept; e.g., if Y = B̃0 + B1X + V , then equivalently
Y = (B0, B1)(1, X)′ with B0 ≡ B̃0 + V . The population is now the joint distribution of
(Y,X,B).

Exogeneity here means B is unrelated to X, like B ⊥⊥ X (independence) or E(B |
X) = E(B) (mean independence). The idea is the same as usual: regressors (X) are
unrelated to unobserved determinants of Y (here B; previously V ).
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Given exogeneity, E(B) is identified by the CEF slope:

E(Y | X = x) = E(

Y︷ ︸︸ ︷
X ′B | X = x) = x′

use mean ⊥⊥︷ ︸︸ ︷
E(B | X = x) = x′ E(B). (6.3)

That is, the CEF is E(Y | X = x) = x′β with β = E(B). Thus, if we regress Y on
X, OLS consistently estimates β, which we can interpret as the mean of the structural
random coefficient vector B. The estimator (OLS) is the same as usual; the interpretation
is new.

Discussion Question 6.3 (random coefficient exogeneity: wage). Previously, you’ve
(probably) thought about why there is endogeneity in the structural model Y = β0 +
β1X + U , where Y is log wage, X is years of education, β0 and β1 are fixed constant
parameters, and U is other determinants of Y . Now, consider the same Y and X, but in
the structural random coefficients model Y = B0 +B1X.

a) What does it mean that B0 is “random”? Explain why you find this realistic or not.
b) What does it mean that B1 is “random”? Explain why you find this realistic or not.
c) Explain why B0 and X might be correlated (and in which direction).
d) Explain why B1 and X might be correlated (and in which direction).

So, can we learn anything else about B besides its mean? Section 6.4 considers how
to link the structural random coefficients model to the CQFs instead of the CEF.

6.4 A Random Coefficients Model for QR

To link the structural random coefficients model to conditional quantiles, additional re-
strictions are imposed beyond Section 6.3.

6.4.1 The Model

To be concrete, imagine Y is log wage and X = 1 for “high education” and X = 0 for “low
education.” A general structural random coefficients model is Y = B0 +B1X, where B0

is the individual’s log wage when X = 0 and B1 is the change in the individual’s log wage
cause by the change from low to high education. That is, B1 is the individual’s return
to schooling. The coefficients are “random” in that each individual is allowed to have a
different log wage given low education (B0) as well as a different return to schooling (B1).

Now, assume the heterogeneity in both the intercept and slope can be represented
by a scalar random variable U . That is, instead of (Y,X,B0, B1), each individual has
their own (Y,X,U), and then U determines both the intercept and slope. To be concrete,
imagine U represents “ability.” Specifically, there are (non-random) functions β0(·) and
β1(·) such that the random intercept is B0 = β0(U) and the random slope is B1 = β1(U).
Thus, the structural random coefficients model is

Y = β0(U) + β1(U)X. (6.4)
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Model (6.4) is more restrictive than the general random coefficients model Y = B0 +
B1X, but less restrictive than Y = β0 + β1X + U . . . sort of. Just as (6.4) is a special
case of Y = B0 + B1X, Y = β0 + β1X + U is a special case of (6.4): set β1(U) = β1
and β0(U) = β0 + U . That said, if Y = β0 + β1X + U is a CEF model, then (given
independence) the constant slope β1 can be interpreted as E(B1) in the more general
structural model Y = B0 +B1X.

The U is normalized to U ∼ Unif(0, 1), without loss of generality. For example, if
B0 ∼ N(0, 1), then let β0(·) = Φ−1(·), the inverse CDF of N(0, 1), so β0(U) = Φ−1(U) ∼
N(0, 1).

To develop intuition, you could “slice” (6.4) two ways: fix X = x, or fix U = u. Fixing
X = x, we see the relationship between Y and U for a particular education subpopulation:
Y = β0(U) for the low-education subpopulation (X = 0), Y = β0(U) + β1(U) for the
high-education subpopulation (X = 1). So you can think of the functions β0(·) and
β1(·) as describing the wage–ability relationship. Alternatively, fixing U = u, we see the
relationship between Y and X for a particular ability level: Y = β0(u) + β1(u)X. For
example, for individuals with median ability U = 0.5, Y = β0(0.5) + β1(0.5)X, where
β0(0.5) and β1(0.5) are constants (not random). For individuals with upper quartile
ability U = 0.75, Y = β0(0.75) + β1(0.75)X. So you can also think of the functions β0(·)
and β1(·) as describing the wage–education relationship at different ability levels.

Discussion Question 6.4 (structural random coefficients wage model). Consider (6.4),
where Y is log wage and X = 1 if high education (X = 0 if low); you can think of U as
“ability.” Let u2 > u1. Based on economic theory or your intuition, what do you think is
the relationship between the objects in each of the following pairs? Explain.

a) Between β0(u2) and β0(u1)?
b) Between β1(u2) and β1(u1)?
c) Between β0(u2) + β1(u2) and β0(u1) + β1(u1)?

6.4.2 Monotonicity and Identification

Although there is no quantile analog of E(X ′B | X) = X ′ E(B | X), certain features of
the structural model can be identified (linked to conditional quantiles) under exogeneity
and another assumption called monotonicity. A crude interpretation of A6.1 in the log
wage model would be: given either level of education (X = 0 or X = 1), log wage (Y ) is
strictly increasing in “ability” (U).

Assumption A6.1 (structural QR monotonicity). In the structural random coefficients
model Y = X ′β(U), Y is strictly increasing in U given any X = x. That is, given any
x in the support of X, the function x′β(u) is strictly increasing in u over 0 ≤ u ≤ 1.

To get started on DQ 6.5, consider the following proof that Q0.5(Y | X = 0) = β0(0.5)
given (6.4) and A6.1 and independence (U ⊥⊥ X). By (6.4), if X = 0, then Y = β0(U).
By independence, the median of β0(U) is independent of X. By monotonicity, the median
of β0(U) is β0(·) evaluated at the median of U , which is 0.5 by the normalization U ∼
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Unif(0, 1). (Quantile equivariance refers to the property that Qτ (f(W )) = f(Qτ (W ))
if f(·) is strictly increasing; this has been used to simplify estimation of quantile Euler
equations in de Castro, Galvao, Kaplan, and Liu (2019, §6.3), for example.) Altogether,
with the first two equalities analogous to (6.3),

Q0.5(Y | X = 0) = Q0.5(β0(U) | X = 0) = Q0.5(β0(U)) = β0(Q0.5(U)) = β0(0.5). (6.5)

Discussion Question 6.5 (random coefficients model conditional quantiles). Consider
(6.4) with X ⊥⊥ U , Assumption A6.1, and the normalization U ∼ Unif(0, 1). Similar to
(6.5), express the following statistical objects (i.e., features of the joint distribution of
observables (Y,X)) in terms of the functions β0(·) and β1(·) (i.e., the structural parame-
ters).

a) The median log wage in the high-education subpopulation, Q0.5(Y | X = 1).
b) The difference between the two prior objects, Q0.5(Y | X = 1)−Q0.5(Y | X = 0).
c) Other quantiles of log wage in the low-education subpopulation: Q0.25(Y | X = 0)

and Q0.75(Y | X = 0).
Finally:

d) What is the return to education for an individual with median ability? (Recall the
ability distribution is U ∼ Unif(0, 1); what’s the median?)

Discussion Question 6.6 (QR monotonicity 1). For each of the following, construct
an example β0(·) and β1(·) that satisfy the stated requirements while still satisfying
monotonicity (A6.1). Or, if you think it is impossible, explain why. Hint: drawing may
help.

a) Education increases the log wage of every individual, but the increase is larger when
“ability” (U) is higher.

b) “Ability” (U) affects log wage when X = 0, but everyone has very similar wage for
X = 1.

c) Some individuals have a lower log wage with high education than with low education
(i.e., education lowers their wage).

Discussion Question 6.7 (QR monotonicity 2). Continue DQ 6.6.
a) Of the different possible conditions, which do you think is the most realistic, and

why?
b) How/would X ⊥⊥ U affect any of your answers?

6.4.3 Heteroskedasticity

Discussion Question 6.8 (random coefficients model: heteroskedasticity). Consider
the random coefficients model Y = β0(U) + β1(U)X. Construct an example with het-
eroskedasticity that still satisfies U ⊥⊥ X (and A6.1). Hint: for simplicity, let β0(u) = 0
for all u, and let X ∈ {0, 1}; compute Var(Y | X = 0) and pick β1(·) such that
Var(Y | X = 1) > Var(Y | X = 0).
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As DQ 6.8 shows, there can be heteroskedasticity even if U ⊥⊥ X. This is different
than with an additively separable error, like Y = X ′β + U : U ⊥⊥ X implies

Var(Y | X = x) = Var(X ′β + U | X = x) =

by U⊥⊥X︷ ︸︸ ︷
Var(U | X = x) = Var(U), (6.6)

homoskedasticity. The model Y = X ′β(U) is nonseparable, so heteroskedasticity can
arise through β(·) even if U ⊥⊥ X.

6.5 Unconditional Quantile Regression

Consider the following way to evaluate “how good” is a population’s distribution of some
outcome Y . For example, Y is income, or a composite measure of well-being. Let w(·)
be a social welfare function, like a utility function but for the whole society (population),
not just an individual. If Y is a random variable representing the income or well-being
of an individual from the population of interest, then w(Y ) provides a scalar summary of
“how good” is the distribution of Y . This is similar to computing your expected utility
for a lottery, to summarize “how good” that lottery is.

My point is simply to motivate the policy interest in the overall (unconditional) pop-
ulation distribution of Y . In certain conditions, QTEs can help us learn about how a
certain policy affects the distribution of Y ; see Section 6.2. In other cases, the potential
policy change is not binary, and we may need to condition on other variables for it to be
exogenous.

The goal of unconditional quantile regression (UQR) is to see the “effect” of
changes in X to the unconditional distribution (quantiles) of Y . This goal aligns with
the social welfare approach to policy analysis. The output is often more directly relevant
for policy than the coefficients of a structural model like β(u) for various 0 < u < 1.
The “change” is a change in the marginal distribution of X. The “effect” assumes the
conditional distributions of Y given any X = x are invariant to (unaffected by) the policy.

For different approaches to UQR estimation, see Firpo, Fortin, and Lemieux (2009)
and Chernozhukov, Fernández-Val, and Melly (2013). The former is simpler but only
applies to infinitesimal policy changes. See also Sasaki, Ura, and Zhang (2020) for UQR
with high-dimensional data (many regressors). For more discussion of when UQR can be
used to estimate policy effects in practice, see the paragraph after Proposition 1 of Rothe
(2010).
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Exercises

Exercise E6.1. a. Find a paper that runs a randomized experiment (and makes its
data publicly available) but does not look at quantile effects; provide a link to the
paper. The paper must be either published in a respectable economics journal1 or
be unpublished but have an author who has previously published in such a journal
(like any Mizzou econ professor); or if you really want, you can use an example from
an econometrics textbook.

b. Replicate (at least, reasonably close) one particular average treatment effect es-
timate from the paper, or intention-to-treat estimate if treatment assignment is
randomized but not treatment itself (i.e., estimate the average effect of treatment
assignment, rather than the average effect of the treatment itself). If code is pro-
vided with the paper, feel free to use it (just say so).

c. For τ = 0.1, 0.2, . . . , 0.9 (or more, if you want), estimate the τ -QTE (or τ -quantile
ITT effect).

d. Describe the pattern of the effect estimates over τ (e.g., roughly constant, increasing,
decreasing, etc.), and compare the values with the average effect estimate.

e. “Economically”: interpret the pattern/comparison you just described, and explain
a reason why that pattern may exist (like “The pattern of the effect increasing with
τ could be explained by. . . ”).

Exercise E6.2. a. Find a paper that uses conditional independence (a.k.a. uncon-
foundedness or selection-on-observables) for its identification strategy and then
runs OLS. The paper must be either published in a respectable economics jour-
nal2 or be unpublished but have an author who has previously published in
such a journal (like any Mizzou econ professor); or if nobody else takes it then
https://doi.org/10.1177/2332858417690511 is ok, too; or if you really want,
you can use an example from an econometrics textbook.

b. Replicate (at least, reasonably close) one particular estimate of interest (the coeffi-
cient on a particular regressor). If code is provided with the paper, feel free to use
it (just say so).

c. For τ = 0.1, 0.2, . . . , 0.9, run unconditional quantile regression, and report the co-
efficient estimates for the regressor of interest. (Stata: I think if you install the
command rifreg or xtrifreg or maybe rifhdreg it can work, but maybe there
are better options?)

d. For the regressor of interest, describe the pattern of the UQR coefficient estimates
over τ (e.g., roughly constant, increasing, decreasing, etc.), and compare the values
with the OLS coefficient estimate.

1For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html
2For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html

https://doi.org/10.1177/2332858417690511
https://sites.google.com/view/nicole-m-fortin/data-and-programs
https://ideas.repec.org/top/top.journals.all.html
https://ideas.repec.org/top/top.journals.all.html
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e. “Economically”: interpret the pattern/comparison you just described, and explain
a reason why that pattern may exist (like “The pattern of the effect increasing with
τ could be explained by. . . ”).

f. For the same τ , run the usual quantile regression (Stata: qreg), and report the
coefficient estimates for the regressor of interest.

g. Interpret the QR coefficients, explaining explicitly how the interpretation differs
from the UQR coefficients.



Chapter 7

Quantile Regression: Endogeneity

Unit learning objectives for this chapter

7.1. Develop intuition for different approaches to endogeneity in quantile models [TLO 2]

7.2. Compare quantile and mean structural models with endogeneity [TLO 3]

This chapter discusses identification and estimation of the models in Chapter 6 under
endogeneity.

Optional resources for this chapter

• Handbook of Quantile Regression, especially Chernozhukov, Hansen, and
Wüthrich (2017) and Melly and Wüthrich (2017)

• R and Stata code for IVQR: https://kaplandm.github.io

• R and Stata code on Blaise Melly’s website

• Stata: cqiv can be installed from SSC for control function estimation (with or
without censoring)

7.1 Instrumental Variables Quantile Regression

Chernozhukov and Hansen (2005) establish identification results for the instrumental
variables quantile regression (IVQR) model. (Previous attempts did not really suc-
ceed in extending IV/2SLS to QR.)
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7.1.1 Reminder: Usual IV Regression

In the standard IV/2SLS identification argument, the instruments must satisfy two con-
ditions: exogeneity and relevance. Exogeneity ensures that the true structural parameter
vector value satisfies certain moment conditions. Relevance ensures that no other value
satisfies the moment conditions.

For example, consider structural model Y = X ′β+U with endogeneity so E(XU) ̸= 0
but the full instrument vector Z satisfies E(ZU) = 0 (exogeneity), where Z includes both
exogenous regressors and excluded instruments (that do not appear in the structural
model). Substituting U = Y − X ′β from the structural model, the moment condition
becomes E[Z(Y − X ′b)] = 0, which is satisfied by b = β. Given exact identification,
β = [E(ZX ′)]−1 E(ZY ) is the unique solution if E(ZX ′) is invertible (relevance).

Given the moment conditions and identification, GMM consistently estimates the
structural parameters. (GMM with weighting matrix Ê(ZZ ′) is 2SLS.)

7.1.2 IVQR Identification

Chernozhukov and Hansen (2005) show how the structural parameters in the random
coefficients model in Section 6.4 satisfy certain moment conditions given exogenous in-
struments. The relevance condition is qualitatively similar to the usual IV relevance, but
more technically complicated; see Chernozhukov and Hansen (2005) for details. Cher-
nozhukov and Hansen (2005) allow a more general functional form (and discuss a more
complicated potential outcomes model), but the core intuition is the same as below.

As in Section 6.4, consider structural model

Y = X ′β(U), U ∼ Unif(0, 1). (7.1)

Let Z be the full vector of instruments, including both exogenous regressors and excluded
instruments. Here, “exogeneity” means Z ⊥⊥ U . (Recall from Section 6.4.3 that this still
allows heteroskedasticity.) Monotonicity (A6.1) is again assumed.

The following derivation is similar to (6.5) and DQ 6.5. Independence and mono-
tonicity are both crucial. Independence implies that probabilities involving (only) U are
unaffected by conditioning on Z. Monotonicity implies that, given X = x, the rela-
tive value of Y depends on U . The conclusion is that the structural parameter β(τ) for
some 0 < τ < 1 solves a particular conditional probability that involves only observable
variables.

Formalizing the above verbal arguments,

P(Y ≤ X ′β(τ) | Z) = P(X ′β(U) ≤ X ′β(τ) | Z) by (7.1) (7.2)
= P(U ≤ τ | Z) by A6.1 (7.3)
= P(U ≤ τ) by U ⊥⊥ Z (7.4)
= τ by (7.1), U ∼ Unif(0, 1). (7.5)
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That is, the structural β(τ) satisfies a particular conditional quantile restriction. However,
unlike with 2SLS, it does not correspond to a second-stage regular QR where the regressors
are fitted values from a first-stage regression.

The conditional quantile restriction can be written as a conditional moment restric-
tion, which then implies unconditional moments conditions. Recall P(A) = E[1{A}].
Thus, P(Y ≤ X ′β(τ) | Z) = τ becomes E[1{Y ≤ X ′β(τ)} | Z] = τ and then

E[1
{
Y ≤ X ′β(τ)

}
− τ | Z] = 0. (7.6)

Unconditional moments can be generated by multiplying the main part by any function
of Z. Although not theoretically optimal, a common choice is Z itself. This is similar to
using unconditional moments E(ZU) = 0 given conditional moment E(U | Z) = 0. Here,

0 = E[Z(1
{
Y ≤ X ′β(τ)

}
− τ)]. (7.7)

Discussion Question 7.1 (IVQR model). Consider the setting of Card (1995). Let Y
be log wage. Let X include an intercept, years of education, years of experience (and its
square), and various other demographic and geographic characteristics. Let Z = 1 if the
individual grew up near a 4-year college and Z = 0 if not. Let U be a scalar unobservable
variable normalized to U ∼ Unif(0, 1). Consider the model Y = X ′β(U).

a) First assume (unrealistically) X ⊥⊥ U , and show how there can still be heteroskedas-
ticity. Start with the simpler model Y = β0 +Xβ1(U) with X > 0 (years of educa-
tion); show how you can have Var(Y | X = x) increasing in x even though X ⊥⊥ U
(and still maintaining monotonicity).

b) Explain what the “monotonicity” assumption says in this case, including how you
might interpret U economically.

c) Explain one reason you may doubt monotonicity.
d) Doubts aside, interpret the coefficient on years of education for τ = 0.5 and τ = 0.75,

and explain whether you think the coefficient is higher, lower, or the same with
τ = 0.75.

7.1.3 IVQR Estimation

Since we have moment conditions from (7.7), GMM estimation seems natural, but there
are computational challenges. The parameter is “stuck” inside the indicator function 1{·}.
Consequently, searching numerically over possible parameter values, slight changes result
in either no change, or a discontinuous jump. Further, the GMM criterion function turns
out to be non-convex.

Because of this, there have been many different approaches to estimation. Of course,
I highly recommend the smoothed approach of Kaplan and Sun (2017), de Castro et al.
(2019), and Kaplan (2022c), which seems fast, reliable, scalable, and has code on my
website (both R and Stata). The basic idea is to replace the discontinuous indicator
function 1{·} with a smoothed version, which smooths the moment conditions enough
that standard numerical solvers can be used. Changing the moments introduces bias, but
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it also decreases variance, so smoothing also decreases mean squared error as a secondary
benefit. Stata command ivqreg2 (on SSC) based on Machado and Santos Silva (2019)
also seems to work well in practice, and there are yet other methods I have not yet tried.

7.1.4 IVQR Inference

There are different approaches to IVQR inference, including some that are robust to weak
identification or even lack of identification. With strong identification, something like a
Bayesian bootstrap (Chapter 14 and Section 13.1) should work fine. The exact finite-
sample approach of Chernozhukov, Hansen, and Jansson (2009) (noted in Section 5.6)
applies here, too, and it is robust to weak or partial identification (lack of point identifi-
cation). Other approaches that apply to IVQR with weak/partial identification include
Chernozhukov and Hansen (2008), Jun (2008), and Andrews and Mikusheva (2016). See
also Chernozhukov, Hansen, and Wüthrich (2017, §9.3.3–9.3.4) for a brief overview of all
of these.

7.2 Other Approaches to Endogeneity

7.2.1 Triangular Model

The following is a brief summary of the summary in Chernozhukov, Hansen, and Wüthrich
(2017, §9.2.5), which contains other references.

The triangular model’s structural equation of interest is Y = g(D, ϵ), where scalar
continuous D is endogenous and modeled by D = h(Z, η), in which one of the instru-
ments in Z must also be continuous. (Other exogenous regressors can be added, too.)
Identification follows from monotonicity of h(z, η) in η as well as the exogeneity condition
Z ⊥⊥ (ϵ, η).

Generally, the triangular model restricts the selection equation (for D) more than
IVQR, but restricts the structural (outcome) equation less than IVQR. For example, ϵ
can be a vector here, whereas IVQR had scalar U . Conversely, IVQR does not restrict
the (implicit) selection equation; e.g., it can handle simultaneous equations like supply
and demand, which the triangular model here cannot. The triangular model also requires
the instruments to be independent of the unobservables in both the structural equation
and the selection equation, instead of only the structural equation (as in IVQR).

The triangular model also requires the endogenous regressor to be continuous, and
seemingly there can only be one endogenous regressor(?). With IVQR, any type or number
of endogenous variables is allowed, as long as there are enough instruments.

7.2.2 Local Quantile Treatment Effect

Melly and Wüthrich (2017) provide an excellent survey of the local quantile treatment
effect (LQTE) model. The idea is similar to the local average treatment effect (LATE) of
Imbens and Angrist (1994): “local” refers to “compliers,” and identification follows from
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SUTVA, instrument independence, instrument relevance, no defiers, and an exclusion
restriction; see Assumption 3 in Melly and Wüthrich (2017). As with LATE, “complier”
is defined by the relationship between the binary instrument Z and the binary treatment
status X. Considering both possible universes (Z = 0 or Z = 1), compliers receive
treatment (X = 1) in the universe with Z = 1, but they do not (X = 0) in the universe
with Z = 1. The LQTE is then the QTE (see Section 6.2) for the subpopulation of
compliers.

Melly and Wüthrich (2017) also compare LQTE and IVQR. Like the triangular model,
the LQTE model restricts the selection equation more than the outcome equation (com-
pared to IVQR). Also, under LQTE assumptions, even if some IVQR assumptions fail,
the IVQR estimand is the LQTE at shifted τ values.

With similar motivation as unconditional quantile regression (Section 6.5), Melly and
Wüthrich (2017, §10.2.3) also discuss unconditional LQTE when covariates are required
to satisfy (conditional) independence.

Discussion Question 7.2 (LQTE). Consider a randomized experiment with imperfect
compliance, like the Job Training Partnership Act (JTPA): the offer of training is made
randomly, but some individuals do not take the offer. Let Zi = 1 if the offer is made
to individual i, and Zi = 0 otherwise, with Zi randomized. Treatment Xi = 1 if the
individual actually does the job training, and Xi = 0 if not. Assume you cannot take
the training without the offer, so Zi = 0 implies Xi = 0 (thus there are no “defiers” or
“always-takers”). However, you can decline the training if offered, so individuals with
Zi = 1 can choose either Xi = 1 (compliers) or Xi = 0 (never-takers). The outcome Yi is
labor earnings (in dollars) over the two years following the training period.

a) First consider intention-to-treat (ITT) quantile effects, i.e., the causal effect of offer-
ing the training (regardless of whether or not it’s taken). Ignore general equilibrium
effects, so that (given randomization) the τ -ITTQE equals Qτ (Y | Z = 1)−Qτ (Y |
Z = 0), the difference in τ -quantile between the “offered” and “not-offered” subpop-
ulations. Explain one scenario in which the true τ -ITTQE increases with τ , and
another in which it decreases with τ . For each scenario, explain your assumptions
about the population studied, the type of training, and anything else important.

b) Assume individuals choose Xi rationally, based on their anticipated benefit. For a
given τ , do you expect the overall QTE is less than, greater than, or equal to the
LQTE (i.e., the QTE for compliers)? Explain any assumptions you make, including
any assumptions about τ .

7.3 Panel Data with Fixed Effects

The first QR model with panel data and fixed effects (FE) seems to be from Koenker
(2004). Much of the following literature proceeded in a similar vein, modeling the FE by
including as regressors a dummy variable for each “individual” in the data. Although this
is equivalent to the usual (mean) FE regression, which can be simplified computationally
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by demeaning (partialling out the individual dummies), it cannot be simplified due to
the nonlinearity of the quantile operator; e.g., Qτ (Y2 − Y1) ̸= Qτ (Y2) − Qτ (Y1). This
leaves n parameters to estimate (for the n dummies), which requires large T and some
penalization or such to deal with. However, most attention was given to the computational
and statistical issues rather than the structural interpretation.

Recall the random coefficients model of Section 6.4: Y = X ′β(U). With panel data,
each individual has not just Y but Y1, . . . , YT , where T is the number of time periods. In
the usual FE model, the unobserved component is split into a time-invariant term Ui and
an idiosyncratic term Vit. It seems most natural (though “natural” is not always correct)
to replace U in the cross-sectional model with Ui + Vit, yielding

Yt = X ′
tβ(U + Vt). (7.8)

In contrast, the original panel QR models had only Vt as the rank variable, and added
individual heterogeneity through a dummy regressor: adding the i subscript explicitly,

Yit = X ′
itβ(Vit) + η′

iγ(Vit), (7.9)

as in (2.4) of Arellano and Bonhomme (2016), where γ(·) is a function like β(·) and ηi

is a vector of time-invariant, possibly-unobserved variables. Another option is the very
general nonseparable model Yt = q(Xt, U, Vt). There are yet more options, like

Yt = X ′
tβ(Vt) + U, (7.10)

Yt = X ′
tβ(U) + Vt, (7.11)

etc. Most (not all) of these have the standard FE model Yt = X ′
tβ + U + Vt as a special

case.
For more comparison of possible structural models, as well as an approach to esti-

mating a certain class of them, see Arellano and Bonhomme (2016), especially Sections
2.1–2.2. See also the new estimators for alternative structural models with nonseparable
FE from Liu (2020) and Powell (2020), implemented in Stata command qregpd (in SSC).

Discussion Question 7.3 (panel FE QR: airfare). Let Yit be the (average) airfare (plane
ticket price) for route i at time t, where i is defined by the departure airport and arrival
airport. Let Xit measure the (lack of) competition on route i at time t: Xit = 1 if it
is a monopoly (only one airline flies route i), and values closer to zero indicate more
competition.

a) Among (7.8)–(7.11), which do you think is most appropriate here? Why?
b) Is there anything you think is missing from even your preferred model?
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Exercises

Exercise E7.1. a. Find a published paper that runs a cross-sectional IV regression
(and makes its data publicly available); provide a link to the paper.1 The paper
must be either published in a respectable economics journal2 or be unpublished but
have an author who has previously published in such a journal (like any Mizzou
econ professor); or if you really want, you can use an example from an econometrics
textbook. (I think the wooldridge package in R may have some possible datasets.)
Even if it’s not purely cross-sectional, but it just runs standard 2SLS or IV (i.e., no
FE or anything), it should be fine, but you’re welcome to check with me first.

b. Replicate (at least, reasonably close) one particular IV estimate from the paper.
(Meaning, don’t do all 12 variations they try, just pick one specification.) If code
is provided with the paper, feel free to use it (just say so).

c. Using the same specification, run an IV quantile regression for a variety of quantile
levels τ (0.5, 0.25, etc.), using either the R code (file ivqr_see.R has the main ivqr
.see() function; gmmq.R contains helper functions) or Stata code (sivqr) available
on my website,3 or using the Stata ivqte command if you have a binary treatment
variable.4 Note: I think my Stata code is much easier to use than the R code.
Provide the code you write/run. Try both the plug-in bandwidth as well as a very
small bandwidth (for which you can just set the bandwidth argument to zero).
Note the warnings in the comments at the top of ivqr_see.R, or read the help file
in Stata. If you have computational problems (like it’s taking multiple hours or
something), you can take a random sample from the original data sample and/or
omit some control regressors (if it doesn’t affect the 2SLS estimate too much), but
please say so explicitly. (As always, you can also just ask me for advice, if you start
enough before the submission deadline.)

d. Discuss any similarities and differences across quantile levels (τ) and between the
“mean” and median. Are any of the differences economically significant and/or
interesting?

Note: functions in files gmmq.R and ivqr_gmm.R can estimate more general (nonlinear-
in-variables) models if you need it; but it’s probably easiest to find an example where you
don’t.

Exercise E7.2. Like Exercise E7.1, but find a published paper reporting (usual) FE
results and now use qregpd, which you can install in Stata by ssc install qregpd.
Note: you must also install moremata if you have not already, by running ssc install
moremata in Stata.

1E.g., if nobody’s claimed it yet, https://doi.org/10.1016/j.jhealeco.2016.08.002
2For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html
3https://kaplandm.github.io
4https://sites.google.com/site/blaisemelly/home/computer-programs/estimation-of-

quantile-treatment-effects-in-stata

https://doi.org/10.1016/j.jhealeco.2016.08.002
https://ideas.repec.org/top/top.journals.all.html
https://kaplandm.github.io
https://sites.google.com/site/blaisemelly/home/computer-programs/estimation-of-quantile-treatment-effects-in-stata
https://sites.google.com/site/blaisemelly/home/computer-programs/estimation-of-quantile-treatment-effects-in-stata
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Chapter 8

Distributional Inference:
One-Sample, Two-Sided

Unit learning objectives for this chapter

8.1. Develop intuition about the empirical CDF, goodness-of-fit testing, and test inver-
sion for functions [TLO 2]

8.2. Interpret the results of goodness-of-fit tests and uniform confidence bands [TLO 1]

The goal here is to learn about a single continuous population CDF from a single
iid sample (“one-sample”). “Inference” includes both hypothesis testing and a uniform
confidence band for the CDF (here “two-sided” in both cases). Most importantly, this
chapter introduces ideas useful in one-sided and/or two-sample extensions that are more
economically interesting.

8.1 Warning: Weights

In practice, many economic datasets are not iid (like any big survey) and contain survey
weights (or “sampling weights”). Essentially, certain groups (strata) are over-represented
in the sample (compared to the population of interest), while other groups are under-
represented, and the weights help adjust the sample to better represent the population.
For some econometric analysis, weights can be ignored, but not for learning about the
population distribution itself.

For example, imagine we observe height, but females have been over-sampled and
make up 90% of our sample, so the “sampling weight” for each female is 5/9. (Imagine
a sample of 100 people: the sum of weights for the 90 females is (90)(5/9) = 50.) If we
want to learn about the CEF of height conditional on sex, then there’s no problem; we’ll
have a much smaller standard error for female height, but everything will be valid; i.e.,
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we can safely ignore the weights. However, if we want to learn about the unconditional
distribution of height, we cannot ignore the weights: the mostly-female sample tends to
have lower values of height than the half-female population.

The focus on iid in this chapter is to help develop intuition, but in practice, iid-based
methods can be misleading for unconditional distributions.

8.2 Discrete and Categorical Distributions

The focus of this chapter (and subsequent chapters) is continuous CDFs, but this section
has some notes on discrete and categorical distributions.

Discrete and categorical distributions are characterized by their probability mass func-
tion (PMF). Writing the possible values/categories as v1, . . . , vJ , vector p = (p1, . . . , pJ)
with pj ≡ P(Y = vj) fully describes the Y distribution.

Thus, standard results for finite-dimensional parameters apply. Assuming J is not
too big compared to n, the estimators p̂j =

1
n

∑n
i=1 1{Yi = vj} work well and are jointly

asymptotically normal.

8.3 Preliminary Results for Continuous Distributions

Many approaches are based on the empirical CDF (ECDF), also known as the empirical
distribution function (EDF). Recall P(A) = E[1{A}], so the population CDF of Y is

F (y) ≡ P(Y ≤ y) = E[1{Y ≤ y}]. (8.1)

Given iid sampling, by the analogy principle, the ECDF is

F̂ (y) ≡ Ê[1{Y ≤ y}] = 1

n

n∑
i=1

1{Yi ≤ y}, y ∈ R. (8.2)

The ECDF is a nonparametric estimator of the population CDF F (·). The ECDF starts
at zero at y = −∞, and increases in steps of size 1/n at each of the n data points Yi. (If
instead you have a dataset with weights, then you can normalize the weights to sum to 1
and take steps of size wi, the weight for observation i.)

At least with iid data, the asymptotic properties of the ECDF are well understood
(Section 8.A), and even some finite-sample properties are known.

8.4 Goodness-of-Fit Testing

Consider the goodness-of-fit (GOF) null hypothesis

H0 : F (·) = F0(·), (8.3)
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where F (·) is the true unknown population CDF of Y , and F0(·) is a specified distribution.
The methods in this chapter may (mostly) be adapted to the one-sided version H0 : F (·) ≤
F0(·), or ≥, but intuition is easier with (8.3).

The name “goodness-of-fit” refers (roughly) to whether our guess F0(·) is a good fit for
the data sampled from F (·). This is not usually a concern of modern economics. (E.g.,
at least in serious economics, nobody is testing if regression errors are normal.) However,
it develops intuition that carries over to more complex settings.

The general approach to GOF testing is to define a measure of distance from F̂ (·) to
F0(·), and then approximate the distribution of that distance measure under H0.

Different distance measures underlie different tests. The Kolmogorov–Smirnov
(KS) approach (Section 8.5) uses

Dn ≡ sup
r∈R

|F̂ (r)− F0(r)|, (8.4)

the biggest vertical distance between the ECDF and F0(·). Alternatively, the Cramér–
von Mises (CvM or CM) approach integrates squared differences:

W 2
n ≡ n

∫
R
[F̂ (r)− F0(r)]

2 dF0(r). (8.5)

The Anderson–Darling (AD) test (Anderson and Darling, 1952, 1954) usually refers to
a normalized version of CvM,

A2
n ≡ n

∫
R

[F̂ (r)− F0(r)]
2

F0(r)[1− F0(r)]
dF0(r), (8.6)

but it can also mean a similarly normalized KS statistic.
Which approach is best? All can control size; other considerations are power and

extensibility. KS can generate uniform confidence bands and detect where the two CDFs
differ, but it can have poor power. Yet another approach based on the Dirichlet distribu-
tion retains the KS advantages while improving power; see Goldman and Kaplan (2018a)
and Kaplan (2019), with R and Stata code. However, the Dirichlet approach seems more
difficult than KS to extend to non-iid sampling.

8.5 Kolmogorov–Smirnov Test

To control size, the distribution of Dn in (8.4) must be approximated. An asymptotic
approximation and corresponding critical values were initially provided by Kolmogorov
(1933) and Smirnov (1948). Given F (·) = F0(·), the asymptotic distribution is

√
nDn

d→ K ≡ sup
t∈[0,1]

|B(t)|, (8.7)

where B(·) is a standard Brownian bridge (don’t worry about it). To control asymp-
totic size, the KS test rejects H0 when

√
nDn exceeds K1−α, the (1− α)-quantile of the

Kolmogorov distribution in (8.7).
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In fact, size can be controlled in finite samples. Finite-sample critical values are
available in ks.test() in R, for example. Continuity of F (·) implies F (Y ) ∼ Unif(0, 1).
Thus, H0 : F (·) = F0(·) is equivalent to H0 : F0(Y ) ∼ Unif(0, 1). That is, we can use the
transformed data Zi = F0(Yi) and test H0 : Zi

iid∼ Unif(0, 1). To simulate the distribution
of Dn: draw many random samples of Zi

iid∼ Unif(0, 1), computing Dn for each. The
critical value K1−α/

√
n is the (1− α)-quantile among these simulated Dn values.

Nonetheless, DQs 8.1 and 8.2 show a significant deficiency.

Discussion Question 8.1 (KS tail power 1). Let H0 : Yi
iid∼ Unif(0, 1). Let n = 20. Use

critical value K1−α/
√
n = 0.26, for α ≈ 10%, so the KS rejects H0 when Dn > 0.26,

where Dn is the distance between F̂ (·) and F0(·) defined in (8.4). Imagine a dataset with
Yi = i/20 for i = 1, . . . , k, and Yi = i+ 1000 for i > k.

a) Let k = 20 and graph F0(·), the Unif(0, 1) CDF, along with F̂ (·). Recall F0(r) = r
over r ∈ [0, 1], and F̂ (Yi) = i/20 in this example.

b) With k = 20, explain why Dn = 0.05.
c) With k = 19, explain why Dn = 0.05.
d) Mathematically (or visually), why is Dn the same for k = 20 and k = 19?
e) Intuitively, do you agree with KS that F̂ (·) with k = 19 is equally “far” from F0(·)

as F̂ (·) with k = 20?

Discussion Question 8.2 (KS tail power 2). Continue from DQ 8.1.
a) With k = 18, explain why Dn = 0.1.
b) With k < 18, explain why Dn = (20− k)/20.
c) How many “large” observations (Yi > 1000) are needed for the KS to reject? That

is, what’s the largest k for which Dn > 0.26 and the KS test rejects?
d) Only using your intuition, what’s the largest k for which you personally would reject

H0? Why?

In R, you can try replacing k=20 with other values in the expression
with(data=list(k=20),expr=ks.test(c(1:k/20,1000+(k+1):20),punif,exact=T))

8.6 Uniform Confidence Band

8.6.1 Test Inversion: Scalar

See Section 9.19 “Confidence Intervals by Test Inversion” of Hansen (2020a), for example.
You may have seen how for a scalar parameter θ, a hypothesis test can be “inverted”

into a confidence interval (CI). Specifically, for any value t ∈ R, define null hypothesis
Ht : θ = t. The CI from test inversion with confidence level 1− α is

ĈI1−α ≡ {t : Ht not rejected at level α}. (8.8)

The justification follows from the size control of the hypothesis test. The following can be
made asymptotic, but for simplicity I leave it finite-sample. Size control at level α means
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that Hθ is rejected with probability α (or less), where θ is the true value. For simplicity,
assume P(Hθ rejected at level α) = α exactly. Then,

P(θ ∈ ĈI1−α) = P(Hθ not rejected at level α) = 1−
=α︷ ︸︸ ︷

P(Hθ rejected) = 1− α. (8.9)

8.6.2 Test Inversion: Vectors and Functions

Nothing in the argument of (8.9) is special to the dimension of θ. The argument goes
through with vector θ. It also works if the parameter is a function (“infinite-dimensional”),
like the population CDF.

Consider the set F̂1−α of all CDFs that a level-α KS test does not reject. That is,

F̂1−α = {F0(·) : KS does not reject H0 : F (·) = F0(·) at level α}. (8.10)

Assume exact finite-sample critical values are used, so the probability KS rejects the true
F (·) is exactly α. Then,

P(F (·) ∈ F̂1−α) = P(true F (·) not rejected by KS at level α)

= 1−
=α︷ ︸︸ ︷

P(KS rejects true CDF at level α)
= 1− α.

Thus, F̂1−α is a confidence set: it contains the true F (·) with probability 1− α.

8.6.3 Uniform Confidence Band

A uniform confidence band consists of two data-dependent functions that make a
“band” that contains the true function with high probability. The true function could be
a CDF, CEF, CQF, hazard function, etc. Let L̂(·) and Û(·) be functions computed from
data (hence the “hats”), with L for “lower” and U for “upper.” Let 1−α be the confidence
level. Let F (·) be the true function. Then, at least asymptotically, a uniform confidence
band satisfies

1− α = P(L̂(·) ≤ F (·) ≤ Û(·)) = P(L̂(r) ≤ F (r) ≤ Û(r) for all r ∈ R). (8.11)

A one-sided band sets L̂(r) = −∞ or Û(r) = ∞ for all r ∈ R.
The uniform confidence band contrasts with a pointwise confidence band. The

latter promises P(L̂(r) ≤ F (r) ≤ Û(r)) = 1 − α (or → 1 − α) for any individual r ∈ R.
That is, the pointwise band just aggregates all the individual confidence intervals for the
different F (r). Whether this is “better” or “worse” depends on the research question;
either way, it is very different. Discussion Question 8.3 tries to provide some intuition.

Discussion Question 8.3 (pointwise vs. joint). Consider parameters θ1 and θ2. (You
could imagine θ1 = F (r1) and θ2 = F (r2), although the following would not quite be
right.) For simplicity, assume θ̂1 ∼ N(θ1, SE

2
1) and θ̂2 ∼ N(θ2, SE

2
2).
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a) Briefly explain why ĈI1 = θ̂1 ± 1.64 SE1 is a 90% pointwise CI for θ1, and similarly
ĈI2 = θ̂2 ± 1.64 SE2 for θ2.

b) Assuming θ̂1 ⊥⊥ θ̂2, what is the joint coverage probability of the pointwise CIs, i.e.,
P(θ1 ∈ ĈI1 and θ2 ∈ ĈI2)?

c) Without the independence assumption, is P(θ1 ∈ ĈI1 and θ2 ∈ ĈI2) = 90% possi-
ble? How/why?

d) In general, to get 90% joint coverage probability, would the individuals CIs have to
be longer or shorter than the 90% pointwise CIs considered above? Why?

e) Why does this suggest that a uniform confidence band is wider than a pointwise
confidence band?

One uniform confidence band for the CDF is the KS confidence set of all functions
not rejected by KS at level α, as in (8.10). In DQ 8.4, we’ll try to picture this band.

Discussion Question 8.4 (KS band). Consider F̂1−α from (8.10). Recall that the
KS rejects H0 : F (·) = F0(·) at level α when Dn > cn,α, with Dn defined in (8.4) and
cn,α ≡ K1−α/

√
n. The particular α and critical value are not important in the following;

just think about the shape.
a) Consider a particular r ∈ R. What do we know about F0(r) if F0(·) is not rejected

by KS?
b) Consequently, argue that any F0(·) ∈ F̂1−α satisfies L̂(r) ≤ F0(r) ≤ Û(r) if L̂(r) =

F̂ (r)− cn,α and Û(r) = F̂ (r) + cn,α.
c) Further argue that this applies at any r ∈ R, so any F0(·) ∈ F̂1−α satisfies L̂(·) ≤

F0(·) ≤ Û(·).
d) Draw an example F̂ (·) and the corresponding L̂(·) and Û(·).
e) For the true F (·), what is P(L̂(·) ≤ F (·) ≤ Û(·))? Why? Hint: recall P(F (·) ∈

F̂1−α) = 1− α.



Appendix to Chapter 8

8.A ECDF: Asymptotic Properties

With iid sampling, the ECDF is uniformly consistent:

sup
r∈R

|F̂ (r)− F (r)| p→ 0. (8.12)

This also holds with a.s.→ and is called the Glivenko–Cantelli Theorem.
A functional central limit theorem (FCLT) called Donsker’s Theorem says

√
n(F̂ (·)− F (·)) d→ B(F (·)), (8.13)

where B(·) is a standard Brownian bridge on the unit interval [0, 1].
This B(·) is a type of Gaussian process, a random function whose marginal distribu-

tions are Gaussian. That is, the vector (B(t1), . . . , B(tk)) is a k-dimensional Gaussian
vector, with mean 0 and Cov(B(s), B(t)) = s(1 − t) for s < t. Figure 8.1 shows some
sample paths (realizations) of B(·), along with KS test critical values.

0.0 0.2 0.4 0.6 0.8 1.0

t

B
(t

)

−
1

0
1

Figure 8.1: Brownian bridge sample paths, with two-sided α = 0.1 critical values.
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Chapter 9

Distributional Inference:
Two-Sample, Two-Sided

Unit learning objectives for this chapter

9.1. Develop intuition for ways to achieve exact inference in finite samples [TLO 2]

9.2. Interpret two-sample goodness-of-fit tests [TLO 1]

The focus of this chapter is goodness-of-fit (GOF) testing; additional two-sample, two-
sided approaches are in Chapter 11. Again, iid sampling is assumed for simplicity but
may not be appropriate in practice. With iid sampling in practice, the Dirichlet approach
again has power advantages over KS, although it cannot form a uniform confidence band
for the true CDF difference function.

Optional resources for this chapter

• R: ks.test()

• R: code for “Comparing distributions by multiple testing across quantiles or
CDF values” at https://kaplandm.github.io

• Stata: command distcomp described by Kaplan (2019)

• Stata: ksmirnov

9.1 Setup

The following describes the two-sample, two-sided GOF setup. The null is

H0 : F1(·) = F2(·), (9.1)

105

https://kaplandm.github.io


106 CHAPTER 9. TWO-SAMPLE, TWO-SIDED

where F1(·) and F2(·) are both unknown continuous CDFs. ECDFs F̂1(·) and F̂2(·) are
computed from iid samples of size m and n, respectively. The samples are also independent
of each other.

The same KS, CvM, AD, and Dirichlet approaches can be applied to two-sample
testing, with similar tradeoffs. In particular, the two-sample KS statistic is

Dm,n ≡ sup
r∈R

|F̂1(r)− F̂2(r)|. (9.2)

Discussion Question 9.1 (two-sample GOF). (Inspired by Gneezy and List, 2006) You
have data on productivity Yi of individual i, collected for the same job on the same
day. Individuals were randomized into either the control or treatment group. The control
group was paid the advertised $10.00/hr wage, whereas the treatment group was surprised
with a $20.00/hr wage. You’re curious if there’s any evidence of “gift exchange:” does
productivity increase in response to the “gift” of higher wage? You test the GOF null
hypothesis H0d that the treatment and control productivity distributions are identical.
You also test the null hypothesis H0m that the treatment and control population means
are identical.

a) You fail to reject H0d. What do you learn?
b) You reject H0d. What do you learn?
c) Is it possible for H0d to be true if H0m is false? Why/not? If yes, give an example.
d) Is it possible for H0m to be true if H0d is false? Why/not? If yes, give an example.
e) Explain how it’s possible to have H0m rejected but not H0d, and how you interpret

such a result.
f) Explain how it’s possible to have H0d rejected but not H0m, and how you interpret

such a result.

9.2 Exact Finite-Sample Testing

The approach from Section 8.5 does not work here because H0 does not determine either
true CDF, only that they are the same.

However, finite-sample size control is possible using a randomization test or per-
mutation test with the KS statistic. Assuming H0 : F1(·) = F2(·) holds, let F (·) =
F1(·) = F2(·), so the Yi in both samples are iid from F (·). Combine both samples into
Yi for i = 1, . . . ,m + n, where the first m (i = 1, . . . ,m) are from the first sample and
the next n (i = m + 1, . . . ,m + n) are from the second sample. Then, Yi

iid∼ F (·) for all
i = 1, . . . ,m + n. Thus, under H0, the joint distribution of all Yi is the same even if we
switch which i corresponds to which sample. For example, if m = n = 1, the distribution
of pooled vector (Y1, Y2) is the same as that of (Y2, Y1) under H0, whereas if F1 ̸= F2 then
these vectors have different distributions (e.g., maybe the mean of the second component
is higher when you switch the order). Thus, under H0, the sampling distribution of Dm,n

is the same even if we first “permute” the observations (i.e., switch which observations are
in which of the two samples) before computing Dm,n.
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With a permutation test, the value of Dm,n is computed under all possible permu-
tations of the observed data. The p-value is the proportion of such permutations that
have Dm,n at least as big as the original sample’s Dm,n. This approach applies much
more broadly than just the KS test, and new tests applying the approach continue to be
developed in statistics and econometrics.

In R, specify the argument exact=TRUE in ks.test().

Discussion Question 9.2 (permutations). Consider sample sizes m = 19 and n = 1.
a) If the second sample’s value is larger than all m = 19 values in the first sample,

then what is Dm,n in (9.2)?
b) Is there any other permutation that gives the same Dm,n value? That is, if we use

the same 20 values but pretend a different one came from the second sample, is it
possible that Dm,n remains the same?

c) Besides the original data, there are 19 other possible permutations: each of the
m = 19 values can be treated as the second sample. Explain how many of these
have: the same Dm,n as the original data; strictly smaller Dm,n; strictly larger Dm,n.

d) The p-value is the proportion of permutations (including the original data, so 20
total) that have Dm,n greater than or equal to the original data’s Dm,n; what is the
p-value? Does it seem reasonable? Why/not?

Consider a related but different permutation question, assuming both samples are iid
from the same continuous population distribution.

e) What’s the probability of randomly sampling a dataset where the second sample’s
value is larger than all m = 19 first sample values?

f) Smaller than all m = 19?
g) What does this suggest the two-sided p-value should be for a dataset in which the

second sample’s value is either larger or smaller than all m = 19 first sample values?

9.3 Asymptotic KS

The asymptotic argument for one-sample KS extends readily to the two-sample case.
The two samples are independent, so it is straightforward to take a difference of ECDFs.
Assuming

√
n/m → λ ∈ (0,∞), under H0,

√
n(F̂1(·) − F̂2(·)) converges to a certain

Gaussian limit, which implies the asymptotic distribution of
√
nDm,n.

Unlike the finite-sample permutation-type approach, which depends critically on F1 =
F2, this asymptotic derivation allows non-zero ∆(·) ≡ F1(·) − F2(·). Letting ∆̂(·) =
F̂1(·)− F̂2(·),

√
n(∆̂(·)−∆(·)) =

√
n[F̂1(·)− F̂2(·)− (F1(·)− F2(·))]

=
√
n[F̂1(·)− F1(·)]−

√
n[F̂2(·)− F2(·)]

=

→λ︷ ︸︸ ︷√
n/m

Gaussian limit︷ ︸︸ ︷√
m[F̂1(·)− F1(·)]−

Gaussian limit︷ ︸︸ ︷√
n[F̂2(·)− F2(·)] .

This allows a uniform confidence band for ∆(·) by test inversion.
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Chapter 10

Distributional Inference:
Stochastic Dominance

Unit learning objectives for this chapter

10.1. Interpret hypotheses and results of stochastic dominance tests, both economically
and statistically [TLO 1]

10.2. Judge whether a null of dominance or non-dominance is more appropriate in a given
setting [TLO 3]

In addition to learning whether or not two distributions are equal (GOF), we may
want to know which distribution is “better.” One approach is to just compare means (or
quantiles); here, stochastic dominance is considered.

Here, the variables are assumed to have cardinal meaning (like dollars). If they are
ordinal, then see Chapter 23.

Optional resources for this chapter

• Davidson and Duclos (2013): bootstrap test, null of non-SD

• Dirichlet approach: Goldman and Kaplan (2018a)

• Stata: command distcomp described by Kaplan (2019)
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10.1 First-Order Stochastic Dominance

In economics, first-order stochastic dominance (SD1) means one distribution is un-
equivocally better. Letting Y1 ∼ F1(·) and Y2 ∼ F2(·), SD1 can be characterized as

Y1 SD1 Y2 ⇐⇒ E[u(Y1)] ≥ E[u(Y2)] for all u(·) ∈ U , (10.1)

where U is the set of all (non-decreasing) utility functions. (Given the eventual statistical
focus, the difference between ≥ and > is ignored.) That is, Y1 yields higher expected
utility than Y2 for any possible utility function. So even if we all have different utility
functions, we all agree Y1 is better.

Notationally, let Y1 nonSD1 Y2 mean “Y1 does not first-order stochastically dominate
Y2.” For any (Y1, Y2), either Y1 SD1 Y2 or Y1 nonSD1 Y2 (but not both).

SD1 has been used in various settings: Y could represent returns from a financial
portfolio, agricultural productivity, consumption, auction bids, etc.

SD1 is useful economically because it provides such a strong (unequivocal) assessment,
but this stringency is also a drawback. First, SD1 provides only a partial ordering of
distributions: for many distribution pairs, there is not SD1 in either direction. Second,
it is difficult to find strong statistical evidence in favor of SD1.

SD1 can also be characterized in terms of the CDFs F1(·) and F2(·). Specifically,

Y1 SD1 Y2 ⇐⇒ F1(·) ≤ F2(·). (10.2)

It’s often confusing that the “better” CDF is lower. More intuitively, in terms of quantile
functions,

Y1 SD1 Y2 ⇐⇒ Q1(·) ≥ Q2(·). (10.3)

That is, for any τ ∈ [0, 1], Q1(τ) ≥ Q2(τ), i.e., every τ -quantile is higher for Y1 than Y2.

Discussion Question 10.1 (SD1 and non-SD1). For each of the following, draw a picture
of F1(·) and F2(·), or explain why it’s impossible.

a) Y1 SD1 Y2 and Y2 nonSD1 Y1
b) Y1 nonSD1 Y2 and Y2 SD1 Y1
c) Y1 SD1 Y2 and Y2 SD1 Y1
d) Y1 nonSD1 Y2 and Y2 nonSD1 Y1

10.2 Null of Dominance

Most of the literature (with continuous Y1 and Y2) considers

H0 : Y1 SD1 Y2 or equivalently H0 : F1(·) ≤ F2(·). (10.4)

Implicitly, the alternative hypothesis is Y1 nonSD1 Y2.
Discussion Question 10.2 is about how we interpret SD1 tests in practice, considering

both the “economic” relationships (like in DQ 10.1) as well as the statistical difference
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between type I and type II errors. Consider DQ 10.2(a). Rejecting H0 : Y1 SD1 Y2 means
either that Y1 does not dominate Y2 or that we made a type I error and Y1 actually does
dominate Y2. Non-rejection of H0 : Y2 SD1 Y1 means either that Y2 dominates Y1 or that
we made a type II error and Y2 actually does not dominate Y1. From DQ 10.1(b), it
is possible that both tests are correct, i.e., that Y2 SD1 Y1 and Y1 nonSD1 Y2. But we
may also suspect the non-rejection is a type II error, especially if the sample size is small
and/or the ECDFs do not look like Y2 SD1 Y1. It’s also possible that the first test made
a type I error, but frequentist tests control the type I error rate at a low level (here 5%),
so we feel fairly sure that the rejection is correct, if not 100% sure. (Although we may
feel less sure if this is the 100th such test we ran; see Section 11.1.)

Discussion Question 10.2 (null of SD1). You have a dataset and test (10.4). Explain
how each of the following possible results would affect your beliefs about SD1, where the
significance level is 5%. Hint: consider both DQ 10.1 and the difference between type I
and type II errors (and remember which error type 5% refers to).

a) Reject H0 : Y1 SD1 Y2; do not reject H0 : Y2 SD1 Y1
b) Do not reject H0 : Y1 SD1 Y2; reject H0 : Y2 SD1 Y1
c) Reject both H0 : Y1 SD1 Y2 and H0 : Y2 SD1 Y1
d) Do not reject either H0 : Y1 SD1 Y2 or H0 : Y2 SD1 Y1

10.2.1 KS Test

The KS test readily extends to one-sided testing. For two-sample KS, instead of the
|F̂1(r)− F̂2(r)| in Dm,n in (9.2), either F̂1(r)− F̂2(r) or F̂2(r)− F̂1(r) is used, again taking
the supremum over r ∈ R. Large F̂1(r) − F̂2(r) provides evidence against H0 : F1(·) ≤
F2(·), whereas large F̂2(r)− F̂1(r) provides evidence against H0 : F1(·) ≥ F2(·).

In R, specify argument alternative='less' or alternative='greater'. The for-
mer is for H0 : Fx(·) ≥ Fy(·), the latter for H0 : Fx(·) ≤ Fy(·); the names can be confusing,
so it’s good to sanity-check your results.

10.2.2 Dirichlet Test

The Dirichlet approach also extends to one-sided testing. As with two-sided testing, it
spreads power more evenly across the distribution, whereas KS has low power in the tails.

10.3 Null of Non-Dominance

Discussion Question 10.3 (null vs. alternative). Forget about SD1 for now. You have
experimental data and estimate population parameter θ (e.g., the ATE). You estimate
θ̂ > 0 but know that might be due to random sampling variation even if really θ ≤ 0. Let
H0 : θ ≤ 0 (against H1 : θ > 0).

a) How would you interpret rejection of H0?
b) How would you interpret non-rejection of H0?
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c) Can you reject H0 even if θ̂ ≤ 0, or must θ̂ > 0 to reject? Explain.
d) Can you fail to reject H0 even if θ̂ > 0, or must θ̂ ≤ 0 to not reject? Explain.
e) Why do people test this H0 instead of H0 : θ > 0, when they’re trying to show

evidence of θ > 0?

Davidson and Duclos (2013) argue that SD1 should be the alternative, not the null:

H0 : Y1 nonSD1 Y2, H1 : Y1 SD1 Y2. (10.5)

Discussion Question 10.4 (null of non-SD1). You have a dataset and test (10.5).
Explain how each of the following possible results would affect your beliefs about SD1,
where the significance level is 5%. Hint: consider both DQ 10.1 and the difference between
type I and type II errors.

a) Reject H0 : Y1 nonSD1 Y2; do not reject H0 : Y2 nonSD1 Y1
b) Do not reject H0 : Y1 nonSD1 Y2; reject H0 : Y2 nonSD1 Y1
c) Reject both H0 : Y1 nonSD1 Y2 and H0 : Y2 nonSD1 Y1
d) Do not reject either H0 : Y1 nonSD1 Y2 or H0 : Y2 nonSD1 Y1

Unfortunately, if Y is continuous with unbounded support, it is impossible to truly
test (10.5) and control size at level α. This is essentially because Y1 SD1 Y2 can be
violated by even a very small probability on a very high value of Y2. That is, even if it
looks like Y1 SD1 Y2 in nearly all datasets, it may in fact be Y1 nonSD1 Y2; so no matter
how strong the evidence seems, we can never be sure enough to reject nonSD1 and control
size.

There are (at least) three responses. First, we can give up and go back to the null of
dominance. But then we can never get very convincing positive evidence of Y1 SD1 Y2;
the best we can say is that we don’t reject that claim. (Remember how everyone cringed
at the seminar where the speaker said, “And since I can’t reject H0 : β = 0, my conclusion
is that there is zero effect”?)

Second, we can weaken SD1 to something that’s statistically tractable as the alter-
native hypothesis. Davidson and Duclos (2000, 2013) suggest “restricted” SD1, from
Condition I of Atkinson (1987, p. 751). Restricted SD1 weakens the CDF characteri-
zation of (10.2): the CDF ordering only needs to hold on the interval [a, b] ⊂ R, i.e.,
F1(r) ≤ F2(r) for all r ∈ [a, b]. Restricted SD1 is “weaker” in the sense that it is implied
by SD1, but it does not imply SD1. For example, if the CDFs then cross in the very lower
or upper tail, there can be restricted SD1 but not SD1.

Definition 10.1 (restricted SD1; Atkinson (1987)). For random variables Y1 and Y2 with
respective CDFs F1(·) and F2(·), there is restricted first-order stochastic dominance of Y1
over Y2 on interval [a, b] when F1(r) ≤ F2(r) for all r ∈ [a, b].

Third, we can weaken the expected utility characterization in (10.1). Instead of defin-
ing U as the set of all utility functions, a restricted subset is used. For example, we could
restrict attention to a certain parameteric class of utility functions (like CRRA) with
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parameters restricted to a compact set. Again, the tradeoff is that we are better able to
find positive statistical evidence of “dominance” for weaker notions of dominance. In the
extreme, we could simply assume a single utility function, say linear utility u(x) = x, in
which case the problem reduces to comparing means. See Kaplan (2022a) for details and
examples.

The CDF-based “restriction” is easier to approach statistically, but more difficult to
interpret economically.

Kaplan (2022a) also constructs confidence sets for utility functions satisfying higher
expected utility for Y1. Let U be the (restricted) set of all utility functions under consid-
eration. Let D be the subset of all utility functions for which E[u(Y1)] ≥ E[u(Y2)] for all
u(·) ∈ D. Then, Kaplan (2022a) constructs D̂1 and D̂2, respectively called “inner” and
“outer” confidence sets for D, such that P(D̂1 ⊆ D) → 1− α and P(D̂2 ⊇ D) → 1− α.
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Exercises

Exercise E10.1. Apply the methodology from Goldman and Kaplan (2018a) and/or
Kaplan (2022a) for assessing first-order stochastic dominance. Code in R and Stata is
available at https://kaplandm.github.io. Note: for Goldman and Kaplan (2018a), I
think the Stata code is much easier to use than the R code.

a. Find a paper (with publicly available data) that involves either stochastic domi-
nance testing or a randomized experiment with a continuous outcome variable (like
earnings); provide a link to the paper. The paper must be either published in a
respectable economics journal1 or be unpublished but have an author who has pre-
viously published in such a journal (like any Mizzou econ professor); or if you really
want, you can use an example from an econometrics textbook.

b. Replicate one of the original paper’s stochastic dominance tests (if it did one), or (if
it’s a randomized experiment) run two-sample one-sided Kolmogorov–Smirnov tests
in both directions (i.e., alternative of treatment CDF above control, then alternative
of treatment CDF below control CDF), using the post-treatment outcomes for the
treatment group and control group.

c. Make a graph with the two empirical CDFs involved in the two-sample test in the
previous step.

d. With the same data, run the new methodology from Goldman and Kaplan (2018a)
or Kaplan (2022a) to assess stochastic dominance.

e. Compare your new results to the original results, both statistically and economically.

1For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html

https://kaplandm.github.io
https://ideas.repec.org/top/top.journals.all.html


Chapter 11

Distributional Inference:
Multiple Testing

Unit learning objectives for this chapter

11.1. Develop intuition and vocabulary for multiple testing, as opposed to testing a single
joint hypothesis [TLO 2]

11.2. Interpret results of multiple testing generally and for distributional comparisons
[TLO 1]

11.3. Judge whether multiple testing or joint testing is more appropriate for a particular
economic question [TLO 3]

The distributional tests in Chapters 8–10 can only report one of two results: reject,
or don’t reject. This simplicity contrasts the complexity of the parameters themselves
(CDFs). Simplicity is a tradeoff: easy to communicate, but possibly missing important
information. For example, the NBER time series of US recessions is easy to communicate
and can be very helpful, but reducing the entire economy to a single binary variable may
lose important information for certain applications.

This chapter considers more informative statistical inference for distributions.

Optional resources for this chapter

• Goldman and Kaplan (2018a): CDF comparison across values

• Kaplan (2022a): expected utility comparison across utility functions
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11.1 Multiple Testing: Concepts and Terms

Discussion Question 11.1 (FWER). Consider two hypothesis tests, respectively testing
null hypotheses H0a and H0b. Each test individually has 10% type I error rate. Let
f = P(reject H0a and/or H0b | both true). That is, f is the probability that at least one
test rejects (i.e., that either or both tests reject) when both null hypotheses are true.

a) If the tests are statistically independent, then what is the probability f?
b) If the dependence is unknown, then what is a lower bound on the probability f?
c) If the dependence is unknown, then what is an upper bound on f?
d) If the dependence is unknown, then how can we adjust each test’s α so that f ≤ 0.1?

(This is called a Bonferroni adjustment or Bonferroni corrrection.)

Discussion Question 11.2 (jelly beans). Consider the comic at https://xkcd.com/
882/. Explain the problem with running so many hypothesis tests with α = 0.05 and
claiming 95% confidence as in the newspaper article at the end.

Imagine testing multiple hypotheses simultaneously. Instead of a single H0, we test
H0h for h = 1, . . . ,H. Or there could even be an infinite number of hypotheses: H0h for
h = 1, 2, . . ., or for h ∈ [0, 1], or h ∈ R.

A multiple testing procedure (MTP) decides whether or not to reject each hy-
pothesis under consideration. This is different than testing a single joint hypothesis like
H0 : β1 = β2 = 0. Although a joint hypothesis has multiple components (like β1 = 0
and β2 = 0), it requires only one single decision: reject H0 or not. In contrast, multiple
testing requires a different decision for each hypothesis. If we have two hypotheses, then
the MTP must make two decisions, so there are four possible outcomes: reject/reject,
reject/not, not/reject, not/not. If we have 10 hypotheses, then the MTP must make 10
decisions, with 210 = 1024 possible outcomes.

An MTP provides more information than a single joint hypothesis test; are the results
more difficult to communicate? Yes, but often only slightly. For example, testing three
hypotheses yields three reject/not decisions, which is still pretty simple. Even an infinite
number of decisions may be simple to visualize. For example, if we have H0h for h ∈ [0, 1]
and the MTP rejects for h ∈ [0, 0.2] and h ∈ [0.75, 1], we can draw those two line segments
within the unit interval and immediately see which H0h were rejected.

11.1.1 Familywise Error Rate

When looking across a family of hypotheses, how can we quantify the “false positive rate”
that we want to control? Definition 11.1 offers one possibility. The following multiple
testing terms are defined following Lehmann and Romano (2005b, §9.1).

Definition 11.1 (familywise error rate (FWER)). For a family of null hypotheses H0h

indexed by h, let T ≡ {h : H0h is true} be the set of indices of true hypotheses. The
familywise error rate (FWER) is

FWER ≡ P(reject any H0h with h ∈ T ).

https://xkcd.com/882/
https://xkcd.com/882/
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Definition 11.2 (weak and strong control of FWER). Given Definition 11.1, weak
control of FWER at level α requires FWER ≤ α if each H0h is true; strong control
of FWER requires FWER ≤ α for any T .

Weak control of FWER can be useful theoretically, but it is not particularly useful in
practice because nothing is guaranteed if even a single H0h is false.

11.1.2 Interpretation as Confidence Set

An MTP with strong control of FWER also generates an “inner” confidence set (CS) for
the true set F = {h : H0h is false} of false hypotheses (the complement of T ). That is,
the set of rejected hypotheses F̂ = {h : H0h is rejected} is a conservative “estimate” of
the true F in the sense that

P(F̂ ⊆ F) ≥ 1− α. (11.1)

Thus, if h ∈ F̂ , then we can feel relatively confident that H0h is indeed false. This
would not be true if only the pointwise type I error rates P(reject H0h | H0h true) were
controlled. See Kaplan (2022a).

Discussion Question 11.3 (expected utility MTP/CS). Let U be a set of utility func-
tions. Let X and Y represent two different consumption distributions (or income, or asset
returns, or productivity, etc.). Assume that given utility function u(·), X is preferred over
Y if E[u(X)] > E[u(Y )], i.e., higher expected utility. Define H0u : E[u(X)] ≤ E[u(Y )]
over u(·) ∈ U .

a) Economically describe/interpret the set F ≡ {u(·) : H0u is false}.
b) Given this F , economically and statistically describe/interpret an inner CS that

satisfies (11.1).
c) For a given ũ(·), consider the usual one-sided t-test of H0ũ : E[ũ(X)] ≤ E[ũ(Y )]

at level α. Also consider an MTP of all H0u over u ∈ U that has strong control
of FWER at the same level α. Compared to the t-test, is the MTP more, less, or
equally likely to reject H0ũ? Why?

d) Imagine instead we reverse the inequality and run an MTP on H0u : E[u(X)] ≥
E[u(Y )] over u(·) ∈ U , and collect the u(·) of the rejected H0u into T̂ . What is the
economic and statistical interpretation of this T̂ ?

11.1.3 Alternatives to FWER

There are alternative false positive rates besides FWER. Their primary motivation is a
concern that FWER is too strict when there are many hypotheses, i.e., that the corre-
sponding type II error rate is too high.

The k-FWER is the probability of making at least k familywise errors:

k-FWER ≡ P(reject at least k null hypotheses H0h with h ∈ T )

= P(k or more false positives). (11.2)
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The original FWER is the special case k = 1. This concept and related procedures were
introduced by Lehmann and Romano (2005a).

Discussion Question 11.4 (k-FWER). Consider testing H0h for h = 1, 2, . . . , 10. You
run one test with strong control of (1-)FWER at level 10%. You run a second test with
strong control of 4-FWER at level 10%.

a) For any particular H0h, which test is more likely to reject? Why?
b) What’s your interpretation if the second test rejects 3 of the 10 hypotheses?
c) Imagine the second test rejects H0h for h = 2, 4, 6, 8, 10. How does this affect your

belief about H02?
d) How do you interpret the results if the first test rejects H03 and the second test

rejects H0h for h = 1, 3, 5, 7?

The false discovery proportion (FDP) is the proportion of rejected hypotheses that
were actually true. For example, if there are 100 total hypotheses, and 20 are rejected,
of which 2 were actually true, then the FDP is 2/20 = 0.1. If nothing is rejected, then
FDP is defined to be zero. One way to use FDP is for an MTP to control FDP below γ
with high probability 1− α: P(FDP ≤ γ) ≥ 1− α. See Lehmann and Romano (2005a).

Alternatively, the false discovery rate (FDR) is the expected value of the FDP:
FDR = E(FDP). An MTP could be designed to control FDP ≤ α. See Benjamini and
Hochberg (1995).

11.1.4 Other Ways to Improve Power

Stepdown and pre-test procedures improve power while maintaining strong control of
FWER.

A stepdown procedure works iteratively: run the MTP once, and then if any H0h

are rejected, adjust critical values appropriately and re-run the MTP, etc. Stepdown
procedures improve power without sacrificing FWER control, although they result in
more false positives (but only in cases that do not affect FWER). Stepdown procedures
trace back to Holm (1979); see also Lehmann and Romano (2005b, Ch. 9). (There are
also step-up procedures, but at least the most basic one requires independence, which
often fails in economic applications.)

A pre-test procedure is usually for one-sided MTPs, to determine which H0h are
“clearly” true and thus do not “need” to be examined. By reducing the number of hy-
potheses, the power is improved. The pre-test is usually run at a level much smaller than
α, to guarantee negligible impact to FWER.

11.2 One-Sample, Two-Sided

The family of null hypotheses is

H0r : F (r) = F0(r), r ∈ R. (11.3)
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This uncountably infinite number of hypotheses sounds daunting, but the monotonicity
of F (·) and the discreteness of the sample data simplify the structure.

In contrast, the GOF H0 : F (·) = F0(·) warranted only one single decision. The MTP
provides more detailed information, at least when the GOF rejects.

11.2.1 KS and Dirichlet

The KS and Dirichlet approaches can generate a uniform confidence band (Section 8.6).
The corresponding MTP rejects any H0r for which F0(r) lies outside the band. This MTP
has strong control of FWER.

There is a general equivalence between uniform confidence bands and MTPs that
control FWER. Let F (·) be any function on R (like a CDF). Assume there exists a
uniform confidence band [L̂(·), Û(·)] such that

P(L̂(·) ≤ F (·) ≤ Û(·)) = 1− α. (11.4)

Consider the MTP that rejects H0r : F (r) = F0(r) when F0(r) lies outside the band. The
true hypotheses are H0r for r ∈ T . Then,

FWER = P(reject at least one true H0r)

= P(F0(r) ̸∈ [L̂(r), Û(r)] for some r ∈ T )

= 1− P(L̂(r) ≤ F0(r) ≤ Û(r) for all r ∈ T )

= 1− P(L̂(r) ≤ F (r) ≤ Û(r) for all r ∈ T )

≤ 1− P(L̂(r) ≤ F (r) ≤ Û(r) for all r ∈ R)
= 1− (1− α) = α.

Thus, the MTP has strong control of FWER at level α.

11.3 Two-Sample and/or One-Sided

Instead of a two-sample GOF test that says only “they’re different” or “I can’t reject that
they’re identical,” an MTP tests H0r : F1(r) = F2(r) for each r ∈ R. The two-sample
results can show which particular part(s) of a distribution are affected by an experimental
treatment, or differ across regions, or change over time, etc.

The one-sided variant relates to first-order stochastic dominance (SD1), in particular
restricted SD1 (Definition 10.1). Let H0r : F1(r) ≥ F2(r), so rejecting H0r contributes
evidence toward restricted SD1 of F1(·) over F2(·). Then F , the set of false hypotheses,
is the set over which there is restricted SD1 because F = {r : F1(r) < F2(r)}. Thus, the
MTP with strong FWER control at level α also generates an inner 1 − α CS for F as
described in Section 11.1.2. That is, the set of rejected hypotheses F̂ is the set of points
for which we are confident that F1(·) is below F2(·), in the sense that P(F̂ ⊆ F) ≥ 1−α.
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Discussion Question 11.5 (GOF vs. MTP). Consider H0r : F1(r) = F2(r) for r ∈ R.
Consider an MTP with strong control of FWER at level α. Consider the GOF test that
rejects H0 : F1(·) = F2(·) if and only if at least one H0r is rejected by the MTP.

a) Explain why this GOF test controls size at level α.
b) Prove that the MTP is more informative by showing that the GOF test’s result is

uniquely determined by the MTP results, but the MTP results are not uniquely
determined by the GOF test’s result.

Discussion Question 11.6 (MTP for SD1). Imagine you want to learn about the
(causal) effects of an unconditional cash transfer program in Kenya, in which certain
households are given a one-time $1000.00 gift (not just a loan). For now, don’t worry
about possible issues like spillovers and non-iid sampling. For both the treatment and
control group, household consumption is measured five years later, to see if there is any
persistent effect. Let FT (·) and FC(·) denote the corresponding treatment and control
CDFs. You want to learn about (restricted) SD1 of the treatment distribution over the
control distribution. All tests/MTPs use level α = 0.05.

a) A global test does not reject H0 : FT (·) ≤ FC(·). What do you learn about SD1?
b) A global test rejects H0 : FT (·) ≥ FC(·). What do you learn about SD1?
c) An MTP rejects H0r : FT (r) ≥ FC(r) for all r between the sample 5th and 95th

percentiles of the control distribution. What do you learn about SD1?
d) An MTP rejects H0r : FT (r) ≥ FC(r) for all r between the sample 5th and 65th

percentiles of the control distribution, and it rejects H0r : FT (r) ≤ FC(r) for r
between the sample 80th and 90th control percentiles, with no other rejections in
either direction. What do you learn about SD1?

Discussion Question 11.7 (MTP for distributional treatment effects). Consider again
the randomized experiment setup of DQ 9.1, inspired by Gneezy and List (2006). Let
FT (·) and FC(·) denote the treatment and control CDFs (for the productivity variable).
The FWER level is α = 0.05.

a) An MTP for H0r : FT (r) = FC(r) rejects (only) for all r between the 5th and 25th
sample percentiles of the control distribution. What does this suggest about the
gift exchange treatment effect?

b) An MTP for H0r : FT (r) = FC(r) rejects (only) for all r between the 75th and 95th
sample percentiles of the control distribution. What does this suggest about the
gift exchange treatment effect?

c) Would you have come to the same conclusion as in the previous part if instead of
the MTP results you (only) knew that a GOF test rejected H0 : FT (·) = FC(·)?
Why/not?

d) An MTP for H0r : FT (r) ≥ FC(r) rejects (only) for all r between the 5th and 25th
sample percentiles of the control distribution, and an MTP for H0r : FT (r) ≤ FC(r)
rejects (only) for all r between the 75th and 95th sample percentiles of the control
distribution. What does this suggest about the gift exchange treatment effect?

e) Would you have come to the same conclusion as in the previous part if instead of
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the MTP results you (only) knew that a global test rejected both H0 : FT (·) ≥ FC(·)
and H0 : FT (·) ≤ FC(·)? Why/not?
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Exercises

Exercise E11.1. Apply the two-sample method from Goldman and Kaplan (2018a),
similar to the example in their Section 8.1. R and Stata code is available.1 Note: the
Stata code (distcomp command) is much easier to use than the R code.

a. Find a paper that includes (publicly available) data from a randomized experiment;
provide a link to the paper. The paper must be either published in a respectable
economics journal2 or be unpublished but have an author who has previously pub-
lished in such a journal (like any Mizzou econ professor); or if you really want, you
can use an example from an econometrics textbook.

b. Using only the post-treatment outcomes (e.g., wages) for the treatment and con-
trol groups: 1) compute the difference between the treated and untreated mean
outcomes, 2) compute differences between various quantiles of the treated and un-
treated outcome distributions, 3) run the distributional method to get an overall
2-sided p-value as well as the ranges of values (if any) where equality is rejected at
a 10% level. Compare the three results.

c. Compare your new results to whatever main result was in the original paper.

d. Discuss any reasons that comparing the post-treatment outcomes in the data may
not estimate the true treatment effect (e.g., attrition, general equilibrium concerns,
etc.).

1https://kaplandm.github.io
2For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html

https://kaplandm.github.io
https://ideas.repec.org/top/top.journals.all.html
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Bootstrap and Friends
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Chapter 12

Bootstrap: Basics

Unit learning objectives for this chapter

12.1. Develop intuition about the “bootstrap world” and how frequentist measures of
uncertainty can be computed from it [TLO 2]

12.2. Compare among the different ways to use the bootstrap approach to quantify un-
certainty [TLO 3]

Notation: I use scalars because it’s easier, but almost everything applies to vectors,
too.

This chapter assumes iid sampling to develop intuition; Chapter 13 has non-iid ex-
tensions.

Optional resources for this chapter

• Textbook: Efron and Tibshirani (1993) is more applied-focused and starts from
basic probability theory, though doesn’t contain newer methods from the past
few decades (I’ve heard good things about the book, and generally concur); MU
library: http://merlin.lib.umsystem.edu/record=b2432078~S1

• Textbook: Shao and Tu (1995) is good for basic theory (I read it); MU library:
http://merlin.lib.umsystem.edu/record=b2717057~S1

• Textbook: Davison and Hinkley (1997)? MU: http://merlin.lib.umsystem.
edu/record=b3774612~S1

• Survey papers: MacKinnon (2002) (he has some helpful slides I found on Google,
too), and MacKinnon (2006), “Bootstrap methods in econometrics.”

• R: try package boot (Canty and Ripley, 2019; Davison and Hinkley, 1997)
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12.1 Introduction

Bootstrap techniques are popular in economics. Although people say “the bootstrap,”
there are actually many different types of bootstrap, and multiple ways to construct a
confidence interval for each type. Although bootstrap methods work for a wide variety of
estimators and models, they are not magic and can fail. When bootstrap fails, sometimes
the related technique of subsampling can work. However, subsampling is not strictly
better: subsampling involves an additional smoothing parameter and often has lower
power.

“The” bootstrap was introduced by Efron (1979).1 It improved upon the Quenouille–
Tukey jackknife,2 though jackknife methods are still used in some cases. As computation
power has grown since 1979, bootstrap methods have become more convenient in practice,
although with complex estimators and/or large datasets they may still be computationally
demanding.

The bootstrap is primarily frequentist, but see Chapter 14 for Bayesian interpretation.

12.2 Preliminaries: The Plug-in Principle

Notationally, let F (·) denote the population joint distribution of all observable variables.
Let θ = θ(F (·)) be the population parameter of interest. That is, θ can be interpreted
as a feature of the population distribution F (·), where the function θ(·) describes how to
compute that feature given a distribution. Let F̂ (·) be the empirical distribution, as in
Section 8.3.

The plug-in principle (or analogy principle) suggests replacing F (·) with F̂ (·) to
estimate θ:

θ̂ = θ(F̂ (·)) estimates θ = θ(F (·)). (12.1)

12.2.1 Example: Mean

Consider the population mean. In terms of F (·), the mean is

θ(F (·)) =
∫
R
y dF (y). (12.2)

For example, if the population is standard normal, so F (·) = Φ(·), then applying θ(·) to
Φ(·) yields θ(Φ(·)) = 0, since

∫
R x dΦ(x) =

∫
R xϕ(x) dx = 0.

1My favorite part is admittedly the acknowledgements section, which ends with, “I also wish to thank
the many friends who suggested names more colorful than Bootstrap, including Swiss Army Knife, Meat
Axe, Swan-Dive, Jack-Rabbit, and my personal favorite, the Shotgun, which, to paraphrase Tukey, ‘can
blow the head off any problem if the statistician can stand the resulting mess.’ ”

2The jackknife is a linear approximation of the bootstrap. They are similar when applied to linear
statistics/estimators like the mean, but the jackknife can be much worse for nonlinear statistics.
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Analogous to (12.2), using the same θ(·) but plugging in F̂ (·) for F (·):

θ(F̂ (·)) =
∫
R
y dF̂ (y) =

n∑
i=1

(Yi)(1/n) =
1

n

n∑
i=1

Yi = Ȳ , (12.3)

the usual sample mean. That is, the sample mean can be interpreted as the mean of
the empirical distribution. (The empirical distribution is a discrete distribution with
probability mass 1/n on each Yi value, so the integral simplifies to a sum over the Yi
values with probability weight 1/n each.)

12.2.2 Example: OLS

Consider the linear projection coefficient vector in terms of population CDFs:

β(F (·)) =
[∫

Rk

xx′ dFX(x)

]−1 ∫
Rk+1

xy dFX,Y (x, y) = [E(XiX
′
i)]

−1 E(XiYi). (12.4)

Applying the same function β(·) to F̂ (·) instead of F (·),

β(F̂ (·)) =
[∫

xx′ dF̂X(x)

]−1 ∫
xy dF̂X,Y (x, y) =

[
n∑

i=1

(XiX
′
i)
1

n

]−1 n∑
i=1

(XiYi)
1

n

=

[
1

n

n∑
i=1

XiX
′
i

]−1
1

n

n∑
i=1

XiYi,

the OLS estimator β̂. This is the same as replacing the E (population expectation oper-
ator) with Ê (sample expectation operator):

β(F (·)) = [E(XiX
′
i)]

−1 E(XiYi) =⇒ β(F̂ (·)) = [Ê(XiX
′
i)]

−1 Ê(XiYi). (12.5)

12.2.3 Other Types of Parameters

Some parameters are not defined as functions of F (·), like treatment effects and other
causal effects. However, if they are identified, then they can be written as functions of
F (·).

Like most statistical inference, the bootstrap helps us quantify uncertainty about
the feature of F (·) that (maybe) has a causal interpretation, but it does not quantify
uncertainty about identification. Thus, when identification fails, even if the bootstrap
confidence interval is valid for the statistical parameter θ(F (·)), the causal parameter
may be far away.
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12.3 The Real World and the Bootstrap World

Discussion Question 12.1 (frequentist bias). In the frequentist framework, if you ac-
tually knew the true population F (·), how could you figure out the bias of an estimator?
Explain. (Hint: what is the definition of bias? What in the definition does F (·) help us
figure out?)

Discussion Question 12.2 (frequentist SE and CI). Imagine you knew the true popu-
lation F (·). (Hint: what are the definitions/properties of SE and CI?)

a) How could you figure out the true standard error SE(θ̂) of an estimator θ̂? Explain.
(Not the estimated standard error, which you can just compute from a single dataset
like usual.)

b) How could you figure out the coverage probability of a proposed confidence interval
for θ? Explain.

Although bootstraps usually involve simulation, the bootstrap idea itself is not intrin-
sically computational. Indeed, some bootstrap methods are purely analytic (no simula-
tion), like that of Hutson (2007). (That said, in the Chapter 6 introduction in Efron’s
own book, he calls the bootstrap a “computer-based method,” so perhaps my point is
unimportant.)

(I worry the following intuition does not capture the full depth and beauty of bootstrap
theory, but I hope it provides an anchor for a bootstrap novice (. . . like me?).)

Extending the plug-in principle of Section 12.2, the bootstrap idea is to learn about
the true sampling distribution of an estimator (under true F (·)) by using the sampling dis-
tribution under F̂ (·). From Section 8.3, F̂ (·) is close to F (·); hopefully, the corresponding
sampling distribution is also close to the true sampling distribution. Computationally,
to estimate the frequentist properties of estimator θ̂, we can repeatedly draw random
samples from F̂ (·), and see how estimator θ̂ varies across these samples.

12.3.1 The Real World

Consider an example of the frequentist sampling framework. Let X be a person’s height
(in meters), with population distribution F (·). There is iid sampling, Xi

iid∼ F (·). After
taking a sample, we just have numbers (non-random), like X1 = 1.68. But the frequentist
view imagines all the possible samples that could have been drawn, treating X1 as a
random variable (before its value is observed). We could have drawn X1 = 1.43, or
X1 = 0.89 (a child, perhaps), etc. For more review, see Sections 2.1, 3.1, and 3.5 of
Kaplan (2022b).

The purpose of frequentist statistical inference is essentially to get a sense of how
different our sample could have been. Our sample of size n could have contained very
different heights than the sample we actually drew, and some of these samples may have
an ECDF F̂ (·) very different from F (·).

Operators like expectation E(·) are usually implicitly defined wrt F (·). For example,
consider the expected value of estimator θ̂ = θ(X), where X = (X1, . . . , Xn) is the full



12.3. THE REAL WORLD AND THE BOOTSTRAP WORLD 129

dataset, and Xi
iid∼ F (·). Let F̃ (·) be the distribution of X (with support X ), which is

determined by F (·). The expectation of θ̂ means the weighted average over all possible
samples we could have drawn from F̃ (·):

E(θ̂) = E[θ(X)] =

∫
X
θ(x) dF̃ (x).

In the bootstrap literature, this mechanism is often called the real world. In the real
world, the population is F (·), with parameter of interest θ(F (·)). In the real world, sam-
pling is Xi

iid∼ F (·), generating dataset X or equivalently F̂ (·). The real-world estimator
is computed from the real-world sample: θ̂ = θ(X), or θ̂ = θ(F̂ (·)).

12.3.2 The Bootstrap World

Table 12.1 compares the real world with the parallel bootstrap world.3 In the bootstrap
world, the population is F̂ (·), with parameter of interest θ(F̂ (·)). In the bootstrap world,
sampling is X∗

i
iid∼ F̂ (·), generating dataset X∗ or equivalently F̂ ∗(·). The bootstrap-

world estimator is computed from the bootstrap-world sample: θ̂∗ = θ(X∗), or θ̂∗ =
θ(F̂ ∗(·)). That is, we treat the ECDF as if it were the population, and define other
objects accordingly.

Importantly, we can take repeated samples from the population in the bootstrap
world, which we can’t do in the real world. The hope is that F̂ (·) is close enough to F (·)
that the sampling distribution using F̂ (·) is a good approximation of the true sampling
distribution using F (·).

Discussion Question 12.3 (bootstrap world). Cover up the Bootstrap World column
in Table 12.1, except the first row. Try to figure out what the bootstrap world analogs
are in the other rows, given that the “population distribution” is F̂ (·).

Table 12.1: The Real World and the parallel Bootstrap World.

Object Real World Bootstrap World

pop. distribution F (·) F̂ (·)
pop. parameter θ(F (·)) θ(F̂ (·))
sample data Xi

iid∼ F (·), i = 1, . . . , n X∗
i

iid∼ F̂ (·), i = 1, . . . , n

sample dist/ECDF F̂ (·) F̂ ∗(·)
estimator θ̂ = θ(F̂ (·)) θ̂∗ = θ(F̂ ∗(·))
root θ̂ − θ θ̂∗ − θ̂

3David Freedman’s term, according to Efron and Tibshirani (1993, p. 86); and see their Figure 8.3
on page 87.
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12.4 Empirical Bootstrap

This section discusses one specific bootstrap approach to estimating the sampling distri-
bution of an estimator, assuming iid sampling. Section 12.6 discusses how to use this to
construct a confidence interval.

The empirical bootstrap uses the idea from Section 12.3: treat the empirical dis-
tribution F̂ (·) as if it were the population distribution F (·). The empirical bootstrap is
also known as the multinomial bootstrap, for reasons seen in Section 13.1. It is also
known as the nonparametric bootstrap, to contrast the parametric bootstrap in Sec-
tion 13.2.1. It is also known as the pairs bootstrap because it samples “pairs” (Yi,Xi)
from the empirical distribution, instead of keeping the Xi fixed and only resampling
residuals like in Section 13.2.2.

Method 12.1 details the empirical bootstrap steps.

Method 12.1 (empirical bootstrap). Assume (in the real world) Wi
iid∼ F (·); e.g., per-

haps Wi = (Yi,X
′
i)
′. Let n denote the sample size (in both the real world and bootstrap

world). Let B denote the number of bootstrap replications. Let W ∗b
i denote observation

i in bootstrap sample b, i = 1, . . . , n, b = 1, . . . , B.
To generate the bootstrap samples, for i = 1, . . . , n and b = 1, . . . , B, draw W ∗b

i

randomly from the original {W1, . . . ,Wn}; i.e., W ∗b
i = WS with P(S = j) = 1/n for

j = 1, . . . , n. Do this independently and with replacement, i.e., it is fine to get the
same S twice for a given b and thus have W ∗b

i = W ∗b
j for i ̸= j. This could also be

written as W ∗b
i

iid∼ F̂ (·), where F̂ (·) is the empirical distribution.
Let θ denote the population parameter. Let θ̂ denote an estimator computed from the

original Wi, i = 1, . . . , n. Let θ̂∗b denote the same estimator but computed from bootstrap
sample b of observations W ∗b

i , i = 1, . . . , n. The empirical bootstrap estimates the real-
world sampling distribution of θ̂− θ by the bootstrap-world distribution of θ̂∗b − θ̂. More
specifically, the above procedure provides B random draws of θ̂∗b− θ̂ from its probability
distribution (conditional on the original sample).

Although Method 12.1 consistently estimates the sampling distribution for a wide
variety of estimators, it can fail in some cases; see Sections 13.3–13.6.

Discussion Question 12.4 (empirical bootstrap 1). Let n = 2 with Y1 = 0 and Y2 = 1.
Let θ = E(Y ).

a) What is the “population” mean in the bootstrap world?
b) What are the possible bootstrap samples (Y ∗

1 , Y
∗
2 )?

c) What’s the probability of drawing each of the possible samples in (b)? (Sanity
check: should sum to 100% probability.)

Discussion Question 12.5 (empirical bootstrap 2). Continue from DQ 12.4.
a) What are the possible values of the bootstrap-world estimator θ̂∗ = (Y ∗

1 + Y ∗
2 )/2?

b) For each of the values in (a), what’s the probability of drawing such a value? (Sanity
check: should sum to 1.)
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c) If we take B bootstrap samples and compute θ̂∗b in each sample (b = 1, . . . , B),
then what’s the bootstrap approximation of the bootstrap-world probability that
θ̂∗ = 0?

d) For large B, explain why the approximation in (c) will be close to your exact
probability in (b).

12.5 Standard Errors

The standard error is a feature of the sampling distribution, so it can also be estimated
by bootstrap. The following describes how to estimate the standard error based on B
draws of θ̂∗b − θ̂, whether from Method 12.1 or any other bootstrap.

The standard error of θ̂ in the real world is simply the standard deviation of its
sampling distribution. Because θ is a constant, the standard error also equals the standard
deviation of the sampling distribution of θ̂ − θ.

Method 12.2 is essentially Algorithm 6.1 of Efron and Tibshirani (1993).

Method 12.2 (empirical bootstrap: SE). Compute B values of θ̂∗b using Method 12.1
or another bootstrap. Then the estimated standard error is

ŜE(θ̂) =

√√√√(B − 1)−1

B∑
b=1

(θ̂∗b − θ̂∗)2, θ̂∗ ≡ 1

B

B∑
b=1

θ̂∗b.

Method 12.3 provides an alternative bootstrap standard error suggested by Cher-
nozhukov, Fernández-Val, and Melly (2013, p. 2222–2223). If the sampling distribution is
(asymptotically) normal, then its standard deviation equals its interquartile range divided
by the standard normal interquartile range. Thus, a bootstrap estimate of the sampling
distribution interquartile range can be used, which may be less sensitive to outliers.

Method 12.3 (empirical bootstrap: SE for normal). First compute B values of θ̂∗b using
Method 12.1 or another bootstrap. Let q∗τ denote the sample τ -quantile among θ̂∗b over
b = 1, . . . , B. Let zτ denote the τ -quantile of a N(0, 1) distribution. Then the estimated
standard error is

ŜE(θ̂) =
q∗0.75 − q∗0.25
z0.75 − z0.25

As B → ∞, the bootstrapped standard error estimator approaches the bootstrap
world “population” standard error, which hopefully is near the real-world standard error.

12.6 Confidence Intervals

There are multiple ways to construct a CI for θ based on B draws of θ̂∗b − θ̂.
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12.6.1 CI Properties

Consider the two-sided CI [L̂, Û ], where the hats remind us that the lower and upper
endpoints are random variables from the frequentist perspective (they can have different
values in different datasets).

If the CI has 1 − α coverage probability (CP), then P(L̂ ≤ θ ≤ Û) = 1 − α. (In
practice, these probabilities are often asymptotic, like P(L̂ ≤ θ ≤ Û) → 1− α.) That is,
given the population/DGP and given our procedure for computing L̂ and Û , there is a
1−α probability of randomly sampling a dataset in which the CI contains the true (non-
random) population parameter θ. For example, if 1−α = 0.90 and we randomly sampled
100 datasets from the same population, then we’d expect around 90 of the corresponding
CIs to contain the true θ.

There are an infinite number of possible two-sided CIs that have correct CP, so some-
times other properties are desired.

An equal-tailed CI satisfies

P(L̂ > θ) = P(Û < θ), (12.6)

i.e., there is equal probability of the CI being “too low” or “too high.” To satisfy the
overall CP, this implies P(L̂ > θ) = P(Û < θ) = α/2. This further implies

P(L̂ ≤ θ) = 1− α/2, P(θ ≤ Û) = 1− α/2, (12.7)

i.e., [L̂,∞) and (−∞, Û ] are one-sided 1 − α/2 CIs. Thus, an equal-tailed 1 − α CI can
be constructed as the intersection of two one-sided 1− α/2 CIs.

A symmetric CI satisfies Û− θ̂ = θ̂−L̂. Equivalently, a symmetric CI can be written
as θ̂ ± ĉ, like ĉ = 1.96 ŜE(θ̂).

If the distribution of estimator θ̂ is normal with mean equal to the true θ, then the
equal-tailed CI is also symmetric. The normal distribution allows some convenient simpli-
fications in the formulas that we’re all familiar with, but that can actually make it more
difficult for us to understand the fundamental properties themselves. (And bootstrap
distributions are not normal.) To help us try to understand the properties themselves,
DQ 12.6 considers a non-normal CI.

Discussion Question 12.6 (CI properties). Consider the CI [L̂, Û ] with P(L̂ = Û =
3) = α and P(L̂ = −∞, Û = ∞) = 1 − α. That is, with probability α we set the CI to
[3, 3], and otherwise we set it to (−∞,∞). (So if α = 0.1 and we randomly sample 100
datasets, the CI is [3, 3] in around 10 of the datasets and the CI is (−∞,∞) in all the
remaining datasets.)

a) Starting from the definition of coverage probability, compute the coverage proba-
bility given θ = 3.

b) Starting from the definition of coverage probability, compute the coverage proba-
bility given θ = 7.

c) Starting from the definition of coverage probability, compute the coverage proba-
bility given general θ ̸= 3.
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d) Let θ = 7; is the CI equal-tailed? Why/not?
e) Let θ = 7; is the CI symmetric? Why/not?

12.6.2 Normal CI, Bootstrapped SE

One approach is to use a bootstrapped standard error from Section 12.5 along with
asymptotic normality. Often,

√
n(θ̂ − θ)

d→ N(0, σ2). (12.8)

Given asymptotic variance estimator σ̂2 p→ σ2, defining ŜE(θ̂) = σ̂/
√
n,

Ẑn ≡ θ̂ − θ

ŜE(θ̂)
=

d→σ−1N(0,σ2)︷ ︸︸ ︷√
n(θ̂ − θ)

σ

p→1︷︸︸︷
σ

σ̂

d→ Z ∼ N(0, 1). (12.9)

The left-hand side has been Studentized since the estimator θ̂ was “centered” (at the
true θ) and “scaled” using the estimated standard error. The right-hand side shows that
the Studentized estimator has an asymptotically pivotal distribution: it does not depend
on any unknown parameters. A statistic with an (asymptotic) pivotal distribution can
be called an (asymptotic) pivot.

Consider an equal-tailed 95% CI for θ. With Z in (12.9), P(−1.96 < Z < 1.96) = 0.95.
Consequently, with .

= meaning we drop asymptotically negligible terms,

0.95
.
= P(−1.96 <

θ̂ − θ

ŜE(θ̂)
< 1.96)

= P(−1.96 ŜE(θ̂)− θ̂ < −θ < 1.96 ŜE(θ̂)− θ̂)

= P(θ̂ − 1.96 ŜE(θ̂) < θ < θ̂ + 1.96 ŜE(θ̂)),

which is the familiar CI θ̂ ± 1.96 ŜE(θ̂).
More generally, let Z follow any continuous distribution. Let zτ denote the τ -quantile

of Z, so P(Z ≤ zτ ) = τ for 0 < τ < 1. For any α, P(zα/2 ≤ Z ≤ z1−α/2) = 1− α. Thus,

1− α
.
= P(zα/2 ≤

θ̂ − θ

ŜE(θ̂)
≤ z1−α/2)

= P(zα/2 ŜE(θ̂)− θ̂ ≤ −θ ≤ z1−α/2 ŜE(θ̂)− θ̂)

= P
(
(−1)(zα/2 ŜE(θ̂)− θ̂) ≥ (−1)(−θ) ≥ (−1)(z1−α/2 ŜE(θ̂)− θ̂)

)
= P(θ̂ − z1−α/2 ŜE(θ̂) ≤ θ ≤ θ̂ − zα/2 ŜE(θ̂)), (12.10)

the CP of the CI [θ̂ − z1−α/2 ŜE(θ̂), θ̂ − zα/2 ŜE(θ̂)].
This CI structure looks unfamiliar and intially wrong. But if Z ∼ N(0, 1), then

zα/2 = −z1−α/2 and (12.10) becomes θ̂ ± z1−α/2 ŜE(θ̂).
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Method 12.4 (bootstrap CI: SE). Let ŜE(θ̂) be a bootstrap standard error estimator as
in Section 12.5. An equal-tailed 1− α asymptotic CI is[

θ̂ − z1−α/2 ŜE(θ̂), θ̂ − zα/2 ŜE(θ̂)
]
,

where zτ is the τ -quantile of the Z in (12.9). For example, if Z ∼ N(0, 1), then z0.025 =
−1.96 or z0.95 = 1.64.

12.6.3 Root Method

Method 12.5 is sometimes called the root method because it is based on the bootstrap
sampling distribution of the root, θ̂ − θ. Method 12.5 is also called the basic bootstrap
or standard bootstrap. As with Method 12.4, Method 12.5 can be used to construct a CI
given any bootstrapped sampling distribution; it is not specific to Method 12.1. Before
describing the method itself, some motivation is provided.

As seen in (12.10), a CI’s lower endpoint actually comes from the upper (1 − α/2)-
quantile of the asymptotic distribution of the Studentized estimator, whereas the upper
endpoint comes from the lower (α/2)-quantile. This may initially seem strange since we’re
so used to Gaussian distributions, which are symmetric, so we usually replace −zα/2 by
+z1−α/2.

Besides the math in (12.10), a simple example may help intuition. Imagine θ̂ ∼ N(θ, 1),
so P(θ−1.96 < θ̂ < θ+1.96) = 0.95. If we happen to sample a dataset with θ̂ = θ+1.96,
then θ = θ̂ − 1.96, i.e., the true θ is below our estimate by 1.96. This characterizes the
lower endpoint: we’ll include values as much as 1.96 below our estimate, but exclude
values even farther below our estimate. The true value θ is farthest below our estimated
θ̂ when θ̂ is drawn from the upper quantiles of its sampling distribution, which is why
an upper quantile determines the lower endpoint. Similarly, if we sample a dataset with
θ̂ = θ − 1.96, then θ = θ̂ + 1.96, i.e., the true θ is considerably above our estimate. This
provides the upper endpoint: we’ll include values up to 1.96 above our estimate, but
exclude values even higher.

Discussion Question 12.7 (deriving CI from sampling distribution). Consider a stan-
dard exponential sampling distribution for the root: θ̂ − θ ∼ Exp(1), whose CDF is
F (x) = 1 − e−x. The τ -quantile is F−1(τ) = − ln(1 − τ). Imagine a two-sided 90% CI
for θ. With α = 0.1, (12.10) suggests the equal-tailed CI [θ̂ − F−1(0.95), θ̂ − F−1(0.05)].
Here, you’ll consider why other variations would not work well. Draw an example with
each of these; try drawing the PDF of θ̂ on a graph first, with the true θ labeled. (Note:
− ln(0.05) ≈ 3 and − ln(0.95) ≈ 0.05, but you shouldn’t need to use any numbers if you
make good drawings.)

a) What’s the CP of the CI [θ̂ − F−1(0.05), θ̂ − F−1(0.95)]?
b) What’s the CP of [θ̂ − F−1(0.95), θ̂ + F−1(0.95)]?
c) What’s the CP of [θ̂ + F−1(0.05), θ̂ + F−1(0.95)]?
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The bootstrap estimates not only the standard error, but the entire sampling distri-
bution of θ̂. In Section 12.6.2, we presumed to know the pivotal asymptotic distribution
of a Studentized estimator, like Z ∼ N(0, 1) in (12.9). Put differently, we used an approx-
imation like θ̂−θ ∼ N(0, ŜE

2
) and then used the fact that the τ -quantile of the N(0, ŜE

2
)

distribution is zτ ŜE.
Instead of imposing asymptotic normality, the bootstrap could estimate the shape

of the sampling distribution. That is, instead of plugging in quantiles from a known
(asymptotic) distribution like N(0, 1), the bootstrap can estimate the relevant quantiles
of the distribution of θ̂ directly.

Consider an example similar to (12.10) but based on the root’s sampling distribution.
Imagine we know the true sampling distribution of the root θ̂−θ, and that its τ -quantiles
are rτ ≡ Qτ (θ̂ − θ). Unlike in (12.10), the standard errors are implicitly captured by rτ .
Then,

1− α
.
= P(rα/2 < θ̂ − θ < r1−α/2)

= P(rα/2 − θ̂ < −θ < r1−α/2 − θ̂)

= P
(
(−1)(rα/2 − θ̂) > (−1)(−θ) > (−1)(r1−α/2 − θ̂)

)
= P(θ̂ − r1−α/2 < θ < θ̂ − rα/2), (12.11)

the coverage probability of the CI [θ̂ − r1−α/2, θ̂ − rα/2].
The rτ in (12.11) can be replaced by bootstrap estimates. That is, rτ can be replaced

by r∗τ , the τ -quantile of the bootstrap-world distribution of θ̂∗ − θ̂. Since θ̂ is a constant
in the bootstrap world, this is equivalent to taking the τ -quantile of θ̂∗ first and then
subtracting θ̂. That is, if q∗τ is the bootstrap τ -quantile of θ̂∗, then r∗τ = q∗τ − θ̂. Thus, the
CI [θ̂ − r1−α/2, θ̂ − rα/2] can be estimated by the bootstrap version [θ̂ − r∗1−α/2, θ̂ − r∗α/2]
or equivalently

[θ̂ − (q∗1−α/2 − θ̂), θ̂ − (q∗α/2 − θ̂)] = [2θ̂ − q∗1−α/2, 2θ̂ − q∗α/2]. (12.12)

This is summarized in Method 12.5.

Method 12.5 (bootstrap CI: basic/standard/root method). Given B bootstrapped es-
timates θ̂∗b for b = 1, . . . , B, an equal-tailed 1− α CI for θ is[

2θ̂ − q∗1−α/2, 2θ̂ − q∗α/2
]
, (12.13)

where q∗τ denotes the sample τ -quantile of θ̂∗b. This is equivalent to [θ̂− r∗1−α/2, θ̂− r∗α/2],
where r∗τ is the sample τ -quantile of the bootstrapped roots, θ̂∗b − θ̂.

If the finite-sample distribution is skewed, this may be more accurate in finite samples
than restricting ourselves to a symmetric CI based on normality. However, I’m not aware
of any theoretical results establishing any such improved accuracy.
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12.6.4 Percentile Bootstrap CI

The percentile bootstrap in Method 12.6 is easy to describe and seemingly intuitive.

Method 12.6 (percentile bootstrap). Assume we have computed a set of B bootstrapped
estimators θ̂∗b for b = 1, . . . , B. Then, the equal-tailed percentile bootstrap 1 − α confi-
dence interval for θ is

[q∗α/2, q
∗
1−α/2], (12.14)

where q∗τ is the sample τ -quantile of θ̂∗b.

Despite the simplicity and intuition, Method 12.6 is more difficult to rationalize. It is
very different than the CI in Method 12.5 that clearly derives from the bootstrap estimate
of the sampling distribution of θ̂∗b. Indeed, in some cases the percentile bootstrap is
worse, but in other cases (like for population quantiles) it performs better; see Kaplan
and Hofmann (2020) and Falk and Kaufmann (1991, p. 487).

The percentile CI is the most closely related to Bayesian approaches (Chapter 14).

12.6.5 Studentized Bootstrap CI

Instead of estimating the sampling distribution of the estimator θ̂ or the root θ̂ − θ, the
bootstrap could estimate the sampling distribution of the Studentized (θ̂ − θ)/ ŜE(θ̂).

With Studentization, both the estimator θ̂ and the standard error estimator ŜE(θ̂)

must be computed in each bootstrap sample. Notationally, let Ẑ = (θ̂ − θ)/ ŜE in the
real world and Ẑ∗b = (θ̂∗b − θ̂)/ ŜE

∗b
in bootstrap sample b, for b = 1, . . . , B. The

standard error estimator ŜE
∗b

could use a formula or a bootstrap estimator. However,
computationally, bootstrapping the standard error requires a bootstrap loop nested inside
the original loop bootstrap (double bootstrap), which may take a long time to compute.

The benefit of the added complication is that Studentization increases accuracy, at
least in theory, as long as the estimator is “smooth” enough (e.g., excluding quantile
regression). In practice, it may require variance stabilization as in Algorithm 12.1 of
Efron and Tibshirani (1993), although I am not familiar with this aspect myself.

Method 12.7 is similar to Method 12.4, but the latter uses quantiles zτ from the
asymptotic distribution of the Studentized estimator, whereas Method 12.7 uses bootstrap
estimates of those quantiles, ẑτ .

Method 12.7 (bootstrap-t/percentile-t/Studentized bootstrap CI). Given bootstrapped
Studentized estimators Ẑ∗b = (θ̂∗b − θ̂)/ ŜE

∗b
, b = 1, . . . , B, an equal-tailed 1− α CI is

[θ̂ − ẑ1−α/2 ŜE, θ̂ − ẑα/2 ŜE], (12.15)

where ẑτ is the sample τ -quantile of the B values of Ẑ∗b.



Chapter 13

More Bootstrap and Subsampling

Unit learning objectives for this chapter

13.1. Develop intuition for how the bootstrap world can be structured to capture depen-
dence among observations in the real world [TLO 2]

13.2. Judge whether or not a particular bootstrap is appropriate in a given empirical
setting [TLO 3]

This chapter describes alternatives to the empirical bootstrap (Section 12.4). Some
alternatives work in cases where the empirical bootstrap fails (e.g., due to non-iid data).
Other topics are briefly mentioned, like bias correction, choice of B, and model selection.

Optional resources for this chapter

• Textbook: Shao and Tu (1995, Ch. 9) at MU library: http://merlin.lib.
umsystem.edu/record=b2717057~S1

• Textbook: Davison and Hinkley (1997, Ch. 8), at MU: http://merlin.lib.
umsystem.edu/record=b3774612~S1

• R: try package boot (Canty and Ripley, 2019; Davison and Hinkley, 1997)

13.1 Exchangeable Weights Bootstrap

The empirical bootstrap of Section 12.4 is actually a special case of exchangeable
weights bootstrap (or “exchangeable bootstrap”). Instead of resampling observations
in each bootstrap sample, observations are reweighted each time using randomly drawn
weights. This can also be interpreted as reweighting F̂ (·). There are general theoretical
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results on exchangeable bootstrap consistency; e.g., see Theorem 3.6.13 of van der Vaart
and Wellner (1996, p. 355).

The empirical bootstrap is also called the multinomial bootstrap because it can
be recast as an exchangeable bootstrap with multinomial weights. Let W be a random
vector of weights, independent of the data, with

W = (W1, . . . ,Wn) ∼ Multinomial(n; 1/n, . . . , 1/n), (13.1)

i.e., n “trials” in which each “category” (i = 1, . . . , n) has the same “success” probability
1/n. Recall that the empirical distribution assigns 1/n probability mass to each obser-
vation i = 1, . . . , n. Instead, the W -weighted empirical distribution assigns probability
mass Wi/n to observation i. (Sanity check: since

∑n
i=1Wi = n, the sum of probabilities

equals n/n = 1.) The bootstrap-world estimator θ̂∗ then applies the function θ(·) to the
weighted empirical distribution. In R and Stata, many estimation functions have some-
thing like a weights= argument that allows you to compute the weighted θ̂∗ readily. In
the case of multinomial weights in which the Wi are nonnegative integers, it is equivalent
to use the Wi as frequency weights (i.e., how many times observation i appears in the
bootstrap sample) or to use the Wi/n-weighted empirical distribution. As before, this
process of randomly drawing W and recomputing θ̂∗ is done B times to generate the θ̂∗b.

More generally, other weights can be used if they are nonnegative and have an ex-
changeable distribution. This property is similar to iid, but weaker. For example, the
multinomial weights Wi are not independent: the last weight Wn is fully determined by the
first n−1 weights because Wi = n−

∑n−1
i=1 Wi to ensure the weights sum to n. Exchange-

ability means that any permutation of the weights vector has the same joint distribution
as the original vector. For example, (W1,W2,W3) has the same joint distribution as
(W3,W1,W2) or as (W2,W1,W3). If the weights don’t sum to n like the multinomial Wi,
then more generally the weighted empirical distribution puts Wi/

∑n
i=1Wi probability on

observation i, which ensures the probabilities sum to 1.

There are many possible examples of exchangeable bootstrap; the following are the
most notable. The m-out-of-n bootstrap is the same as the multinomial bootstrap but
with

∑n
i=1Wi = m for some m < n. However, for the same reasons as in Section 13.4.2,

the computed standard errors have to be scaled by
√
m/n to give standard errors for

θ̂n instead of just θ̂m. This can be confusing, so be careful. “Subsampling” m out of
n observations without replacement can also be written as exchangeable weights; see
Section 13.4. Taking Ei

iid∼ Exp(1) and Wi = Ei/
∑n

i=1Ei makes W ∼ Dir(1, 1, . . . , 1),
called the Bayesian bootstrap (Chapter 14), although from this perspective it is a valid
frequentist bootstrap.

Any of these can replace Method 12.1 to generate the θ̂∗b, and then any of the methods
from Section 12.6 can be applied as before.
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13.2 Other Bootstraps

13.2.1 Parametric Bootstrap

In principle, the nonparametric F̂ (·) could be replaced by a parametric (maximum like-
lihood) estimator. This is the parametric bootstrap. For example, if F (·) is assumed
to be Gaussian, then F̂ (x) = Φ((x− µ̂)/σ̂), and bootstrap samples can be drawn iid from
N(µ̂, σ̂2). As you might guess, this is rarely used in economics.

13.2.2 Residuals Bootstrap

We could also take bootstrap samples of the residuals, ϵ̂i, if we have some regression model
Yi = X ′

iβ + ϵi. The Xi remain the same in the boostrap world, but Y ∗
i = X ′

iβ̂ + ϵ̂∗i ,
where ϵ̂∗i is a random sample from (ϵ̂1, . . . , ϵ̂n). More directly analogous would be sampling
from the error terms ϵi, but of course they are unobserved. As-is, this is less robust than
pairs bootstrap because it requires assumptions about the regression model and implicitly
assumes homoskedasticity.

13.2.3 Bias-Corrected Bootstrap

There is a bias-corrected bootstrap, and a bias-corrected and accelerated bootstrap
(BCa) that seems popular, although I am not familiar with its inner workings. It has
an approximation that is less computationally demanding, the approximate bootstrap
confidence (ABC) interval; see Efron and Tibshirani (1993, §14,22) for an introduction
to both.

13.2.4 Wild Bootstrap

The wild bootstrap is similar to a residuals bootstrap (Section 13.2.2) but generates
the bootstrap world residuals differently. The original proposal is due to Wu (1986).
Instead of drawing ϵ̂∗i from among all n residuals, only ϵ̂i is used, but it is multiplied by
a random weight. Specifically, ϵ̂∗i = V ∗

i ϵ̂i, where V ∗
i is drawn randomly in each bootstrap

replication, like V ∗
i

iid∼ N(0, 1) or P(V ∗
i = −1) = P(V ∗

i = 1) = 1/2. This accounts for
heteroskedasticity, unlike the residuals bootstrap.

13.2.5 Smoothed and Iterated Bootstraps

Various smoothed bootstraps and iterated bootstraps have been proposed due to improved
theoretical properties, though there are practical tradeoffs in terms of computation time
and smoothing parameter selection.
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13.3 Bootstrap Failure

The bootstrap can fail for multiple reasons. One reason is ignoring non-iid sampling; see
Sections 13.5 and 13.6. Another reason is a lack of “smoothness” of an estimator wrt the
data, as seen below.

Discussion Question 13.1 (bootstrap max). Let Xi
iid∼ Unif(0, θ), where θ > 0 is the

upper bound of the distribution. Let Xn:n denote the original sample maximum, and let
X∗b

n:n denote the bth bootstrap sample maximum.
a) What’s P(Xn:n < θ)?
b) What’s P(Xn:n = θ)?
c) What’s P(X∗b

n:n < Xn:n)? Hint: all the Xi are unique wp1, and the X∗
i are resampled

with replacement and independently, and P(A and B) = P(A) P(B) if A ⊥⊥ B.
d) What’s P(X∗b

n:n = Xn:n)? How does this bootstrap world probability compare with
the real world probability in (b)?

e) Does the discrepancy disappear as n → ∞? Hint: limn→∞(1 + cn−1)n = ec.

Another example is the standard “matching” estimator of average treatment effects;
see Abadie and Imbens (2008), “On the Failure of the Bootstrap for Matching Estimators.”

13.4 Subsampling

Much of the bootstrap’s appeal is the ability to compute a CI without deriving an analytic
formula. However, there are cases like DQ 13.1 where the bootstrap does not perform as
desired, even asymptotically.

Subsampling (Politis and Romano, 1994a) is valid under weaker conditions than boot-
strap. The theory is elegant. The drawback is that an additional smoothing parameter
is introduced, and power may be reduced.

The intuition for subsampling is essentially the same as for bootstrap: repeatedly
sample from F̂ (·), compute the estimator, and use the resulting sampling distribution.
The difference is that instead of bootstrap samples of size n drawn with replacement, we
take subsamples of size m < n without replacement.

13.4.1 Subsampling Consistency

The convergence rate can be any nr; I use r = 1/2 for simplicity.

Assumption A13.1 (subsampling limit distribution). With iid sampling,

Jn(·) ≡ P{
√
n(θ̂n − θ) ≤ ·} → J(·)

for some CDF J(·), where population parameter θ is estimated by θ̂n.

Assumption A13.2 (subsample size). As n → ∞, m → ∞ and m/n → 0.
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Method 13.1 (subsampling). Let Qm be the set of all subsamples of size m from the
data, labeled in some way. The cardinality of Qm is

|Qm| =
(
n

m

)
=

n!

m!(n−m)!
.

Let Xm,i be the ith subsample of size m, and let θ̂m,i be the estimator calculated from
Xm,i. To estimate Jn(·), the subsampling distribution is

Lm,n(·) ≡
1

|Qm|

|Qm|∑
i=1

1
{√

m(θ̂m,i − θ̂n) ≤ ·
}
.

In practice, if |Qm| is prohibitively large, a randomly selected subset of Qm is used. Using
m = n2/3 is one often reasonable option (Politis and Romano, 1994a, Rmk. 2.1 and §2.4)
but is not always optimal.

Computationally, the jackknife is a special case of subsampling with m = n− 1, and
the delete-d jackknife is subsampling with m = n − d. However, if d is fixed as n → ∞
(rather than d → ∞), then both of these violate A13.2: (n−1)/n → 1 and (n−d)/n → 1,
violating m/n → 0.

Theorem 13.1 (subsampling). Under A13.1 and A13.2, for all x that are points of
continuity of J(·), Lm,n(x)

p→ J(x).

13.4.2 Standard Errors

You probably shouldn’t compute standard errors using subsampling. First, the standard
deviation (of which the standard error is a special case) is most helpful when the distribu-
tion is Gaussian and thus characterized by its mean and standard deviation. However, if
the asymptotic distribution is normal, you probably don’t need to resort to subsampling.
Second, consistently estimating the CDF J(·) does not imply consistent estimation of the
standard deviation. For both reasons, it’s better to compute a confidence interval directly
(e.g., root method) than estimate standard errors.

Nonetheless, if you must, then read on.
For standard errors, you cannot just use the standard deviation of subsampled esti-

mates since
√
n ̸=

√
m. We want the standard error of the original sample’s estimator,

θ̂n. Since
√
n(θ̂n − θ)

d→ W , defining W as a random variable with W ∼ J(·), then

Var
(√

n(θ̂n − θ)
) .
= Var(W ) =⇒ Var(θ̂n)

.
= Var(W )/n.

Now,
√
m(θ̂m − θ) has the same limit W , which means

Var
(√

m(θ̂m − θ)
) .
= Var(W ) =⇒ Var(θ̂m)

.
= Var(W )/m =

Var(θ̂n)︷ ︸︸ ︷
[Var(W )/n](n/m).
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Thus, if we can estimate Var(θ̂m) from subsampling, the standard error estimate for θ̂n
should be

ŜE(θ̂n) =

√
Var(θ̂n)

.
=

√
(m/n)Var(θ̂m) =

√
m/n ŜE(θ̂m).

That is, take the standard deviation of your subsampled θ̂m,i (i.e., your estimate of
SE(θ̂m)) and multiply by

√
m/n.

13.5 Clustered Data

Discussion Question 13.2 (bootstrap world correlation: pairs). Let Yi be annual labor
income and Xi years of education. Consider a sample of (Yi, Xi) for i = 1, . . . , n.

a) In the real world, how/are Xi and Yi correlated?
b) Imagine that in the bootstrap world, Y ∗

i is drawn randomly from among the ob-
served (Y1, . . . , Yn), and independently X∗

i is drawn randomly from among the ob-
served (X1, . . . , Xn). What’s the correlation between Y ∗

i and X∗
i in the bootstrap

world?
c) How does the usual empirical bootstrap fix this problem and preserve the real-world

correlation in the bootstrap world?

Discussion Question 13.3 (bootstrap world correlation: time). Let Yit = 1 if individual
i is employed in time period t, and Yit = 0 if not employed. Consider panel data with
n = 1000, T = 2. Each time period is one week; e.g., t = 1 is last week, t = 2 is this
week. Assume individuals i are sampled randomly from the population, then observed
for two consecutive weeks each.

a) In the real world, how/are Yi1 and Yi2 correlated?
b) Imagine that in the bootstrap world, each of the nT = 2000 bootstrap sample values

Y ∗
it is drawn randomly with replacement from among the original nT = 2000 sample

values. What’s the correlation between Y ∗
i1 and Y ∗

i2 in the bootstrap world?
c) Propose an alternative bootstrap procedure to fix this problem and preserve the

real-world correlation in the bootstrap world.

See also Cameron, Gelbach, and Miller (2008) and a variety of papers since then.
Clustered data can refer to many situations, but you can just think of panel data

for now. In this case, each “cluster” is an individual i. Since by design we sample the
same individual over time, there is usually dependence in the time dimension even if the
individuals are all independent.

The general solution it to resample (or reweight) individuals. That is, treat i as the
unit for resampling, rather than (i, t).

The biggest difficulty (and need for fancier methods) is when the number of clusters
is “small” (say below 30, or even below 10). This is usually not a problem in panel
data clustered by i (since n is usually big), but it can be a problem with clustering by
geography, institution, etc. For example, there could be individual-level data from only
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10 randomly chosen villages in India, or student-level data from 10 randomly selected
schools. It seems like the wild bootstrap generally does best in such settings.

13.6 Time Series Data

Discussion Question 13.4 (time series bootstrap). Let Yt for t = 1, . . . , T be a sample
of stationary time series data. Specifically, let Yt denote the quarterly unemployment rate
in the U.S. (And please correct me if that’s not thought to be stationary.)

a) In the real world, how/are Yt and Yt−1 correlated?
b) Imagine that in the bootstrap world, Y ∗

t is drawn randomly from among the ob-
served (Y1, . . . , YT ). What’s the resulting correlation between Y ∗

t and Y ∗
t−1 in the

bootstrap world?
c) How well will the corresponding bootstrap CI perform? Why?

With time series data, we want the dependence structure in the real world to be
replicated in the bootstrap world. Here, iid sampling in the bootstrap world is not
sufficient. However, we can still use the same methods like Method 12.5 once we figure
out an appropriate replacement for Method 12.1.

The following overviews are rather cursory. I think all methods are valid for stationary
data (under certain assumptions), and the moving blocks bootstrap may also be valid for
certain types of nonstationary data.

13.6.1 Moving Blocks Bootstrap

The moving blocks bootstrap tries to preserve dependence by sampling blocks of
consecutive observations instead of individual observations.

For example, consider block length ℓ = 7 for sample size T = 42. In the sample,
there are 36 blocks of seven consecutive observations: (X1, X2, . . . , X7), (X2, . . . , X8),
. . . , (X36, . . . , X42). We draw our bootstrap sample by sampling from the 36 blocks (with
replacement) rather than the 42 individual observations. For example, we might draw the
six blocks starting with time (t) indices {4, 35, 20, 21, 2, 11}, so that our bootstrap sample
has indices 4–10, 35–41, 20–26, 21–27, 2–8, 11–17, i.e.,

(Y ∗
1 , . . . , Y

∗
T ) = (Y4, Y5, . . . , Y10, Y35, Y36, . . . , Y41, Y20, Y21, . . . , Y26, Y21, Y22, . . . , Y27,

Y2, Y3, . . . , Y8, Y11, Y12, . . . , Y17). (13.2)

Method 13.2 (moving blocks bootstrap). Let T denote sample size. Given block length
ℓ, the moving blocks bootstrap samples k = T/ℓ blocks of length ℓ from the original
sample, with replacement. There are T − ℓ + 1 blocks to choose from, where a block
consists of consecutive observations (Xt, Xt+1, . . . , Xt+ℓ−1). This is equivalent to picking
k indices from {1, 2, . . . , T − ℓ+1} with replacement for the starting index of each block,
and then filling in the rest of each block with consecutive indices. If the k leading indices
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are Ij for j = 1, . . . , k, then the bootstrap sample is

(XI1 , XI1+1, . . . , XI1+ℓ−1, XI2 , . . . , XI2+ℓ−1, . . . , XIk , . . . , XIk+ℓ−1).

Discussion Question 13.5 (bootstrap block length). Consider the choice of ℓ.
a) Describe the problem with using ℓ = 1.
b) Describe a setting where ℓ = 2 is probably too small.
c) Describe the problem with using ℓ = T .

If the block length ℓ is too small or too large, then moving blocks bootstrap will
perform poorly. The special case ℓ = 1 means the bootstrap world sampling is iid, which
is usually not appropriate. However, at the other extreme, choosing ℓ = T is also bad: the
bootstrap sample is simply the original sample, so there is no variation among bootstrap
samples. The optimal ℓ is not too small or too big. The block length ℓ must be chosen
large enough so that the dependence between Xt and Xt+ℓ is negligible, but small enough
that there are enough possible blocks in the original sample to get enough variation.
Unfortunately, I do not have a good reference for optimal selection of ℓ.

13.6.2 Circular Block Bootstrap

A related method is the circular block bootstrap (Politis and Romano, 1992). The only
difference in implementation is that the time series is made “circular” so that XT+1 ≡ X1,
or generally XT+j ≡ Xj . Thus, one may have blocks like

(XT−1, XT , X1, X2, . . .).

The benefit is that now there are T possible blocks.

13.6.3 Stationary Bootstrap

Another related method is the stationary bootstrap (Politis and Romano, 1994b). The
main difference is that block length is no longer a constant ℓ but randomly drawn (from
some distribution) for each block. Thus, a single bootstrap sample could contain a block
of length 7, a block of length 4, a block of length 5, etc. This seems to improve accuracy.
See the resampling algorithm just before Proposition 1 of Politis and Romano (1994b, p.
1304) with tuning parameter value p = n−1/3 (that determines the distribution of block
length), which is the p rate they suggest on page 1306.

13.7 Other Bootstrap Uses and Considerations

Bootstrap can estimate an estimator’s bias, but it is not always best to bias-correct (sub-
tract the estimated bias from your estimator). Bias-correction reduces bias but increases
variance, so it can decrease or increase mean squared error.
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How big should B be? It depends. And in statistical software, often the default B
is too small. For long-term research projects, I use a small B when exploring data, and
increase B as I become more confident in the model specification. For the very final run,
I use as large a B as I have the patience for, which may take overnight (or longer) to run.
There are also more formal suggestions from Andrews and Buchinsky (2000, 2001, 2002),
and Davidson and MacKinnon (2000).

Bootstrap can also be used for model selection; see Shao and Tu (1995) and Efron
and Tibshirani (1993, §17.6–18), and Liu (2019) for an application to IVQR.
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Exercises

Exercise E13.1. a. Find a published paper with replication materials (i.e., data and
code) available.

b. Replicate one standard error estimate or one CI from the paper (related to their
regressor of interest). It can be any type of estimate (IV, probit, QR, etc.).

c. Estimate the standard error using at least 2 different bootstrap or subsampling
methods. Either way, make sure your methods are appropriate for the type of
data; e.g., use a time series bootstrap for time series data, use a cluster boot-
strap if the original SE are clustered (e.g., with panel data), etc. You may use
either Method 12.2 or Method 12.3, but explain which you use. You may use exist-
ing code/packages/functions/commands, as long as you fully understand how they
work and you describe them enough (probably with quotations from the documen-
tation/help file) to convince me that they indeed do what you hope.

d. Alternatively, instead of part (c), use a single bootstrap/subsampling approach, but
compute at least 3 different types of two-sided CI, choosing among Methods 12.4–
12.7. Again, you may use existing code as long as you understand and describe it
sufficiently well.

e. Qualitatively discuss your results (compared to each other and to the original pa-
per’s result).

Exercise E13.2. a. Find a paper that uses a bootstrap to get a CI for their main
parameter of interest; provide a link to the paper. The paper must be either pub-
lished in a respectable economics journal1 or be unpublished but have an author
who has previously published in such a journal (like any Mizzou econ professor);
or if you really want, you can use an example from an econometrics textbook. Get
their data, and replicate one such CI (you can use their code if they provide it).

b. Construct a DGP based on the empirical joint distribution of the variables in the
data (making a reasonable guess about a structural error term distribution, if neces-
sary). You can make small changes to simplify the DGP, but it should be reasonable
that the observed data came from the DGP.

c. With your DGP, run 1000 simulation replications. In each replication, draw a
new dataset from the DGP, and then compute the paper’s bootstrap CI given the
simulated dataset.

d. Compute the simulated coverage probability, i.e., the number of replications in
which the CI contained the true parameter value (that you chose) divided by 1000.

e. Report and discuss the results.

1For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html

https://ideas.repec.org/top/top.journals.all.html


Chapter 14

Bayesian Bootstrap

Unit learning objectives for this chapter

14.1. Develop intuition about the Bayesian perspective generally, including differences
with the frequentist perspective [TLO 2]

14.2. Interpret priors and posteriors in various models [TLO 1]

This chapter is the long answer to, “What’s the Bayesian bootstrap?” Although the
Bayesian bootstrap has a frequentist interpretation (Section 13.1), I focus on the Bayesian
interpretation.

Sampling is assumed iid, but there are variations allowing for more complex sampling,
like Dong, Elliott, and Raghunathan (2014).

Optional resources for this chapter

• Textbook: Kaplan (2022b) Section 3.1

• R package bayesboot (Bååth, 2018)

• Textbook: Berger (1985)

• Chamberlain and Imbens (2003)

14.1 Bayesian Basics

Generally, the Bayesian approach helps us update our beliefs based on observed data.
Specifically, the beliefs are about population parameters, and the updating requires a
model that connects parameters with data. The prior represents our beliefs about pa-
rameters before seeing the data. The likelihood is the model of how data is generated
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depending on the parameters. The posterior represents our beliefs about parameters
after seeing the data and updating our prior. Very roughly speaking, the posterior is
computed by multiplying the prior by the likelihood.

14.1.1 Beliefs and Data

A belief is quantified as a probability distribution. Let β be the parameter of interest, an
unknown constant. Let random variable B represent our beliefs about β. For example,
the belief that there’s a 50% chance of negative β is expressed as P(B ≤ 0) = 0.5. We
could keep asking ourselves what we believe to be the chance that β is below b, for more
and more b, to trace out the CDF P(B ≤ b). Or, we could take a shortcut and say
B ∼ N(µ, σ2) and pick (µ, σ2) to best match our beliefs. This process of quantifying
real-world beliefs is called prior elicitation.

To confuse you, instead of writing B ∼ N(µ, σ2) to describe our beliefs, we write
β ∼ N(µ, σ2). This looks like we don’t believe in a single true value of β. However, it is
just a notational difference: in Bayesian analysis, the “parameter” actually represents our
beliefs about the parameter, which are naturally expressed as a random variable.

Another main difference with the frequentist approach is how the data are treated.
In the frequentist framework, observations like Yi are treated as random variables whose
distribution depends on the population distribution. In the Bayesian framework, the
data are treated as non-random. That is, we condition on the actually observed values in
the actual dataset. To emphasize this, I’ll generally write observations as yi (lowercase)
instead of Yi.

14.1.2 Model: The Likelihood

“Likelihood” sounds like maximum likelihood, which sounds like fully parametric models
that assume independent Gaussian error terms and such. Indeed, a common first example
is learning about the population mean after specifying a Gaussian likelihood. Similarly,
basic Bayesian linear regression specifies Gaussian error terms.

However, such parametric assumptions are not always required. Even in the frequen-
tist world, there is such thing as a “nonparametric likelihood,” more commonly called em-
pirical likelihood (EL); e.g., see Kiefer and Wolfowitz (1956) and Owen (1988, 2001).
One nonparametric Bayesian approach is the (eventual) focus of this chapter.

14.1.3 Bayes’ Theorem

You’ve probably seen Bayes’ Theorem (or “law” or “rule”):

P(B | A) =
P(B) P(A | B)

P(A)
. (14.1)

There’s also a version with PDFs. Abstracting somewhat, think of A as the data, and
B as the parameter (or, the parameter being in some interval). The LHS is like the
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posterior: what do we believe about the parameter, conditional on the data? The RHS
says this equals our prior P(B) times the likelihood P(A | B), normalized by something
that doesn’t depend on the parameter, P(A).

Discussion Question 14.1 (are you sick?). Let θ = 0 if you’re healthy and θ = 1 if
you’re sick; this is the parameter of interest. Let X = 0 if the test says you’re healthy, and
X = 1 if it says you’re sick. Assume the type I error rate is P(X = 1 | θ = 0) = α = 5%.
Assume the type II error rate is zero. Your doctor says the test reports that you’re sick.
What do you believe? What do you think of the frequentist versus Bayesian approach
here? Hint: does the prior P(θ = 1) matter here? Hint: make a table of the joint
probability distribution of (X, θ), and see the effect of changing various values.

This linked cookie example is also good.

14.1.4 Strengths and Weaknesses

The Bayesian approach has strengths and weaknesses compared with the frequentist ap-
proach. (Some of these are vaguely reminiscent of the comparison of structural and
reduced-form approaches.)

• Strength: having a full posterior distribution for the parameter is much more helpful
for making decisions under uncertainty than just a point estimate and confidence
interval.

– But: there is a large frequentist literature on “statistical decision theory.”

∗ But. . .

• Strength: the ability to incorporate prior beliefs may be valuable if there is im-
portant prior knowledge and/or the data don’t say much (but in the real world a
decision is required, so we can’t just say “I don’t know”), like in macro.

• Weakness: Bayesian analysis is not “objective” due to the influence of the prior over
the posterior.

– But: there are “objective” or “uninformative” priors that may be used, which
make the “objectivity” even more transparent than frequentist methods.

∗ But: which prior is truly objective?
· But the frequentist estimate is equivalent to a Bayesian estimate with

a certain prior. . .

– But: asymptotically, Bayesian and frequentist estimates often agree (Bernstein–
von Mises theorems), and frequentist properties are mostly asymptotic anyway.

∗ But: this assumes a fixed prior asymptotically; in practice, given any
sample size (no matter how large), the prior can have arbitrarily large
influence over the posterior.

https://web.archive.org/web/20201111233914/https://stats.stackexchange.com/questions/2272/whats-the-difference-between-a-confidence-interval-and-a-credible-interval/2287#2287
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· But. . .

• Weakness: misspecification error may be big since a parametric likelihood is re-
quired.

– But: a parametric likelihood is not required.

∗ But: in infinite-dimensional parameter space. . .

– But: lots of people use frequentist maximum likelihood (probit, etc.), which
can also be interpreted under misspecification.

∗ But. . .

As you can see, these are all fruitful discussions, but there are no simple answers.
Also, both Bayesian and frequentist methods can be misused (intentionally or not).

14.2 Beta–Binomial Model

My notation is not all conventional but hopefully helpful. The true population parameter
is the non-random θ, while beliefs about θ are represented by random variable P (stands
for “parameter”). Further, p is a dummy variable (in the calculus sense, not the econo-
metrics sense), representing any possible value of θ but not necessarily the true value,
e.g., for integrating a PDF. Also, variables Yi, N0, and N1 are uppercase when treating
them as random variables but lowercase yi, n0, and n1 when conditioning on observed
variables. (Elsewhere, θ might be used for θ, P , and p alike, and the uppercase/lowercase
distinction may not be made.) When reading other Bayesian material, you can practice
your understanding by trying to infer in each instance whether θ (or whatever variable)
refers to the true θ, the belief P , or the dummy p.

14.2.1 Likelihood, Prior, and Posterior

Likelihood

First, the likelihood: given the parameter, what’s the distribution of the data? Let
Y ∈ {0, 1}, P(Y = 1) = θ, so P(Y = 0) = 1 − θ; Y has a Bernoulli distribution with
parameter θ.

If the likelihood is Bernoulli, why is it called “binomial”? Define

N1 ≡
n∑

i=1

1{Yi = 1}, N0 ≡
n∑

i=1

1{Yi = 0} = n−N1. (14.2)

Given iid Bernoulli Yi, the sampling distribution of N1 given θ is N1 ∼ Binomial(n, θ),
a binomial distribution with parameters n and θ (i.e., how many “successes” out of n,
where the “success” probability is θ). It turns out only N1 is needed to update the prior,
not the individual Yi.
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When treated as non-random, lowercase is used:

n1 ≡
n∑

i=1

1{yi = 1}, n0 ≡
n∑

i=1

1{yi = 0} = n− n1. (14.3)

Prior

Second, the prior: how can we quantify our beliefs about θ? We know 0 ≤ θ ≤ 1, so
we should use a distribution with support on [0, 1]. One convenient option is the beta
distribution; the prior is

P ∼ Beta(a, b). (14.4)

The beta distribution is restrictive, though often reasonable. For example, it cannot
be bimodal, nor does it allow P(P = 0.2) = 0.5.

Posterior

Third, the posterior: given the prior and likelihood, what do we believe about θ after
seeing the data? Magically, the posterior is also a beta distribution, an example of
conjugacy (Section 14.3). Specifically, the posterior is

P | y ∼ Beta(a+ n1, b+ n0), (14.5)

where y = (y1, . . . , yn)
′ is the observed data, (a, b) are from the prior in (14.4), and

(n1, n0) are from (14.3). That is, given our prior belief P ∼ Beta(a, b) and the iid Bernoulli
sampling (likelihood), our belief about θ after seeing the data y is now described by the
updated distribution Beta(a+ n1, b+ n0).

The posterior’s form suggests an interpretation of the prior. If a = b = 0 in the prior,
then the posterior is Beta(n1, n0). So, prior P ∼ Beta(a, b) is like having previously seen
data with a observations of yi = 1 and b observations of yi = 0. If a and b are big,
then we are more confident in our prior, so more data (n0, n1) are needed to change our
beliefs. Conversely, if a = b = 0, then the posterior seems entirely driven by the data,
which seems “objective” (but there are other considerations we won’t discuss).

Posterior Mean

The posterior mean is an important feature of the posterior. It is often reported as
the “point estimate.” Given quadratic loss function L2(·), the posterior mean minimizes
posterior expected loss:

E(P | y) = argmin
g∈[0,1]

E[L2(P, g) | y] = argmin
g∈[0,1]

E[(P − g)2 | y], (14.6)

where the (conditional) expectation is wrt the posterior of P (given data y). Thus, in a
Bayesian sense, the posterior mean is our “best guess” of θ under quadratic loss. Under



152 CHAPTER 14. BAYESIAN BOOTSTRAP

other loss functions, it may be optimal to report the posterior median (or τ -quantile) or
mode.

The mean of a Beta(α, β) distribution is α/(α+β), so the posterior mean of (14.5) is

E(P | y) = a+ n1

a+ b+ n
. (14.7)

If n = 0 (so n1 = 0), then we simply have the prior mean, a/(a + b). If a and b are
big relative to n (strong prior), then the posterior mean remains close to the prior mean.
Conversely, if a and b are small relative to n, then the posterior mean is driven primarily
by the data.

Discussion Question 14.2 (beta–binomial vs. frequentist 1). The usual frequentist
point estimator of θ = P(Y = 1) is θ̂ = N1/n.

a) What is the frequentist justification of θ̂ as a “good” estimator? (Hint: recall P(Y =
1) = E[1{Y = 1}].)

b) Is there any prior (i.e., any a and b) that makes the posterior mean equal the
frequentist estimator, i.e., E(P | y) = θ̂?

Discussion Question 14.3 (beta–binomial vs. frequentist 2). Continue from DQ 14.2.
a) If θ̂ = 0.5 but a/(a+ b) = 1, then is the posterior mean E(P | y) above, below, or

equal to θ̂?
b) If a/(a+ b) ∈ [0, 1] is fixed but a and b increase, then does E(P | y) get closer to or

farther from θ̂, or does it not change? Why?
c) Let N1 = 750 and n = 1000, so θ̂ = 0.75. Is there any (a, b) that makes E(P | y) =

0.5? What values/why?

Discussion Question 14.4 (posterior mean consistency). Consider the beta–binomial
posterior mean in (14.7) as an estimator of the true population parameter θ. Given a
fixed prior Beta(a, b), as n → ∞, does E(P | Y )

p→ θ? (Note uppercase Y ; alternatively,
one could ask about convergence for almost-all sequences y1, y2, . . ..)

14.3 Conjugacy

The nice property in (14.26) where the prior and posterior are in the same distributional
family is called conjugacy. The beta distribution is called the conjugate prior of the
binomial (or Bernoulli) likelihood because it results in conjugacy. If a Gaussian prior had
been used instead, the posterior would not have been Gaussian (or beta).

Generalizing the beta–binomial model, the multinomial likelihood’s conjugate prior
is a Dirichlet distribution. Just as the binomial distribution is a special case of the
multinomial distribution, the beta distribution is a special case of the Dirichlet distribu-
tion. The Dirichlet distribution is a continuous, usually-unimodal (or flat) distribution
over (p1, . . . , pJ) with all pj ≥ 0 and

∑J
j=1 pj = 1. (That is, the Dirichlet distribution’s
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support is the unit J-simplex.) If vector P = (P1, . . . , PJ)
′ follows a Dirichlet distri-

bution, then the marginal distribution of each Pj is a beta distribution. Details are on
Wikipedia, for example.1

The other common example of conjugacy is with Gaussian distributions. For example,
a Gaussian likelihood (with known variance) and Gaussian prior (on the unknown mean
parameter) lead to a Gaussian posterior. This can be extended to unknown variance, too.
These and other examples of conjugate priors can be found on Wikipedia, for example.2

14.4 Dirichlet–Multinomial Model

The beta–binomial model extends to variables with J possible values in the Dirichlet–
multinomial model.

Toward this generalization, it helps to rewrite the beta–binomial in different notation.
Instead of P(Y = 1) = θ and P(Y = 0) = 1 − θ, let θ1 = P(Y = 0) and θ2 = P(Y = 1).
More generally, Y = 0 and Y = 1 could be replaced by Y = v1 and Y = v2, with
respectively n1 and n2 such observations in the sample. Clearly θ1+θ2 = 1 and θ1, θ2 ≥ 0.
Let vector P = (P1, P2) describe our belief about θ = (θ1, θ2). The prior can be written

P ∼ Dir(a1, a2). (14.8)

This is the same as P2 ∼ Beta(a2, a1) and P1 = 1 − P2 (and yes, the parameter order
(a2, a1) is correct). The posterior is

P | y ∼ Dir(a1 + n1, a2 + n2). (14.9)

More generally, let Y ∈ {v1, . . . , vJ}. Let

θ = (θ1, . . . , θJ), θj ≡ P(Y = vj), j = 1, . . . , J. (14.10)

Let P = (P1, . . . , PJ) represent the belief about θ. The Dirichlet prior is

P ∼ Dir(a1, . . . , aJ). (14.11)

In the observed data, define

nj ≡
n∑

i=1

1{yi = vj}, j = 1, . . . , J. (14.12)

Then, the posterior is
P | y ∼ Dir(a1 + n1, . . . , aJ + nJ). (14.13)

For the posterior mean, one can apply the Dirichlet mean formula:

P ∼ Dir(α1, . . . , αJ) =⇒ E(P ) = (α1, . . . , αJ)/

J∑
j=1

αj . (14.14)

1https://en.wikipedia.org/wiki/Dirichlet_distribution
2https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
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Discussion Question 14.5 (Dirichlet posterior mean). Consider the notation, prior,
posterior, and properties in (14.11)–(14.14).

a) For any j, what’s the posterior mean of Pj? That is, what’s the jth component of
(14.14) when you plug in the Dirichlet parameters from the posterior in (14.13)?

b) Which prior makes the posterior means all equal the corresponding frequentist
estimators? That is, which a = (a1, . . . , aJ) makes E(Pj | y) = nj/n for all
j = 1, . . . , J? Hint: recall DQ 14.2(b).

c) Verbally describe the prior from (b).

14.5 Improper Priors

In DQs 14.2, 14.3, and 14.5, the Bayesian posterior mean is identical to the usual fre-
quentist estimator given a particular prior. This is not necessarily the best definition of
an “objective” prior, but it should reassure anybody who thinks the frequentist estima-
tor is more “objective.” It is a type of matching prior, although usually that refers to
matching frequentist coverage probability (rather than the point estimate).

However, in both cases, the required “prior” is not actually a real distribution. That
is, it is not a proper prior, but rather an improper prior. The required Beta(a, b)
“prior” had a = b = 0, i.e., a Beta(0, 0) “distribution.” Even Wikipedia knows that beta
distributions need a > 0 and b > 0; there is no such thing as a Beta(0, 0) distribution.
Similarly, Dir(0, 0, . . . , 0) is not a real distribution.

An improper prior can be interpreted as the limit of a sequence of proper priors.
Consider prior Beta(a, a) with a ↓ 0. There is a corresponding sequence of Beta(a +
n1, a+n0) posteriors. As a ↓ 0, the posterior limit is Beta(n1, n0). Similarly, the improper
Dirichlet prior is the limit when taking a sequence of Dir(a, a, . . . , a) priors as a ↓ 0; the
limit of the corresponding sequence of posteriors is Dir(n1, n2, . . . , nJ).

There are other examples of improper priors. If P ∼ N(µ, τ2), then one could take
τ → ∞. If P ∼ Unif(−a, a), then one could take a → ∞.

14.6 Nonparametric Bayes

A popular “nonparametric” approach comes from Ferguson (1973, 1974). (“Nonparamet-
ric” meaning: not assuming distributions are known up to a finite-dimensional parameter
vector.) A nice, more recent summary with examples from economics is given by Cham-
berlain and Imbens (2003). Instead of considering (belief) distributions over possible
values of finite-dimensional parameter vector θ, this approach uses a Dirichlet process
to describe a probability distribution over possible values of the population CDF. (A
distribution of distributions.) Conjugacy makes the Dirichlet process easy to update.

With an improper prior, the posterior Dirichlet process simplifies to a Dirichlet dis-
tribution. Specifically, the posterior only includes discrete distributions of Y with the
observed yi as the only possible values (i.e., the support). This is convenient, but a little
weird; but, recall the empirical bootstrap world’s “population” distribution F̂ (·) is also
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discrete, and that seemed fine. If n is small and either the continuity of the true CDF
is important or acknowledging possible values outside (yn:1, yn:n) is important, then this
may be of particular concern. Otherwise, it may not actually be much of a practical
disadvantage, especially if the parameter of interest is something like a population mean.

14.7 Bayesian Bootstrap

For simplicity, imagine the yj values are unique. This occurs with probability 1 if the
distribution of Y is continuous.

The Bayesian bootstrap (Rubin, 1981) is the Dirichlet process model with improper
prior, which leads to the posterior

P | y ∼ Dir(1, . . . , 1), (14.15)

where the parameter vector is θ = (θ1, . . . , θn) with θj = P(Y = yj). (If some yj values are
repeated, then the Dirichlet distribution is adjusted accordingly, computing the Dirichlet
parameter by adding together the 1s for each repeated observation of the corresponding
yj value.) Below, properties of this posterior are explored.

14.7.1 Population Mean

Consider the implied posterior for the population mean, µ ≡ E(Y ). Let random variable
M represent our belief about the non-random value µ. The posterior of M follows from
the posterior of P in (14.15) because a specific value of P = p uniquely determines the
value M = m. Specifically, recall that the posterior only includes discrete distributions
on values y1, . . . , yn, with respective probabilities P(Y = yj) = Pj . Thus,

M = E(Y | θ = P ) =

n∑
i=1

yiPi. (14.16)

Computationally, the posterior distribution of M is approximated by repeatedly drawing
P from its posterior and computing the corresponding M .

The expression for M in (14.16) can be used to compute its posterior mean, E(M | y).
Using (14.16),

E(M | y) = E

(
n∑

i=1

yiPi | y

)
=

n∑
i=1

yi E(Pi | y) =
n∑

i=1

yi(1/n) =
1

n

n∑
i=1

yi = ȳ, (14.17)

where E(Pi | y) is from (14.14) with each αj = 1 because (P1, . . . , Pn) | y ∼ Dir(1, . . . , 1).
That is, with this particular nonparametric Bayesian model and improper prior, the poste-
rior mean of (our belief about) the population mean is the same as the basic nonparametric
frequentist estimator.

However, the Bayesian approach provides more than just a point estimate. It provides
an entire posterior distribution describing our belief about µ, which is arguably more
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useful than a sampling distribution. For example, imagine we need to make a decision
whose consequences depend on µ. Given an appropriate loss function that captures
such consequences, along with our posterior for M , we can choose the decision that
minimizes posterior expected loss. A frequentist sampling distribution cannot be used for
this purpose. That said, often the sampling distribution and posterior distribution are
asymptotically equivalent. Such equivalence results are called Bernstein–von Mises
theorems.

If the yi are not unique, then the Dirichlet is modified. Assume the sample contains
values v1, . . . , vJ for some J ≤ n. Assume value vj is observed fj times; that is, there
are fj observations whose y equals vj . Let P = (P1, . . . , PJ)

′ refer to the probabilities
P(Y = vj). Then,

P | y ∼ Dir(f1, . . . , fJ). (14.18)

As a special case, when the yi are unique, then vj = yj (j = 1, . . . , n) and fj = 1, which
reduces (14.18) to (14.15).

14.7.2 Other Population Features

Not only µ, but any feature of the distribution has an easily simulated posterior distribu-
tion. For example, Chamberlain and Imbens (2003) consider quantile regression as well
as an IV estimator of returns to schooling.

Kaplan and Hofmann (2020) show higher-order frequentist accuracy of Bayesian boot-
strap confidence intervals for population quantiles.

14.7.3 Population CDF

Discussion Question 14.6 (Bayesian bootstrap CDF 1). Let yi = i, i = 1, 2, 3. Let
(P1, P2, P3) be a random vector representing our belief about the population probabilities
P(Y = 1), P(Y = 2), and P(Y = 3). The Bayesian bootstrap posterior here is P | y ∼
Dir(1, 1, 1), as usual, with marginal distributions Pj | y ∼ Beta(1, 2).

a) Why is P1 a random variable? E.g., where does the “randomness” come from, and
what does it represent?

b) If we sampled a different dataset with different yi, how/would the meaning of P
differ?

c) Draw the CDF of Y evaluated at point y, FY (y), and label important values in
terms of P(Y = 1), P(Y = 2), and P(Y = 3) (which sum to 1).

d) What is the CDF corresponding to a particular value of P = p?

Discussion Question 14.7 (Bayesian bootstrap CDF 2). Continue from DQ 14.6.
a) What’s the mean of our posterior belief about FY (y1)? Hint: recall the mean of

Beta(a, b) is a/(a+ b).
b) What’s the mean of our posterior belief about FY (y2)? Hint: see previous hint, and

E(A+B) = E(A) + E(B).
c) What’s the mean of our posterior belief about FY (·)?



Appendix to Chapter 14

14.A Technical Details: Posterior Derivation

This section shows the technical details for deriving the beta posterior in (14.5) and the
Dirichlet posterior in (14.13).

First, the PDF of the Beta(a, b) prior is π(·):

π(p) = fa,b(p) = constant× pa−1(1− p)b−1. (14.19)

The constant does not involve argument p and is not necessary to compute the posterior.
Second, consider the likelihood function. For a single Yi, P(Yi = 1) = θ, so

ℓ(yi | θ = p) = p1{yi=1}(1− p)1{yi=0}. (14.20)

Although for maximum likelihood it is common to write likelihoods with reverse notation
ℓ(p | y), I write ℓ(y | p) to emphasize the use of Bayes’ theorem, parallel to (14.1). With
iid sampling, the likelihood for the full vector y = (y1, . . . , yn)

′ is the product of the
individual likelihoods,

ℓ(y | p) =
n∏

i=1

p1{yi=1}(1− p)1{yi=0} = pn1(1− p)n0 , (14.21)

using n1 and n0 defined in (14.3).
Bayes’ theorem in (14.1) extends to PDFs. Generally, consider data vector W and

parameter vector θ, with fW (·) the marginal PDF of W , π(·) the prior on θ, ℓ(W | θ = t)
the likelihood, and π(· | W ) the posterior for θ. Let t be a possible value of θ, and w a
value of W . Then, parallel to (14.1),

π(t | w) =
π(t)ℓ(w | t)
fW (w)

. (14.22)

Further, any PDF must integrate to 1. Thus, integrating the posterior (over t) must
equal 1. Thus, we can ignore any “constant” terms (not depending on t) because they

157
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can be determined later, as whichever constant makes the posterior integrate to 1. Often
this is written as: the posterior is proportional to the prior times the likelihood,

π(t | w) ∝ π(t)ℓ(w | t). (14.23)

In our beta–binomial example,

π(p | y) = π(p)ℓ(y | p)
fY (y)

∝ π(p)ℓ(y | p). (14.24)

Determining the constant is straightforward: if f̃(·) is the unscaled PDF, then the
constant must be 1/

∫
R f̃(t) dt to ensure∫

R
Cf̃(t) dt = C

∫
R
f̃(t) dt = 1. (14.25)

Ignoring the denominator in Bayes’ theorem sounds like cheating, but it actually makes
sense. The denominator represents the prior belief about the marginal distribution of the
data. This sounds like the likelihood, but it’s not. Rather than “conditioning” on the true
value θ, it integrates out θ according to the prior. Thus, it does not contain any “new”
information.

Other terms that do not depend on the parameter can similarly be removed. The
part of the PDF that depends on the parameter is called the kernel. (This differs from
the “kernel” for nonparametric smoothing.) From (14.22), generally, the kernel of the
posterior is proportional to the kernel of the prior times the kernel of the likelihood.

In the beta–binomial model, the kernel approach is used as follows. From (14.19),
the kernel of the beta prior is pa−1(1 − p)b−1. From (14.21), the kernel of the likelihood
is actually the entire likelihood, pn1(1− p)n0 . Thus, up to a multiplicative constant, the
posterior is

π(p | y) ∝

prior kernel︷ ︸︸ ︷
pa−1(1− p)b−1×

likelihood︷ ︸︸ ︷
pn1(1− p)n0 =

posterior kernel︷ ︸︸ ︷
pa+n1−1(1− p)b+n0−1 . (14.26)

By inspection, the posterior kernel has the same form as the beta kernel for the prior.
Indeed, it is a beta kernel, from which we can infer the parameters of the corresponding
beta distribution: a+n1 and b+n0. Thus, the posterior is Beta(a+n1, b+n0), as stated
in (14.5).

More generally, the Dirichlet posterior in (14.13) can be derived formally using the
prior kernel and likelihood. The Dirichlet prior’s kernel is

J∏
j=1

p
aj−1
j = pa1−1

1 × · · · × paJ−1
J . (14.27)

The likelihood is
J∏

j=1

p
nj

j = pn1
1 × · · · × pnJ

J . (14.28)
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Thus,

π(p | y) ∝ (
J∏

j=1

p
aj−1
j )(

J∏
j=1

p
nj

j ) =
J∏

j=1

p
aj+nj−1
j , (14.29)

which is another Dirichlet PDF kernel. Specifically, it corresponds to the posterior already
stated in (14.13).

14.B Dirichlet Process Notes

The Dirichlet process extends the finite-dimensional Dirichlet distribution, analogous to
how a Gaussian process extends a finite-dimensional multivariate Gaussian distribution.
If you’re familiar with Gaussian processes, you may recall that instead of having a vector of
means µ = (µ1, . . . , µJ) like a multivariate Gaussian distribution, a Gaussian process has a
mean function µ(·). When parameters are functions like that, they are often called infinite-
dimensional parameters. Similarly, instead of having a finite-dimensional vector a =
(a1, . . . , aJ) like a Dirichlet distribution, a Dirichlet process has an infinite-dimensional
parameter, the function a(·). (Sometimes a(·) is factored into a scalar parameter times a
probability measure, like a(·) = λH(·).) Similar to how aj helped capture the probability
of θj = P(Y = vj) being high relative to the other θj , a(·) helps capture the relative
probabilities of intervals. For any J < ∞, let −∞ < t1 < · · · < tJ−1 < tJ = ∞ partition
R into intervals B1 = (−∞, t1) and Bj = [tj−1, tj) for j = 2, . . . , J . If random probability
measure P (·) follows a Dirichlet process with parameter a(·), i.e., if

P (·) ∼ DP(a(·)), (14.30)

then for any partition with any J < ∞, the finite-dimensional vector

(P (B1), . . . , P (BJ)) ∼ Dir(a(B1), . . . , a(BJ)). (14.31)

This is analogous to the finite-dimensional marginals of a Gaussian process being multi-
variate Gaussian.

The Dirichlet process prior is easy to update. The posterior is also a Dirichlet process.
After observing value y, you simply add unit probability mass at value y in the Dirichlet
process’s parameter a(·). With notation δv(x) = 1{x = v}, the posterior is

P (·) | y ∼ DP(a(·) +
n∑

i=1

δyi(·)). (14.32)

It is especially easy to use an improper prior. This generalizes the improper Dirichlet
prior that took the limit of priors Dir(a, a, . . . , a) as a ↓ 0. Here, defining 0(·) as the zero
function with 0(x) = 0 for all x ∈ R, the improper prior takes a(·) ↓ 0(·). From (14.32),
the posterior becomes DP(δy1(·)+· · ·+δyn(·)). Using (14.32), if the yj are unique, then this
is just a finite-dimensional Dirichlet distribution. In fact, it is equivalent to the posterior
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from the Dirichlet–multinomial model using J = n with vj = yj for all j = 1, . . . , n and
the improper prior. In that case, the parameter vector of interest is θ = (θ1, . . . , θn) with
θj = P(Y = yj), and the posterior is

P | y ∼ Dir(1, . . . , 1)

as in (14.15). If some yj values are repeated, then the Dirichlet distribution is adjusted
accordingly, adding together the 1s for each repeated value. However, things are trickier
in infinite dimensions; the implied prior for the parameter of interest should be verified
to also not be informative, as discussed by Chamberlain and Imbens (2003).
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Exercises

Exercise E14.1. a. Find and provide a link to a published paper with readily avail-
able data, and (approximately) replicate one of its main parameter estimates from
a cross-sectional analysis (since we didn’t learn about Bayesian bootstrap with de-
pendent data). (Many papers now provide code for replication, too; it may be worth
the extra time to find one such paper since it makes this step easier.)

b. Run a Bayesian bootstrap to get a posterior distribution for that same parameter
of interest.

c. How does the mean of the posterior compare to the original point estimate?

d. How does the shape of the posterior compare to a normal distribution? (E.g., make
a histogram or KDE and just compare visually with a fitted normal distribution.
Recall that a formal hypothesis test may fail to reject even if the posterior looks
very non-normal but the sample size is small, or it may reject even if the posterior
looks very close to normal but the sample size is very large.)

e. How does the posetrior’s standard deviation compare to the originally reported
standard error?

f. Briefly describe a decision for which the full posterior belief would be more helpful
than just a point estimate and CI. (It can be a decision for an individual person, or
a firm, or a government, etc.)

g. Submit your code, your results (output/graphs/etc.), and brief qualitative verbal
notes on your (re-)analysis, including your answers to the above questions and
anything else you find notable.
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Nonparametric Regression
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Introduction

This part concerns nonparametric regression. Both kernel and sieve approaches are dis-
cussed, as well as model selection. Regression discontinuity is discussed as a popular
application.

At a high level, there are three steps for nonparametric regression. First, a family
of possible estimated functions must be specified. This is much larger than a single
functional form (like quadratic), but it still has a particular structure. This step is
especially important with multiple regressors. Second, using the data, the “best” model
within the family is chosen (“model selection”); it should be somewhat flexible to avoid
bias, but too flexible causes “overfitting” problems. Third, a summary of the CEF estimate
is reported. In certain special cases, it may be possible to succinctly describe the full
estimated function itself, but often this is not the most efficient way to communicate
your results and address your economic research question. Also, even if the CEF is not
estimated very precisely, certain summaries may still have small standard errors.

Although not covered, it is straightforward to compute extensions like sieve-type non-
parametric instrumental variables and/or quantile regression, and the theory has been
established. Model selection is trickier, but there are some suggestions in the literature.
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Chapter 15

Nonparametric Methods: Preliminar-
ies

Unit learning objectives for this chapter

15.1. Develop intuition and vocabulary for nonparametric regression [TLO 2]

Optional resources for this chapter

• Textbook: Kaplan (2022b, §8.3) has a very basic intro.

15.1 Motivation

Previously, you learned why the conditional expectation function (CEF) is useful for
description, prediction, and causality. The CEF is m(x) = E(Y | X = x).

• Description: the CEF describes a statistical relationship between Y and X; i.e., it
summarizes the joint distribution of (Y,X).

• Prediction: the CEF provides the “best” (under quadratic loss) predictor of Y given
X = x.

• Causality: under additional identifying assumptions, the CEF is the average struc-
tural function, or the CEF partial derivative is a conditional average structural
effect.

For example, see Sections 6.3, 6.5, and 10.6.1 of Kaplan (2022b) and Sections 2.5, 2.11,
and 2.30 of Hansen (2020a).

The average structural function (ASF) is from Blundell and Powell (2003). Essen-
tially, it takes the structural model Y = h(X,U), plugs in value X = x, then averages
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over the unconditional distribution of the unobservable vector U :

ASF(x) = E[h(x,U)]. (15.1)

The ASF is identified and equals the CEF if X ⊥⊥ U :

E(Y | X = x) = E(h(X,U) | X = x) = E(h(x,U) | X = x) = E[h(x,U)].

The CEF is useful, but previously we only estimated an approximation of it. For
example, Chapter 7 of Kaplan (2022b) explains how to interpret what OLS actually es-
timates: a linear proejction, or “best” linear approximation of the CEF, or “best” linear
predictor; see also Chapter 2 of Hansen (2020a). Unfortunately, the “best” linear approx-
imation of the CEF may be a very poor approximation (if the CEF is not approximately
linear). For example, imagine a structural model Y = m(X)+U , and (lucky us) U ⊥⊥ X,
so m(·) is the CEF. But if we estimate the model Y = β0 + β1X +U , then our estimates
may be very biased.

Nonparametric regression claims to estimate the true CEF. But, depending on your
mood, this is not “really” possible in practice, so these other interpretations are still useful.

15.2 Simple Examples for Intuition

−0.5 0.0 0.5
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1

2
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Y

Figure 15.1: A scatterplot, or Rorschach test: what function do you think fits best?

Discussion Question 15.1 (best fit: scatter). Examine the scatterplot in Figure 15.1.
a) Draw what you consider the “best fit” function on the same graph.
b) How do you define “best,” either formally or informally? Hint: are we just trying to

make a pretty picture, or are we actually trying to learn something (what?) from
the data?

Discussion Question 15.2 (best fit: comparison). Consider two CEF estimators: 1) a
linear (in X) regression, m̂(x) = β̂0 + β̂1x, and 2) a degree n− 1 polynomial (n is sample
size).

https://xkcd.com/1725/
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a) Come up with one model and dataset where (1) is better.
b) Come up with one model and dataset where (2) is better.
c) What are the important features of the model and dataset that help determine

whether CEF estimator (1) or (2) is better?

Figure 15.2 shows a scatterplot of n = 10 points with two estimated CEFs. The
linear-in-variables estimate doesn’t fit any data point exactly, but it looks reasonable.
In contrast, the ninth-degree polynomial fits all data points exactly, but it looks unrea-
sonable. The linear functional form may not be flexible enough, but the ninth-degree
polynomial here is “too flexible” (overfitting).

Given that even a ninth-degree polynomial doesn’t work, if the true CEF is a 20th-
degree polynomial, then how can nonparametric regression claim to estimate it? Indeed,
it’s not magic: we can’t estimate the true CEF perfectly in finite samples. Instead, it’s
about trying to find the optimal amount of “flexibility,” which requires admitting we don’t
know the true CEF’s functional form.
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Y

Figure 15.2: An example of overfitting.

Figures 15.3 and 15.4 are inspired by https://xkcd.com/2048. They each show four
different CEF estimates given the same dataset.

Discussion Question 15.3 (curve fitting 1). Consider Figure 15.3. Focus on the “partial
effect” of X on Y , i.e., the derivative.

a) For the linear, log-linear, and linear-log estimates, say whether each indicates a con-
stant partial effect, increasing partial effect (as X increases), or decreasing partial
effect.

b) Could the linear model have estimated an increasing partial effect? Could the log-
linear model have estimated a constant partial effect? Is either model “more flexible”
than the other? (E.g., is one a special case of the other?)

c) Compare the linear, log-linear, and linear-log estimates. Explain what you can learn
about whether the true CEF has constant, increasing, or decreasing partial effect.

d) Overall, decide which CEF estimate looks the “best” to you, and try to explain why
you think it looks best (including how you define “best”).

https://xkcd.com/2048
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Figure 15.3: Same data, different models.

Discussion Question 15.4 (curve fitting 2). Consider Figure 15.4. Focus on the “partial
effect” of X on Y , i.e., the derivative.

a) Qualitatively, describe how the linear and quadratic estimates differ.
b) Consider the linear, quadratic, and cubic models. Is any of these models “more

flexible” than any other? (E.g., is one a special case of another?)
c) Compare the four models’ estimated partial effects when X ∈ [2.8, 3].
d) Again for X ∈ [2.8, 3], which estimate do you think is closest to the true partial

effect? Why?
e) Overall, decide which CEF estimate looks the “best” to you, and try to explain why

you think it looks best (including how you define “best”).

Discussion Question 15.5 (bias–variance tradeoff). Consider Figure 15.5. Focus on
m(0.5).

a) Which estimator seems to have larger bias? Why?
b) Which estimator seems to have larger variance? Why?
c) Which aspects of the DGP (sample size, CEF, error term, distribution of X, etc.)

could decrease (or increase) the difference in bias? Explain.
d) Which aspects of the DGP could decrease (or increase) the difference in variance?

Explain.

The bias–variance tradeoff in Figure 15.5 and DQ 15.5 is one of the central ideas in
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Figure 15.4: Same data, different models.

nonparametric regression and model selection.

15.3 Terminology

Not everyone uses the terms “nonparametric” and “parametric” the same way; I use the
definitions in Footnote 1 of Chen (2007), which currently Wikipedia also agrees with.1

Definition 15.1 (parametric, nonparametric, semiparametric, semi-nonparametric). A
function or model is parametric if it is specified up to a finite-dimensional vector of
parameters. It is semiparametric there are a finite number of parameters of interest
(whose values we want to learn), but at least one infinite-dimensional nuisance parameter
(whose value we don’t care about. It is nonparametric if all parameters are infinite-
dimensional. It is semi-nonparametric if there are both finite-dimensional and infinite-
dimensional parameters of interest. Usually infinite-dimensional parameter means a
function.

Confusion often arises when it’s unclear whether a term from Definition 15.1 refers
to a “function” or “model.” For example, the CEF m(x) = x′β is parametric because
β is a finite number of unknown parameters. But the CEF model Y = X ′β + U with
E(U | X) = 0 can be called semiparametric because the conditional CDF of U given

1http://en.wikipedia.org/wiki/Parametric_model

http://en.wikipedia.org/wiki/Parametric_model
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Figure 15.5: Four datasets, linear vs. connect-the-dots; true CEF dashed.

X is an infinite-dimensional nuisance parameter, i.e., an unknown function whose value
we don’t care about. This “semiparametric regression model” differs from a parametric
regression model with a stronger assumption like U | X ∼ N(0, σ2

U ). So, depending on the
setting, people may refer to specifying x′β as “parametric estimation” or “semiparametric
estimation.” The confusion could mostly be avoided by saying “parametric CEF” or
“semiparametric regression model.”

Parametric models include probit, logit, Poisson regression, and the old “classical
linear regression model” (which you may be too young to have ever encountered).

Nonparametric regression does not specify the structure of m(·) up to a finite number
of parameters. With scalar X, m(·) is an unknown function. Certain properties of the
function may still be specified; e.g., m(·) is twice continuously differentiable, or other
“smoothness” properties. With vector X, specifying something like m(x1, x2) = g(x1) +
h(x2) adds structure but leaves the model “nonparametric” if g(·) and h(·) are left as
unknown functions.

A common semiparametric CEF is m(x1,x2) = x′
1β + g(x2), where only finite-

dimensional β is of interest and function g(·) is a nuisance parameter. If g(·) were also
of interest, then it would be semi-nonparametric.



Chapter 16

Local (Kernel) Regression

Unit learning objectives for this chapter

16.1. Develop intuition about the bias–variance tradeoff from smoothing and the “local”
approach to nonparametric regression [TLO 2]

16.2. Qualitatively, describe how local/kernel regression works and the conditions under
which it works well [TLO 1]

This chapter introduces one of the two main approaches to nonparametric regression.
Here, X is scalar; for vector X, see Chapter 19. Sampling of (Yi, Xi) is assumed iid unless
otherwise stated; this can also be relaxed. The CEF is m(·), where m(x) ≡ E(Y | X = x).

Optional resources for this chapter

• Textbook: Hansen (2020a), Chapter 19 (kernel/local nonparametric regression)
and Chapter 23 (model selection).

• Textbook: Pagan and Ullah (1999)

• Textbook: Li and Racine (2007)

• Monograph/book: Racine (2008)

• Textbook: Hastie, Tibshirani, and Friedman (2009) Chapter 7 (“Model Assess-
ment and Selection”)

• Bias–variance tradeoff: James et al. (2013, §2.2.2), Hastie, Tibshirani, and
Friedman (2009, §§2.9,5.5.2,7.2,7.3)

• R: built-in package stats (R Core Team, 2022) has some related functions like
loess and ksmooth, although the latter is not recommended even by its own
help file.
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• R: package np (Hayfield and Racine, 2008) has many kernel methods and a
helpful vignette1

• R: package caret (Kuhn, 2020) helps with model selection.

• R: package KernSmooth (Wand, 2019) for its locpoly local polynomial regres-
sion.

• R: see recommended code in Chapter 5 for nonparametric quantile methods.

16.1 Constant “Regressor”

To build intuition, consider a constant regressor, X = 1. The CEF is a single point, and
m(1) = E(Y ).

The unconditional mean can be estimated “nonparametrically”2 by the sample mean,
Ȳ , so m̂(1) = Ȳ . To match later notation,

m̂(1) =

∑n
i=1 Yi∑n

i=1 1{Xi = 1}
, (16.1)

where the denominator equals n because Xi = 1 for i = 1, . . . , n.

16.2 Binary Regressor

Let X ∈ {0, 1}. The CEF consists of m(0) and m(1). Here, m(0) = E(Y | X = 0) is the
mean Y value in the X = 0 subpopulation, and m(1) = E(Y | X = 1) is the mean Y in
the X = 1 subpopulation.

16.2.1 Estimation

Just as the population mean can be estimated by the sample mean, the subpopulation
means can be estimated by the subsample means. Extending (16.1),

m̂(0) =

∑n
i=1 Yi 1{Xi = 0}∑n
i=1 1{Xi = 0}

, m̂(1) =

∑n
i=1 Yi 1{Xi = 1}∑n
i=1 1{Xi = 1}

, (16.2)

16.2.2 Bias–Variance Tradeoff

The following appears frivolous now, but it plants an important seed.
Imagine you compute m̂(0) but are sad about a large standard error. You remember

m̂(0) only uses the Xi = 0 subsample of the data and wonder if you can reduce the
2Although people say “nonparametrically,” I think it should be “semiparametrically” because there is

only one parameter of interest, m(1), with the CDF of Y being an infinite-dimensional nuisance parameter.
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standard error by using the full sample average Ȳ as an estimate of m(0). But then you
worry this is biased, unlike the subsample average.

This shows the bias–variance tradeoff. Including observations with Xi ̸= 0 intro-
duces bias but may reduce variance (squared standard error). The effect on mean squared
error (MSE, variance plus squared bias) could go either way. If the bias is negligible be-
cause m(1) ≈ m(0), then the variance reduction can dominate and decrease MSE, in
which case Ȳ is a better (lower MSE) estimator of m(0) than the Xi = 0 subsample av-
erage. However, if m(1) is far from m(0), then the bias may dominate, so the subsample
average has lower MSE.

Two additional ideas reappear later. First, to compare the estimators’ MSE, we need
to know m(1) and m(0), but that’s what we want to estimate to begin with. Second,
increased model flexibility reduces bias but can increase variance.

16.2.3 Binary Regressor: Small Probability

Discussion Question 16.1 (small probability of conditioning event 1). Let Yi = 1 if
individual i is employed and Yi = 0 if not. Let Xi = 1 if individual i has a college degree
and Xi = 0 if not. Consider the estimator m̂(1) in (16.2). Let N1 ≡

∑n
i=1 1{Xi = 1}.

Let px ≡ P(X = x) > 0 for x = 0, 1. Assume (Yi, Xi) are sampled iid.
a) Let n = 2 and N1 = 1. What are the possible values of m̂(1)?
b) Let n = 10 and N1 = 1. What are the possible values of m̂(1)?
c) Let n → ∞, but still with N1 = 1. In the limit, what are the possible values of

m̂(1)?
d) In terms of n and p1, what’s the mean of the distribution of N1, i.e., what’s E(N1)?
e) If p1 is fixed as n → ∞, then explain why it’s impossible to have E(N1) → 1 as

n → ∞.
f) Allow p1 to change with n, so it is a sequence p1n for n = 1, 2, . . .. Then, explain

how it’s possible to have E(N1) → 1 as n → ∞.

In DQ 16.1, N1 is a local sample size or effective sample size. Even though
there are n observations, only N1 are used for m̂(1). The tradeoff in Section 16.2.2 is
essentially: smaller local sample size avoids bias but can increase variance.

16.3 Discrete Regressor

The ideas of Section 16.2 readily extend to discrete X with more than two possible values.

16.3.1 Estimation

Let x denote any possible value, with P(X = x) > 0. Then,

m̂(x) =

∑n
i=1 Yi 1{Xi = x}∑n
i=1 1{Xi = x}

p→ m(x). (16.3)
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Like before, (16.3) is a subsample average, averaging the Yi for observations with Xi = x.

Discussion Question 16.2 (discrete local regression). You observe n = 100 observations
of wage Yi and age Xi, from a survey of 18- to 65-year-olds. Is (16.3) a good estimator?
Why/not?

16.3.2 Local Sample Size

Consider the asymptotic performance of m̂(x) in (16.3) with J possible values of X. For
simplicity, imagine stratified sampling with n/J observations of Xi = x for each possible
x, so m̂(x) is the average of n/J iid random variables (the corresponding Yi). Although
n/J < n, the local sample size n/J grows proportionally to n (as n → ∞) because J is a
fixed constant. So the convergence rate of m̂(x) remains the same as for the unconditional
sample mean Ȳ .

Discussion Question 16.3 (small probability of conditioning event 2). Let Yi = 1 if
individual i is employed and Yi = 0 if not. Let Xi be the individual’s total consumption
(expenditure) over the past year rounded to the nearest dollar. Consider the estimator
m̂(x) in (16.3). Let Nx ≡

∑n
i=1 1{Xi = x} denote the local sample size. Let px ≡ P(X =

x) > 0. Assume (Yi, Xi) are sampled iid. Hint: DQ 16.1 was similar.
a) Let n = 2 and Nx = 1. What are the possible values of m̂(x)?
b) Let n = 10 and Nx = 1. What are the possible values of m̂(x)?
c) Let n → ∞, but still with Nx = 1. In the limit, what are the possible values of

m̂(x)?
d) In terms of n and px, what’s the mean of the distribution of Nx, i.e., what’s E(Nx)?
e) If px is fixed as n → ∞, then explain why limn→∞ E(Nx) = ∞.
f) Allow px to change with n, so it is a sequence pxn for n = 1, 2, . . .. Then, explain

how it’s possible to have E(Nx) → 1 as n → ∞.

Discussion Question 16.4 (local sample size rate). Continue DQ 16.3. Let Jn be the
number of possible values of X, which is allowed to change with n.

a) Let mn = minxNx, the smallest local sample size (given a particular dataset).
Given Jn, explain why the largest possible value of mn is ⌊n/Jn⌋. (So in the best
case scenario, all local sample sizes have at least mn observations.)

b) If Jn = J , a fixed constant as n → ∞, then how does mn change as n → ∞?
Specifically, if mn ∝ nr, what’s r?

c) Similar to (b): if Jn = n, then what’s mn and r?
d) Similar to (b): if Jn = n1/5, then what’s mn and r?

Having Jn → ∞ in DQ 16.4 does not mean literally there are more and more possible
values, just as n → ∞ does not mean literally we are collecting more and more data.
Both are mathematical approximations to help us better understand finite-sample per-
formance. If you have n = 100 and J = 88, then Jn/n → 0 is probably a bad asymptotic
approximation.
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16.3.3 Bias–Variance Tradeoff

There is again a tradeoff like in Section 16.2.2. In the extreme, pooling all the data makes
the “local” sample size n, reducing variance but increasing bias.

As a compromise, we could only pool similar values of x. For example, if the possible
values are X = 1, 2, 3, . . . , J , we could pool pairs of values together: {1, 2}, {3, 4}, etc.
Modifying (16.3), for odd x,

m̂(x) =

∑n
i=1 Yi 1{Xi ∈ {x, x+ 1}}∑n
i=1 1{Xi ∈ {x, x+ 1}}

p→ E(Y | X ∈ {x, x+ 1}). (16.4)

Intuitively, this should work well if m(x) ≈ m(x + 1), so the increase in squared bias is
smaller than the decrease in variance.

Discussion Question 16.5 (discrete CEF bias and variance). Let X ∈ {1, 2, 3, . . . , J}.
Let m(x) = bx for some constant b. Assume stratified sampling with n/J observations
for each possible Xi = x. Assume Var(Y | X = x) = σ2, a constant (unrelated to x).
Consider the estimator

m̂h(1) =

∑n
i=1 Yi 1{1 ≤ Xi ≤ h}∑n
i=1 1{1 ≤ Xi ≤ h}

.

for some integer h ≥ 1. The first parts concern the bias.
a) Explain why the bias is zero if h = 1, i.e., why E[m̂1(1)] = m(1) = b. (Recall

that with stratified sampling, we have n/J iid draws of Yi from each subpopulation
corresponding to each possible x.)

b) Show why the bias is b/2 when h = 2, i.e., E[m̂2(1)]−m(1) = 3b/2− b = b/2.
c) For general h, show the bias is E[m̂h(1)]−m(1) = b(h− 1)/2.

The next parts concern the variance Var[m̂h(1)] =
∑h

j=1(1/h)
2σ2/(n/J), where σ2/(n/J)

is the variance of a single subsample average with n/J observations.
d) Without using the formula, explain why the variance with h = 1 is Var[m̂1(1)] =

σ2/(n/J).
e) Using the formula, explain why the variance with h = 2 is Var[m̂2(1)] = σ2/(2n/J).
f) Using the formula, explain why the variance as a function of h is Var[m̂h(1)] =

(1/h)[σ2/(n/J)].

Discussion Question 16.6 (discrete CEF MSE). Continue from DQ 16.5. The next
parts concern the bias–variance tradeoff. Recall MSE equals variance plus squared bias.
The “MSE-optimal” estimator has the lowest MSE.

a) Let n = 10, σ2 = 10, J = 2, b = 1. Which h is MSE-optimal? That is, which
estimator has lower MSE, m̂1(1) or m̂2(1)?

b) Now let n = 100, but still with σ2 = 10, J = 2, b = 1. Which h is MSE-optimal?

Discussion Question 16.7 (discrete CEF tradeoff). Continue from DQ 16.6. If h
were real-valued instead of integer-valued, then the first-order condition (FOC) for MSE-
minimization (over h) would be 0 = hb/2 − b2/2 − h−2σ2/(n/J). That is, setting zero
equal to the derivative of MSE (variance plus squared bias) with respect to h. Ignoring
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the b2/2 term, the solution to the FOC is h3 = (2/b)σ2/(n/J), or h = n−1/3(2Jσ2/b)1/3.
The next parts consider the relationship between h and the other variables. For each
of the following, say whether h is increasing or decreasing in the variable, and explain
why that does (or doesn’t) make intuitive sense to you. The first part shows an example
response to help inspire you for the next parts.

a) n: h is decreasing in n. This makes sense because larger n reduces all the subsample
average variances, which reduces the incentive to pool data; e.g., if m̂1(1) already
has a very small variance, then there is very little reason to add bias for the purpose
of reducing variance.

b) J
c) σ2

d) b

16.4 Continuous Regressor: Introduction

Consider the “subsample average” approach when X is continuous. Now P(X = x) = 0:
the probability of even one observation with Xi = x is zero, so we can’t use the Xi = x
subsample. Because our subsample must have Xi ̸= x, bias is unavoidable. There is still
a bias–variance tradeoff: including more Xi in a subsample increases bias but decreases
variance.

There are three main approaches to defining the subsamples. Each forms a branch
within the local approach to nonparametric regression: the partitioning, kernel (local
polynomial), and k-nearest neighbor approaches.

First, we could partition the range of X into mutually exclusive bins. For example,
if X is age in (decimal) years, we can make bins for each integer year: somebody age
X = 24.1 goes in the 24-year-old subsample, as does somebody age X = 24.8, or anyone
with X ∈ [24, 25). The 24-year-old subsample average is then our estimated m̂(x) for any
24 ≤ x < 25. Or the bins can be larger, like [20, 25), [25, 30), etc. This is the foundation
for partitioning estimators; e.g., see Cattaneo and Farrell (2013).

Second, we could use a bin centered at x to estimate m(x). For example, let h > 0 be
the bin width, called the bandwidth. Given x, the bin is [x− h/2, x+ h/2]. Then, the
estimator is

m̂(x) =

∑n
i=1 Yi 1{Xi ∈ [x− h/2, x+ h/2]}∑n
i=1 1{Xi ∈ [x− h/2, x+ h/2]}

, (16.5)

where the denominator is the local sample size (which depends on the dataset). This is
a crude example of kernel regression or local polynomial regression.

Third, instead of a bin, we can use the k observations with Xi closest to x, i.e., the
smallest |Xi−x|. Like before, the corresponding Yi values are averaged to get m̂(x). This
is the core of the k-nearest neighbor (kNN) approach.
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16.5 Local Constant Regression

For this section (and the rest of the chapter), let X denote a continuous random variable,
with x a possible value. As before, Y is the outcome (either discrete or continuous),
(Yi, Xi) are sampled iid, and m(x) = E(Y | X = x).

In practice, the local constant estimator should not be used (see Section 16.6), but it
helps develop intuition.

Following (16.5), consider the local constant regression estimator with bandwidth
h > 0:

m̂h(x) =

∑n
i=1 Yi 1{x− h/2 ≤ Xi ≤ x+ h/2}∑n
i=1 1{x− h/2 ≤ Xi ≤ x+ h/2}

. (16.6)

It averages the Yi for observations whose Xi is close to (within h/2 of) x.
The bandwidth h affects both bias and variance. Larger h decreases variance by

increasing the local sample size. However, larger h increases bias by including Xi farther
from x.

Discussion Question 16.8 (local constant local sample size). Let Xi
iid∼ Unif(0, 1). Let

Nx =
∑n

i=1 1{x− h/2 ≤ Xi ≤ x+ h/2}. Hint: E[1{A}] = P(A).
a) What’s E(Nx) if n = 100, x = 0.5, h = 0.4?
b) What’s E(Nx) if n = 100, x = 0.5, h = 0.2?
c) What’s E(Nx) as a function of n, x, and h?

The follow DQs consider models with no error terms to focus on the bias.

Discussion Question 16.9 (local constant flexibility). Consider the local constant re-
gression estimator in (16.6). Let Yi = sin(Xi) with no error term, so m(x) = sin(x),
0 ≤ x ≤ 2π. Let n = 101. Let Xi = 2π(i − 1)/(n − 1), i = 1, . . . , n. Consider points of
evaluation xj = jπ/2, j = 1, 2, 3, so m(x1) = 1, m(x2) = 0, m(x3) = −1. Hint: draw a
picture.

a) Let h = 4π. Explain why m̂h(x1) = m̂h(x2) = m̂h(x3) = 0.
b) Let h = 2π. Explain why 0 < m̂h(x1) < m(x1), m̂h(x2) = m(x2), and 0 >

m̂h(x3) > m(x3).
c) Let h = π. For each j = 1, 2, 3, explain whether m̂π(xj) is closer to, farther from,

or equally far from m(xj) compared to m̂2π(xj).
d) For each j = 1, 2, 3, explain how m̂h(xj) continues to change (or not) as h continues

to decrease toward zero.
e) Do any of your answers change if instead of evenly spaced Xi we take randomly

sampled Xi
iid∼ Unif(0, 2π)? Why/not?

f) Qualitatively, generally: does the estimator m̂h(x) become more or less flexible as
h ↓ 0? Why?

Discussion Question 16.10 (local constant boundary). Consider the same setup of
DQ 16.9 but with evaluation points x1 = 0 and x2 = 2π, which are boundary points.
Note m(x1) = m(x2) = 0. Hint: draw a picture.

https://en.wikipedia.org/wiki/Sine
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a) Let h = 2π. Explain why m̂h(0) > m(0) and m̂h(2π) < m(2π).
b) Let h = π. Explain why m̂h(0) > m(0) and m̂h(2π) < m(2π).
c) How do m̂h(0) and m̂h(2π) change as h ↓ 0?
d) Recall from DQ 16.9 that m̂h(π) = m(π) = 0 for any bandwidth h. Why was it so

different at x = π than at x = 0 or x = 2π?
e) Do any of your answers change if instead of evenly spaced Xi we take randomly

sampled Xi
iid∼ Unif(0, 2π)? Why/not?

Discussion Question 16.11 (local constant smoothness 1). Consider again the esti-
mator in (16.6). Let Xi

iid∼ Unif(0, 1). Let x0 = 0.5, small ϵ > 0. Consider Yi =
1{x0 − ϵ ≤ Xi ≤ x0 + ϵ} with no error term, so m(x) = 1{x0 − ϵ ≤ x ≤ x0 + ϵ} is the
true CEF. Hint: draw a picture.

a) Explain why the true m(x0) = 1.
b) Let h ≥ 1. Given n and ϵ, what’s the probability of sampling a dataset with

m̂h(x0) = 0? Hint: for a single i, compute the probability that Xi is such that
Yi = 0; then use independence to compute the joint probability for all i = 1, . . . , n.

c) When m̂h(x0) = 0 with h ≥ 1, can using a smaller h help? Why/not?
d) Let h ≥ 1. Given n and ϵ, what’s the probability of sampling a dataset with

m̂h(0.5) = 1?
e) Let n = 10 and ϵ = 0.01; will m̂h(0.5) be reasonable?
f) Let n = 1000 and ϵ = 0.01; will m̂h(0.5) be reasonable?

Discussion Question 16.12 (local constant smoothness 2). Let Xi
iid∼ Unif(−1, 1),

Yi = |Xi|, so m(x) = |x|. Let x0 be the point of interest, so m(x0) is the object of
interest, estimated by m̂h(x0) as in (16.6). Hint: draw a picture.

a) Let x0 = 0.1. Explain why m̂h(x0) is biased if h = 2.
b) Let x0 = 0.1. Explain why m̂h(x0) is not biased if h = 0.1.
c) Let x0 = 0. Explain why m̂h(x0) is biased if h = 2.
d) Let x0 = 0. Is m̂h(x0) biased if h = 0.1? Why/not?
e) Let x0 = 0.01. Explain why m̂h(x0) is biased if h = 2.
f) Let x0 = 0.01. Is m̂h(x0) biased if h = 0.1? Why/not?

Discussion Question 16.13 (local constant bandwidth 1). Consider Figure 16.1.
a) The four bandwidths used were h = 0.032, 0.1, 0.7, 2. Explain which graph you

think corresponds to each h.
b) Which of the four estimators looks “best” to you?
c) How are you defining “best”?
d) Are there other types of “best” we may care about?

Some formal assumptions and a theorem are now given.

Assumption A16.1 (iid). Sampling of (Yi, Xi) is iid.
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Figure 16.1: Comparison of local constant CEF estimator with four different h, same
dataset. Thick black line is true CEF.

Assumption A16.2 (finite variance). For all x in the support of X, Var(Y | X = x) <
∞. Slightly different: E(|Y |2+δ | X) < ∞ almost surely for some (small) δ > 0. (“Almost
surely” meaning the expectation can be infinite for some values of X, but the set of such
values is probability zero.)

Assumption A16.3 (smoothness). The CEF m(·) has two continuous derivatives in a
neighborhood of the point of interest x.

Assumption A16.4 (interior point). Point of interest x is in the interior of the support
of X, i.e., not a boundary point.

Assumption A16.5 (bandwidth). As n → ∞, h ↓ 0 and nh → ∞. More specifically,
nh5 → M ∈ [0,∞).

Theorem 16.1 (local constant asymptotics). Consider a given point x, with interest in
m(x) = E(Y | X = x). Let A16.1–A16.5 hold. Then,

√
nh[m̂h(x)−m(x)− h2B(x)]

d→ N(0, V (x)),

B(x) = (1/24)[m′′(x) + 2m′(x)f ′
X(x)/fX(x)],

V (x) = Var(Y | X = x)/fX(x),
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where m̂h(x) is the local constant regression estimator in (16.6), fX(·) is the PDF of X,
and ′ and ′′ indicate first and second derivatives.

The use of A16.3 was seen in DQs 16.11 and 16.12. If the CEF has a jump discon-
tinuity, then the bias can be severe, even with large n. If the CEF is continuous but
not differentiable at x, then the bias becomes proportional to h instead of the smaller
h2. (Recall h ↓ 0, so h2 < h and h2 ↓ 0 faster than h.) Asymptotically, the theory only
requires such smoothness in a neighborhood of x, but in practice, the estimator can still
be poor even if the assumption is technically satisfied. For example, the assumption is
technically satisfied in DQ 16.11 because ϵ > 0, but the estimator is very bad with small
n.

The use of A16.4 was seen in DQ 16.10. Like a non-differentiable (but continuous)
CEF, having a boundary point makes the bias larger, but the bias still goes to zero as
h ↓ 0. Asymptotically, everything is in an infinitesimal neighborhood of x, so theoretically
x can be infinitesimally close to a boundary, but in practice what matters is if x is within
h of the boundary.

The presence of m′′(x) in the bias was seen in DQ 16.9 for x = π/2 and x = 3π/2.
There, m′′(π/2) < 0 caused negative bias, while m′′(3π/2) > 0 caused positive bias.

The m′(x)f ′
X(x)/fX(x) part of the bias can actually be removed by a more sophis-

ticated estimator; see Section 16.6. Because of this unnecessary bias, the local constant
estimator should not be used in practice.

What does Theorem 16.1 say about the bias–variance tradeoff? As an asymptotic
approximation, the variance is proportional to 1/(nh), and the bias is proportional to h2.
The variance derives from the convergence rate, similar to how the usual

√
n rate means

variance proportional to 1/n, or equivalently standard errors proportional to 1/
√
n. That

is, given asymptotic approximation
√
nh(m̂h(x)−m(x)− h2B(x))

a∼ N(0, V (x)), then

m̂h(x)−m(x)− h2B(x)
a∼ N(0, V (x)/(nh)). (16.7)

Rearranging further,

m̂h(x)
a∼ N(m(x) + h2B(x), V (x)/(nh)). (16.8)

That is, the sampling distribution of m̂h(x) is approximately normal with mean m(x) +
h2B(x) and variance V (x)/(nh).

From (16.8), the corresponding asymptotic MSE (AMSE) can be calculated. With
variance is V (x)/(nh) and bias h2B(x), the AMSE is

AMSEx(h) = V (x)/(nh) + h4[B(x)]2. (16.9)

Using (16.9), given V (x) > 0 and B(x) > 0, some bandwidth h∗ with 0 < h∗ < ∞
minimizes AMSE. This is true because the variance grows to infinity as h ↓ 0, while the
squared bias grows to infinity as h → ∞. Writing the AMSE-optimal bandwidth as h∗,
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the first-order condition (FOC) is

0 =
∂

∂h
AMSEx(h)

∣∣∣∣
h=h∗

= −h−2
∗ V (x)/n+ 4h3∗[B(x)]2

=⇒ h−2
∗ V (x)/n = 4h3∗[B(x)]2 =⇒ h−5

∗ = 4n[B(x)]2/V (x)

=⇒ h∗ = n−1/5

(
V (x)

4[B(x)]2

)1/5

. (16.10)

Discussion Question 16.14 (local constant bandwidth 2). Consider (16.10). For each
of the following, explain whether h∗ is increasing or decreasing in the variable, and try to
explain the intuition for why. Hint: DQ 16.7 was qualitatively similar.

a) n
b) V (x)
c) B(x)

Discussion Question 16.15 (local constant bandwidth 3). Equation (16.10) may help
here. Explain both mathematically and intuitively.

a) I thought bias was bad, and unbiased estimators were good. Wasn’t the BLUE
property of OLS really important, where U stands for “unbiased”? So why don’t we
pick h to make m̂h(x) unbiased, or at least asymptotically unbiased?

b) I thought big standard errors were bad. Here, the standard error is proportional to
1/

√
nh. It seems like making h really close to zero is a bad idea because that makes

the standard errors really big. Why don’t we just use a fixed bandwidth like h = 1
so we can have standard errors proportional to 1/

√
n like with OLS?

The terms undersmoothing and oversmoothing are relative to the AMSE-optimal
bandwidth rate, like h ∝ n−1/5 in (16.10). “Undersmoothing” means smoothing less,
which means smaller h. Given (16.10), h ∝ n−r for r > 1/5 is undersmoothing. “Over-
smoothing” is the opposite: more smoothing than the AMSE-optimal amount. Here,
h ∝ n−r for r < 1/5 is oversmoothing. It can be confusing because the exponent is
negative, and because larger h means less flexibility.

Discussion Question 16.16 (local constant CI). Use Theorem 16.1. Consider a con-
fidence interval for m(x). For simplicity, let V (x) = 1 and h = n−1/5. This is still the
AMSE-optimal bandwidth rate, although the constant in (16.10) is omitted. If the bias
is ignored, then the conventional 95% CI is roughly m̂h(x)± 2n−2/5.

a) Show why this CI is reasonable if B(x) = 0. Hint: draw a normal PDF using (16.8),
with the horizontal axis in units of standard deviations (standard errors).

b) Approximate this CI’s asymptotic coverage probability if B(x) = 2. Hint: draw a
picture of a normal PDF, with the horizontal axis labeled in units of standard errors
(written as a power of n); then draw another normal PDF shifted by the bias.

c) Try to reconcile the following paradox: if h ↓ 0 is required to make the bias disappear
asymptotically, then why does the effect of the bias on this CI still seem to remain
important even asymptotically, even though h = n−1/5 → 0?
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d) Would oversmoothing or undersmoothing fix the problem? Why? Hint: how can
you get the bias to go to zero at a faster rate than the standard error?

16.6 Local Linear Regression

The idea of local linear regression is to regress Y on (1, X) in the local sample. Then,
m̂(x) = β̂0 + xβ̂1.

Discussion Question 16.17 (local linear boundary bias). Consider Yi = Xi, Xi
iid∼

Unif(0, 1). Hint: draw a picture.
a) For OLS regression of Yi on Xi (including an intercept), what’s the (approximate)

bias of m̂(0) = β̂0?
b) For the same OLS regression, what’s the (approximate) bias of m̂(1) = β̂0 + β̂1?
c) For the local constant estimator with bandwidth h, what’s the (approximate) bias

of m̂h(0)?
d) For the local constant estimator with bandwidth h, what’s the (approximate) bias

of m̂h(1)?
e) For the local linear estimator with bandwidth h, what’s the (approximate) bias of

m̂h(0)?
f) For the local linear estimator with bandwidth h, what’s the (approximate) bias of

m̂h(1)?

Local linear regression is always better than local constant regression. This seems
counterintuitive because it seems like the “more flexible” local linear estimator should
have smaller bias but larger variance. However, theoretical results show the asymptotic
variance is actually the same, even though the bias is indeed “smaller” (see below).

Specifically, instead of the local constant bias h2[m′′(x)+2m′(x)f ′
X(x)/fX(x)]/24, the

local linear bias is h2m′′(x)/24. Technically, the local linear bias is not always closer to
zero because the additional terms in the local constant bias could cancel out the m′′(x)
term. But, most people (like me) prefer to have only one source of bias instead of two,
so many people just say the local linear bias is smaller (without quotes). Specifically, the
local linear estimator removes the design bias, i.e., the term involving fX(·).

To formally write the local linear estimator is somewhat complicated, even though
the intuition is relatively simple. First, for comparison, the local constant estimator in
(16.6) is equivalent to

m̂h(x) = β̂0(x), β̂0(x) = argmin
b0

n∑
i=1

1{x− h/2 ≤ Xi ≤ x+ h/2}(Yi − b0)
2. (16.11)

For local linear regression, the regressor Xi is centered at x, and the “residual” changes



16.7. LOCAL POLYNOMIAL REGRESSION 185

from Yi − b0 to Yi − b0 − b1(Xi − x):

(β̂0(x), β̂1(x)) = argmin
(b0,b1)

n∑
i=1

1{x− h/2 ≤ Xi ≤ x+ h/2}(Yi − b0 − b1(Xi − x))2,

m̂h(x) = β̂0(x), m̂′
h(x) = β̂1(x).

(16.12)

Sometimes (Xi − x)/h is used instead of Xi − x, but it only affects the scaling of β̂1.
As seen in (16.12), another advantage of the local linear estimator is easy estimation

of the CEF derivative m′(x). This is another advantage over local constant estimation.

16.7 Local Polynomial Regression

Including local linear as a special case, local polynomial regression runs a polynomial
regression on the local sample. However, local linear remains the most common in prac-
tice because the bandwidth already controls flexibility (the bias–variance tradeoff), so
increasing the polynomial order to increase flexibility is not necessary. Sometimes local
cubic regression is used; analogous to the advantage of local linear over local constant,
local cubic has “smaller” asymptotic bias than local quadratic, while maintaining the same
asymptotic variance.

16.8 Kernel Regression

The idea of kernel regression is to run weighted least squares with weight Wi based on
|Xi − x|. Local regression is a special case with Wi = 1{|Xi − x| ≤ h/2}. The kernel
function describes the “shape” of the weight as a decreasing function of |Xi − x|, while
the bandwidth describes how fast the weight goes to zero as Xi deviates from x.

Practically, the weighting scheme is not as crucially important as the bandwidth; you
would be fine to just use the “Epanechnikov kernel” and not worry about it.

16.8.1 Local Linear Regression: Uniform Kernel

The local linear estimator in (16.12) can be written in terms of the uniform kernel

K(u) = 1{−1/2 ≤ u ≤ 1/2}. (16.13)

As K(u/h) = 1{−1/2 ≤ u/h ≤ 1/2} = 1{−h/2 ≤ u ≤ h/2}, (16.12) becomes

(β̂0(x), β̂1(x)) = argmin
(b0,b1)

n∑
i=1

1{x− h/2 ≤ Xi ≤ x+ h/2}(Yi − b0 − b1(Xi − x))2

= argmin
(b0,b1)

n∑
i=1

K((Xi − x)/h)(Yi − b0 − b1(Xi − x))2. (16.14)

The uniform kernel K(·) in (16.14) can be replaced by any other kernel.
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16.8.2 Other Second-Order Kernels

There are many, many possible kernels; some are more commonly used. The following
are symmetric (K(−u) = K(u)) second-order kernels because with r = 2 they satisfy

1 =

∫
R
K(u) du,

0 =

∫
R
ujK(u) du for all j = 1, . . . , r − 1,

0 < µr ≡
∫
R
urK(u) du < ∞.

(16.15)

Most second-order kernels also satisfy K(u) ≥ 0 for all u ∈ R, so K(·) is a PDF.
The Epanechnikov kernel is the AMSE-optimal choice and makes you sound fancy:

K(u) = 1{|u| ≤ 1}(3/4)(1− u2). (16.16)

The triangle kernel, also known as the tent kernel or Bartlett kernel, is implicitly
used in the Newey and West (1987) long-run variance estimator:

K(u) = 1{|u| ≤ 1}(1− |u|). (16.17)

The Gaussian kernel is simply the standard normal (Gaussian) PDF:

K(u) = (2π)−1/2 exp(−u2/2). (16.18)

The Gaussian kernel differs from the others because it has K(u) > 0 for all u ∈ R, but
K(4) = 0.0001 and K(6) < 10−9, so the practical effect is negligible.

16.8.3 Effect on AMSE

The local linear kernel regression estimator’s asymptotic bias and variance depend on the
kernel and bandwidth. Let κ2 ≡

∫
R[K(u)]2 du; µ2 is from (16.15). AMSE is

AMSEx(h) = V (x)/(nh) + h4[B(x)]2,

V (x) =
Var(Y | X = x)

fX(x)
κ2, B(x) = (1/2)m′′(x)µ2.

(16.19)

The AMSE is minimized by h∗ solving

0 = 4h3∗[B(x)]2 − V (x)

nh2∗
=⇒ h−5

∗ =
4n[B(x)]2

V (x)

=⇒ h∗ = n−1/5

(
V (x)

4[B(x)]2

)1/5

. (16.20)

https://en.wikipedia.org/wiki/Kernel_(statistics)#Nonparametric_statistics
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Table 16.1: Various kernels’ µ2 and κ2 (*: normalized to µ2 = 1).

Kernel µ2 κ2

uniform 1/12 1
triangle 1/6 2/3
Epanechnikov 1/5 3/5

Gaussian 1 (4π)−1/2 ≈ 0.282

uniform* 1 1/(2
√
3) ≈ 0.289

triangle* 1
√
2/(3

√
3) ≈ 0.272

Epanechnikov* 1 3/(5
√
5) ≈ 0.268

Plugging h∗ back into the AMSE in (16.19), the best possible AMSE is

AMSEx(h∗) = V (x)/(nh∗) + h4∗[B(x)]2

= [V (x)/n]n1/5V (x)−1/541/5[B(x)]2/5

+ n−4/5[V (x)]4/54−4/5[B(x)]−8/5[B(x)]2

= n−4/541/5[B(x)]2/5[V (x)]4/5 + n−4/54−4/5[B(x)]2/5[V (x)]4/5

= n−4/5{B(x)[V (x)]2}2/5(41/5 + 4−4/5)

= n−4/5{(1/2)m′′(x)µ2κ
2
2[Var(Y | X = x)/fX(x)]2}2/5(41/5 + 4−4/5)

= n−4/5(µ2κ
2
2)

2/5C(x),

where C(x) gathers the other terms. The main points are a) AMSE is proportional to
n−4/5 and b) AMSE depends on the kernel K(·) through µ2κ

2
2.

Thus, the AMSE-optimal second-order kernel minimizes µ2κ
2
2 subject to K(u) ≥ 0,∫

RK(u) du = 1, K(−u) = K(u). This minimization problem is solved by the Epanech-
nikov kernel; e.g., see Pagan and Ullah (1999, p. 27).

Table 16.1 shows the µ2 and κ2 of aformentioned kernels. The entires with * have
been normalized to µ2 = 1 to facilitate comparison. Recall that the AMSE depends on
µ2κ

2
2, so if we normalize kernels to have µ2 = 1, then the AMSE (given h∗) ranking is

the same as the κ2 ranking. Table 16.1 shows that the Epanechnikov has the smallest
κ2 when normalized to µ2 = 1, as claimed earlier. Nonetheless, its κ2 is not that much
smaller than the worst κ2 (less than 10% better), that of the uniform kernel.

16.8.4 Higher-Order Kernels

For especially smooth CEFs, higher-order kernels reduce bias. Higher-order kernels
satisfy (16.15) with r > 2. With r = 2, the bias is proportional to h2. With r = 4,
this drops to h4, which is smaller than h2 because h ↓ 0. However, this benefit requires
the CEF to have four derivatives instead of just two. The trick is that higher-order K(·)
cancel out higher-order terms in a Taylor expansion of m(·) around x. However, even if
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technically m(·) is smooth enough at x, in finite samples the magic may fail if the Taylor
approximation is poor over the local sample. This is especially important because the
promised small bias leads to a larger AMSE-optimal bandwidth.

Alternatively, instead of worry about which order kernel to use, you could let your
model selection procedure (Chapter 18) search over both h and r.

16.9 Linear Smoother

Local and kernel regression estimators belong to an important class of estimators called
linear smoothers. This is true even with vector X. They are so called because (for any
x) the estimated m̂(x) is a linear combination of the Yi.

Definition 16.1 (linear smoother). Estimator m̂(x̃) is a linear smoother if it can be
expressed as a linear combination of the Yi with linear combination weights Wi(x̃):

m̂(x̃) =
n∑

i=1

Wi(x̃)Yi, (16.21)

where Wi(x̃) may depend on x̃, i, and all the observed (X1, . . . ,Xn), but may not depend
on any Yi.

Discussion Question 16.18 (Ȳ as a linear smoother). Show that the sample mean Ȳ
is a linear smoother. That is, because there is no x here, determine the Wi such that
Ȳ =

∑n
i=1WiYi.

Discussion Question 16.19 (OLS as a linear smoother). Show that OLS is a linear
smoother. That is, determine Wi(x̃) such that (16.21) is the OLS prediction. Hint:
m̂(x̃) = x̃′β̂, and write β̂ in summation notation; then move everything inside the final
summation (that involves Yi).

Local polynomial kernel regression is just weighted OLS, so the linear smoother rep-
resentation is similar to DQ 16.19. Let X = (1, X − x, (X − x)2, . . . , (X − x)p)′. The
CEF estimate is β̂0(x) = (1, 0, . . . , 0)β̂(x), and β̂(x) is linear in Yi:

β̂(x) =

(
n∑

i=1

K((Xi − x)/h)XiX
′
i

)−1 n∑
i=1

K((Xi − x)/h)XiYi. (16.22)

Moving the (1, 0, . . . , 0) and (· · · )−1 inside the last sum,

m̂K,h(x) =

n∑
i=1

Wi(x)Yi,

Wi(x) = (1, 0, . . . , 0)

(
n∑

i=1

K((Xi − x)/h)XiX
′
i

)−1

K((Xi − x)/h)Xi.

(16.23)



Chapter 17

Series and Sieves

Unit learning objectives for this chapter

17.1. Develop intuition about the sieve approach to nonparametric regression, and the
main subcategories [TLO 2]

17.2. Qualitatively, describe how different sieve estimators work and the conditions in
which they work well [TLO 1]

Constrasting the “local” approach of kernel methods (Chapter 16), the sieve approach
is “global,” estimating a single (flexible) function that applies everywhere. This has ad-
vantages especially in extensions like instrumenal variables. Like before, model selection
(Chapter 18) is critical for good performance in practice.

Let m(·) denote the CEF: m(x) = E(Y | X = x), where in this chapter X is scalar.

Optional resources for this chapter

• Textbook: Hansen (2020a) Chapter 20 (nonparametric series regression)

• Textbook: Pagan and Ullah (1999)

• Textbook: Li and Racine (2007) Chapter 15

• Textbook: James et al. (2013) Chapter 7 (“Moving Beyond Linearity”), including
§7.5 (“Smoothing Splines”)

• Textbook: Hastie, Tibshirani, and Friedman (2009) Chapter 5 (“Basis Expan-
sions and Regularization”), including §5.4 (“Smoothing Splines”), and Chapter
11 (“Neural Networks”)

• Original sieve paper: Grenander (1981)

• Example sieve spaces: Chen (2007, §2.3)
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• R: built-in package splines (R Core Team, 2022)

• R: built-in package stats (R Core Team, 2022) has functions like smooth.
spline.

17.1 Discrete Regressor

These examples help build intuition, similar to Sections 16.1–16.3.

17.1.1 Constant Regressor

Imagine X = 1 is just a constant. Then E(Y | X = x) = E(Y ), so estimating the “CEF”
is equivalent to estimating the unconditional mean. The CEF model m(x) = β0 can be
estimated by OLS: m̂(1) = β̂0 = Ȳ , the sample average.

17.1.2 Binary Regressor

See Section 16.2.2 and Chapter 6 of Kaplan (2022b).
If X ∈ {0, 1}, then the true CEF can be written m(x) = β0 + β1x. OLS is consistent:

m̂(x) = β̂0 + β̂1x
p→ m(x) for both x = 0, 1.

Alternatively, consider the less flexible model m(x) = β0. The OLS estimator is
m̂(x) = β̂0 for both x = 0, 1. If m(0) ̸= m(1), then it is biased. Put differently, the
simple model m(x) = β0 is only an approximation of the true CEF m(x) = β0 + β1x,
so there is approximation error. But if m(0) = m(1) = E(Y ), then this estimator is
better: it is unbiased and (usually) has lower variance because it has fewer parameters to
estimate. Even if m(0) ̸= m(1), this estimator may still have lower MSE if the decrease
in variance outweighs the increase in squared bias.

As in Section 16.2.2, there is a bias–variance tradeoff, but it is framed differently.
Before, model flexibility depended on the local sample and the bandwidth. Here, model
flexibility depends on the number of parameters.

17.1.3 Trinary and More

See Chapter 7 of Kaplan (2022b).
If X ∈ {1, 2, 3}, then the true CEF may not have the form m(x) = β0 + β1x. That

is, this linear-in-variables model may be misspecified. OLS can still estimate the BLA,
but the BLA may be a poor approximation of the CEF. (“Best” does not mean “good”!)
Consequently, the CEF “slopes,” m(2)−m(1) and m(3)−m(2), may differ greatly from
the BLA slope β1.
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This can be fixed by using a three-parameter CEF model. For example, there could
be an intercept along with dummies 1{X = 2} and 1{X = 3}. Or there could be an
intercept along with X and X2.

Like before, though, there is a bias–variance tradeoff: including X2 can both reduce
bias (approximation error) and increase variance.

Generalizing to J possible values of X, approximation error is completely eliminated
by a regression with J coefficients like a degree J − 1 polynomial. But, using fewer
coefficients may reduce the variance enough to reduce MSE, even if the bias increases.

In the extreme, consider J ≥ n. If J > n, then there are more parameters than
equations, so OLS cannot even be computed. With J = n, a degree n − 1 polynomial
can perfectly fit all n observations in the data; this suffers from overfitting (DQ 15.2
and Figure 15.2). The approximation error may be minimized, but the variance is huge.

So with J = n, what is best? Maybe we should stop at the degree n− 2 polynomial.
Or maybe an even smaller degree minimizes MSE. Or maybe we should use a degree n−1
polynomial but only allow five non-zero coefficients. Or maybe we should not even use
the polynomial structure, but another flexible structure. These rough ideas are refined in
later sections.

17.2 Polynomial Series

Polynomials are not recommended in practice, but their familiarity helps intuition.
Similar to Section 17.1.3, consider a polynomial CEF approximation,

J−1∑
j=0

βjx
j . (17.1)

Given J , OLS can estimate the coefficients as usual.
If the true CEF m(·) is continuous and X has bounded support, then the approxima-

tion error can be made arbitrarily small for large enough J (Weierstrass, 1885).
The key smoothing parameter that determines model flexibility is J , the number of

terms. Larger J increases flexibility, decreasing bias but increasing variance. Thus, larger
J is analogous to smaller bandwidth for local/kernel regression. Practical procedures for
choosing smoothing parameters are discussed in Chapter 18.

The least squares minimization can be rewritten in terms of functions rather than
coefficients. This is an important shift in perspective. Usually, you have seen

β̂ = argmin
b∈RJ

n∑
i=1

(Yi −
J−1∑
j=0

βjx
j)2, (17.2)

minimizing over b ∈ RJ . Equivalently, consider minimization over functions within the
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set of degree J − 1 polynomials (MJ). Then,

m̂(·) = argmin
g(·)∈MJ

n∑
i=1

[Yi − g(Xi)]
2, MJ ≡ {g(·) : g(x) =

J−1∑
j=0

βjx
j}. (17.3)

Here, g(·) is a generic function, and m̂(·) is the estimated CEF. This is the same estimate
as before, m̂(x) =

∑J−1
j=0 β̂jx

j , but it emphasizes searching over a function space for the
purpose of estimating a function (the CEF).

A pseudo-true parameter can be defined similar to the “best” linear approximation
(e.g., Kaplan, 2022b, §7.4). Specifically, consider the function in MJ that’s “closest” to
the true m(·):

m∗(·) = argmin
g(·)∈MJ

E[(m(X)− g(X))2]. (17.4)

That is, among all functions in MJ , m∗(·) is the best we can hope to estimate. The
difference between m(·) and m∗(·) is the approximation error.

Discussion Question 17.1 (approximate CEF). Consider true CEF m(·) ∈ Θ, the
space of continuous (scalar) functions. Let Q(g(·)) = E[(m(X)− g(X))2], with m∗(·)
as in (17.4). Note Q(m(·)) = 0. As in (17.4), Q(m∗(·)) is a measure of approximation
error, where m∗(·) = arg infg(·)∈MJ

Q(g(·)). As in (17.3), let M3 be the set of quadratic
functions. If the true m(x) = sin(x), then what’s Q(m∗(·))? E.g., is it infinite? close to
zero? etc.

Instead of J , often the smoothing parameter is written Jn to emphasize that it can
grow asymptotically. Indeed, if J were fixed asymptotically, then it’s just OLS!

Discussion Question 17.2 (polynomial models). Let Jn be the number of terms in the
polynomial model given sample size n. Assume a fixed data-generating process.

a) For a given J , as n increases, how do the bias (or approximation error) and variance
change? Why?

b) As n increases, does the MSE-optimal Jn increase, decrease, not change, or some-
times any of these? Explain.

17.3 Series Regression

The ideas in Section 17.2 generalize beyond polynomials to series regression. Generalizing
(17.3),

m̂(·) = argmin
g(·)∈Mn

n∑
i=1

[Yi − g(Xi)]
2, Mn ≡ {g(·) : g(x) =

Jn∑
j=1

βjϕj(x)}, (17.5)

where Jn → ∞ as n → ∞. Together, the {ϕj(·)}∞j=1 form a basis for a certain space
of functions (e.g., continuous functions over a bounded interval), and each ϕj(·) may be
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called a basis function. Each Mn is called a sieve space, with the sequence of Mn

forming a sieve. The general approach is known as the method of sieves (Grenander,
1981): minimization over a sequence of sieve spaces whose approximation error decreases
to zero. This special case where the first Jn terms in a basis form the sieve space is called
series regression.

The choice of basis remains an open problem, but it can be guided by our assumptions
about the true m(·). Different types of functions can be approximated well by different
bases. For example, see Sections 2.3.1 and 2.3.6 of Chen (2007).

17.4 Splines

See page 5571 of Chen (2007).
Splines are a popular special case of the method of sieves. Cubic splines are especially

popular. They are similar to the partitioning CEF estimator (Section 16.4), but instead
of being discontinuous at the partition boundaries, they are continuous and even twice
continuously differentiable (with the third derivative allowed to jump discontinuously at
each knot that separates the intervals of the partition of the support of X).

17.5 Linear vs. Nonlinear Approximation

The sieve spaces in Section 17.3 are “linear” in that if f, g ∈ Mn, then so is linear
combination λf + (1 − λ)g ∈ Mn for any 0 ≤ λ ≤ 1. This is true because f and g are
both defined in terms of coefficients (β1, . . . , βJ) on the same basis functions (ϕ1, . . . , ϕJ).

More generally, nonlinear sieve spaces could be used. For example, imagine the set
of polynomials with J (non-zero) terms, but allowing non-consecutive terms. If J = 2,
this could include β0 + β1x but also β0 + β3x

3 or β5x5 + β7x
7. This is nonlinear because,

for example, (0.5)(β0 + β3x
3) + (0.5)(β5x

5 + β7x
7) involves four terms, not J = 2 terms.

There is also highly nonlinear approximation that increases flexibility by including more
than just one basis, like neural networks; e.g., see White (2006).

17.6 Penalized Regression

See Section 2.3.4 of Chen (2007) and references therein. The general idea is to allow an
infinite-dimensional sieve space, but add a penalty to restrict the size of the sieve space.

The most famous examples of penalized regression are ridge regression and lasso,
which have generalizations like the bridge estimator and elastic net. For lasso, see James
et al. (2013, §6.2.2) and Hastie, Tibshirani, and Friedman (2009, §3.4.2); for bridge and
elastic net, see Hastie, Tibshirani, and Friedman (2009, §3.4.3).

First, ridge regression penalizes large slope coefficients according to their squared
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magnitude. Given penalty parameter λ (like λ = 0.1), the ridge estimator solves

(β̂0, β̂1, . . . , β̂k) = argmin
b0,b1,...,bk

SSR︷ ︸︸ ︷
n∑

i=1

(Yi − b0 − b1X1 − · · · − bkXk)
2+

penalty︷ ︸︸ ︷
λ

k∑
j=1

b2j . (17.6)

If λ = 0, then the penalty is zero, so the ridge estimator is simply OLS, minimizing the
SSR. If λ = ∞, then all β̂1 through β̂k equal zero and β̂0 = Ȳ : even if SSR is large,
making any β̂j ̸= 0 incurs an infinite penalty, so it is never worth the reduction in SSR.
Thus, ridge regression is a shrinkage estimator that “shrinks” all the slope estimates β̂j
toward zero. When λ = 0, there is no shrinkage; as λ increases, there is more shrinkage.

Second, lasso (Knight and Fu, 2000; Tibshirani, 1996) replaces the b2j in (17.6) with
absolute values |bj |:

(β̂0, β̂1, . . . , β̂k) = argmin
b0,b1,...,bk

SSR︷ ︸︸ ︷
n∑

i=1

(Yi − b0 − b1X1 − · · · − bkXk)
2+

penalty︷ ︸︸ ︷
λ

k∑
j=1

|bj | . (17.7)

Again, the intercept b0 is not penalized. Again, as λ → ∞, the slope coefficient estimates
all “shrink” toward zero. However, with ridge, they never quite reach zero exactly unless
λ = ∞ (which is not used in practice), whereas with lasso, usually some coefficients are
shrunk all the way to β̂j = 0 exactly. This can be interpreted as lasso “selecting” only
the Xj for which β̂j ̸= 0. Indeed, lasso is an acronym (although it is usually written in
lowercase) for “least absolute shrinkage and selection operator.”

Ridge and lasso are special cases of the bridge estimator (Frank and Friedman,
1993; Fu, 1998; Knight and Fu, 2000), also called things like Lq lasso or Lq penalized
regression. The bridge penalty replaces ridge’s b2j or lasso’s |bj | with |bj |γ for some γ. As
special cases, ridge has γ = 2, and lasso has γ = 1.

Another generalization of ridge and lasso is the elastic net. There, both |bj | and b2j
are penalized, possibly in different amounts.

17.7 Linear Smoother

Some sieve CEF estimators are linear smoothers, notably series regression. Consider series
regression with basis {ϕj(·)}∞j=1, with sieve size J . Once J is determined, estimation is
simply OLS with regressors (ϕ1(X), . . . , ϕJ(X)). Thus, because OLS is a linear smoother,
so is series regression.



Chapter 18

Model Selection

Unit learning objectives for this chapter

18.1. Develop intuition for different approaches to model selection, including how the
capture the bias–variance tradeoff to avoid overfitting or underfitting [TLO 2]

18.2. Qualitatively, describe how different model selection methods work and when they
should work well [TLO 1]

18.3. Judge whether a particular model selection procedure is appropriate in a given
setting, especially with non-iid data [TLO 3]

As Box (1979, p. 2) famously wrote, “All models are wrong but some are useful.”1

This applies well to nonparametric regression: there’s no pretense of finding the correct
CEF model, but hopefully accounting for bias enables selection of a more useful model.

There are two main approaches to model selection. One general approach (cross-
validation) uses some observations to estimate each candidate model and then tests their
predictions on the rest of the observations. Another general approach (including infor-
mation criteria and GCV) starts with the in-sample fit but then adds a penalty for model
flexibility to avoid overfitting.

Optional resources for this chapter

• Textbook: Kaplan (2022b) Sections 8.3 (intro to model selection) and 15.2
(AIC, BIC)

• Textbooks: Konishi and Kitagawa (2008) and Claeskens and Hjort (2008)

• Textbook: Hansen (2020a) Chapter 23

1See https://en.wikipedia.org/wiki/All_models_are_wrong for additional discussion.
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• Textbook: Hastie, Tibshirani, and Friedman (2009) Chapter 7 (“Model Assess-
ment and Selection”) and §§8.7–8.8 (model averaging)

• Bias–variance tradeoff: James et al. (2013, §2.2.2), Hastie, Tibshirani, and
Friedman (2009, §§2.9,5.5.2,7.2,7.3)

• R: package caret (Kuhn, 2020) helps with model selection for a very wide
variety of estimators

• R: some functions have (some) model selection capability built in; e.g., smooth.
spline() in core R accepts argument cv=TRUE for leave-one-out cross-validation
and cv=FALSE for generalized cross-validation (GCV).

• R: package np (Hayfield and Racine, 2008) has model selection functions corre-
sponding to its kernel estimators

18.1 Purpose

The famous quote from Box (1979) begs the question: “useful” for what? Taking this
question seriously has led to some innovative and practically useful model selection pro-
cedures, like that of Claeskens and Hjort (2003) or Belloni, Chernozhukov, and Hansen
(2014).

For example: useful for estimation or for inference? The model that produces the best
m̂(x) may not produce the best corresponding confidence interval.

Another example: useful for prediction or for causality? The most useful model for
prediction does not necessarily produce the best structural estimates. Historically, most
of the model selection literature focused on prediction. However, the literature on model
selection for structural or treatment effect models is growing. For example, see Belloni,
Chernozhukov, and Hansen (2014), Horowitz (2014), and Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey, and Robins (2018).

One more example: useful for learning m(·) or m(x) or some other summary of m(·)?

18.2 Quantifying Flexibility of Linear Smoothers

Recall that many estimators are linear smoothers (16.21):

m̂(x) =

n∑
i=1

Wi(x)Yi, (18.1)

The fitted values are thus

Ŷi = m̂(Xi) =
n∑

j=1

Wj(Xi)Yj , i = 1, . . . , n. (18.2)
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In matrix notation, let matrix W have row i, column j entry Wij = Wj(Xi), so

Ŷ = WY , (18.3)

where Y = (Y1, . . . , Yn)
′ and Ŷ = (Ŷ1, . . . , Ŷn)

′.
To develop intuition, consider OLS. With OLS, W is the “hat matrix” or projection

matrix X(X ′X)−1X ′. That is, Ŷ is the linear projection of Y onto the column space
of X, which is the n × k matrix with row i equal to X ′

i. The natural measure of model
flexibility for OLS is the number of parameters, which is k, the number of columns in X.
Further, k is the trace of W :

tr(W ) = tr(X(X ′X)−1X ′) = tr((X ′X)−1X ′X) = tr(Ik) = k, (18.4)

the trace of the k × k identity matrix.

Discussion Question 18.1 (OLS flexibility 1). Consider OLS with k parameters (includ-
ing the intercept), and assume no perfect multicollinearity. Consider when OLS perfectly
fits the data, i.e., Ŷi = Yi for all i = 1, . . . , n. Hint: use (18.2)–(18.4).

a) Explain how this is possible with k = n.
b) What is tr(W )? Why?
c) What is W ? In particular, what are the diagonal entries, Wii?

Discussion Question 18.2 (OLS flexibility 2). Consider OLS with only an intercept
term. Hint: use (18.2)–(18.4).

a) What is Ŷi?
b) What is W ? Hint: you can either use X = (1, 1, . . . , 1)′, or use Ŷ = WY .
c) What is k? Why?
d) What is tr(W )? Why?

Equation (18.4) suggests tr(W ) can quantify the flexibility of a linear smoother. This
value is sometimes called the effective number of parameters, or effective dimen-
sion or effective degrees of freedom or equivalent number of parameters.

Consider a linear smoother that perfectly fits the data (extreme overfitting). That is,
Ŷi = Yi for all i = 1, . . . , n. Because Ŷi =

∑n
j=1Wj(Xi)Yj , such an estimator must have

Wi(Xi) = 1 for i = 1, . . . , n, and Wj(Xi) = 0 for j ̸= i. That is, W is the n× n identity
matrix, so Ŷ = WY = InY = Y .

More generally, the main diagonal terms Wii = Wi(Xi) help capture overfitting. They
capture the influence of Yi on Ŷi:

Ŷi = WiiYi +
∑
j ̸=i

WijYj . (18.5)

Many model selection procedures explicitly or implicitly use tr(W ) or the Wii.
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18.3 Bad Approaches

Don’t use hypothesis tests for model selection. The question “Which model provides the
best estimate?” is not answered by “I controlled the type I error rate at level α!” Another
problem is sensitivity to the choice of null (vs. alternative) and choosing α. Further, recall
that we don’t actually want the “correct” model; we want the MSE-optimal estimate. For
example, the true CEF may be a 698th-degree polynomial, but if n = 500, we don’t want
to select the true model for estimation.
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Figure 18.1: R2 (but not accuracy) always increases with model flexibility.

Don’t use R2 or (equivalently) the sum of squared residuals (SSR). Increasing a
model’s flexibility always improves the in-sample fit (i.e., larger R2, lower SSR), so R2

or SSR would tell us to use the most flexible model possible (extreme overfitting). Fig-
ure 18.1 shows how R2 always increases with model flexibility, even when overfitting is
obvious.

Adjusted R2 is better than R2, but there are better approaches. Adjusted R2 is most
similar to GCV; see (18.12).

18.4 Analytic Plug-in Approach

Equation (16.20) gives the AMSE-optimal bandwidth h∗ for the local linear kernel re-
gression estimator, but h∗ is infeasible: it depends on unknown population objects like
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fX(x), Var(Y | X = x), and most vexingly m′′(x). So h∗ cannot directly be used in
practice.

In principle, we can estimate the unknown terms and plug them into the formula,
yielding a plug-in bandwidth. However, large estimation error may cause the plug-in
bandwidth to differ significantly from the infeasible h∗.

One possibility is to iterate: once m(·) and m′′(·) are estimated with an initial pilot
bandwidth, use them to compute the plug-in bandwidth, but then use the subsequent
estimates to compute yet another plug-in bandwidth, etc. However, there is no guarantee
that a fixed point of this iteration (if it even exists) is the optimal bandwidth.

Because of these difficulties, the most common model selection procedures do not rely
on an analytic AMSE formula.

18.5 Cross-Validation

Cross-validation is so important in statistics that the StackExchange statistics website is
named Cross Validated. (Important, plus it’s a good pun.) (Incidentally, it’s also a very
useful website.)

18.5.1 Training and Validation Paradigm
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Figure 18.2: Validation data SSR for estimates from training data.

https://stats.stackexchange.com
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Discussion Question 18.3 (validation SSR). Consider Figure 18.2. The (colored) lines
are CEF estimates m̂(·) based on (only) the “training” data shown. The “validation” data
is not used for estimation. The “validation SSR” is based on the residuals Yi − m̂(Xi) for
validation observations i only.

a) Rank the models from least to most flexible, and explain why.
b) Rank the models from worst to best fit of the training data.
c) Rank the models from worst to best fit of the validation data.
d) Explain why the most flexible model best fits the training data.
e) Explain why the most flexible model does not best fit the validation data.
f) Recall Figure 18.1, in which SSR always decreased (R2 always increased) with model

flexibility. Why doesn’t SSR always decrease with model flexibility here?

One way to describe the problem with R2 and SSR is that they evaluate model accu-
racy with the same data used to estimate the model. That is, they compare the “predicted”
Ŷi with Yi, but Ŷi was computed using Yi itself—this is cheating! If we’re allowed to use
Yi to predict itself, then we should just predict Ŷi = Yi. But we know this is (extreme)
overfitting.

The cross-validation (CV) approach separates Yi from the observations used to
generate Ŷi. That is, it doesn’t allow cheating. The subset of observations used to
generate the predictions is the training sample. These predictions are then compared
to the Yi in the remaining observations, called the validation sample. (Sometimes the
validation sample is called the testing sample, but I think technically the testing sample
is something different.) That is, each model is “trained” (estimated) with one set of
observations but “validated” (evaluated) using a separate set of observations.

18.5.2 LOOCV

One natural approach is to use every observation except (Yi, Xi) to compute Ŷi. This
is called leave-one-out cross-validation (LOOCV) because one observation (i) is “left
out” when computing Ŷi. The LOOCV estimator that omits i is often denoted by a
subscript −i or (−i). For example, m̂−i(·) is a CEF estimator based on observations
1, . . . , i− 1, i+1, . . . , n. The corresponding LOOCV prediction is Ŷi = m̂−i(Xi). Adding
smoothing parameter s (like bandwidth or number of series terms) to the notation, the
LOOCV criterion is

LOOCV(s) =

n∑
i=1

[Yi − m̂−i(Xi; s)]
2. (18.6)

Given set S of possible candidate models, LOOCV chooses model

s∗ = argmin
s∈S

LOOCV(s). (18.7)

Note s∗ also minimizes n−1LOOCV(s).
LOOCV can be slow to compute. With brute force, LOOCV requires computing

LOOCV(s) for each s ∈ S, each of which requires computing m̂−i(·) for i = 1, . . . , n, i.e.,
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computing the estimator n different times. With large n and/or complex estimators, this
could take hours or even days. Choosing values of s carefully can help a lot.

However, for linear smoothers, there is a shortcut that only requires the full-sample
estimator m̂ and not the n leave-one-out estimators m̂−i. In the notation of Section 18.2,

LOOCV(s) =
1

n

n∑
i=1

(
Yi − m̂(Xi; s)

1−Wi(Xi)

)2

. (18.8)

See Section 18.A for the derivation.
Given (18.8), LOOCV can be interpreted as penalized SSR. Recall from (18.5) that

Wi(Xi) measures the influence of Yi on Ŷi, which captures the flexibility of the model.
The penalty term pi in (18.9) is larger when flexibility Wi(Xi) is larger; pi = 1 when
Wi(Xi) = 0, and pi → ∞ as Wi(Xi) → 1. Minimizing (18.8) is equivalent to minimizing

n∑
i=1

pi(Yi − Ŷi)
2, pi ≡ 1/[1−Wi(Xi)]

2, (18.9)

where Ŷi = m̂(Xi; s) implicitly depends on s.
This penalty helps capture the bias–variance tradeoff. Unlike with unpenalized SSR,

there is a tension in (18.8): more flexibility decreases the squared residual but increases
the penalty.

18.5.3 GCV

Craven and Wahba (1978) suggest a generalized cross-validation (GCV) simplifying
(18.8). Instead of penalizing each residual separately, they penalize the SSR by an average
penalty:

GCV =
1
n

∑n
i=1(Yi − Ŷi)

2

[1− tr(W )/n]2
= n−1SSR/[1− tr(W )/n]2. (18.10)

The penalty comes from

1

n

n∑
i=1

[1−Wi(Xi)] =
1

n
(n−

n∑
i=1

Wii) = 1− tr(W )/n. (18.11)

Scaling by n does not change the minimizer, so GCV could also be written as

SSR/[n− tr(W )]2. (18.12)

This is similar to the SSR adjustment in adjusted R2, but here the penalty is squared.

Discussion Question 18.4 (model selection and the CIA). You are interested in the
causal effect of X1 on Y . You have many control variables available and hope to control
omitted variable bias if you choose the right ones to include as X2 in your regression.
That is, you hope to choose X2 to satisfy the conditional independence assumption U ⊥⊥
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X1 | X2. More realistically, you know it won’t hold perfectly (so there will be some bias),
so you want to choose the variables to include in X2 in order to minimize the MSE of β̂1
(recall MSE is variance plus squared bias).

a) What about GCV might be good for picking X2 from among a large set of available
variables (and transformations of variables)?

b) What might GCV do “wrong” here?

18.5.4 Leave-d-out CV

LOOCV generalizes to leave-d-out cross-validation. It’s exactly how it sounds: remove
d observations from the sample, estimate the model to compute predicted Ŷi for the “left
out” observations, and then repeat until you have Ŷi for all i. Then compute the cross-
validated SSR (or other measure of fit). If the linear smoother computational shortcut of
(18.8) cannot be used, then leaving out groups of d is faster: the estimator need only be
computed n/d times instead of n times. LOOCV is the special case d = 1.

18.5.5 k-fold CV

If d is a significant fraction of n, then leave-d-out CV is called k-fold cross-validation
with k = n/d. For whatever reason, k = 5 is very popular. That is, split the sample into
k = 5 roughly equal subsamples, and rotate through: leave out one of the subsamples
and compute the predicted Ŷi for it based on the remaining four subsamples, and do this
five times (once for each subsample). Then compute the cross-validated SSR (or other
measure of fit).

As noted in Section 18.7, this has somewhat different performance than LOOCV.

18.5.6 Time Series

Although LOOCV is inappropriate for time series, the general idea of separating the
training and validation data can be applied.

Basically, we can pretend to travel back to time t and generate forecasts as if we didn’t
know the “future” (t + 1). But because we do know Yt+1, we can compare the forecast
Ŷt+1 to the actual Yt+1. Then we can pretend we live at time t+1 to generate Ŷt+2, and
compare to the true Yt+2, and so on, up to comparing ŶT to YT .

For more, see Section 3.4 of Hyndman and Athanasopoulos (2019), and the corre-
sponding R function tsCV() in package forecast (Hyndman, Athanasopoulos, Bergmeir,
Caceres, Chhay, O’Hara-Wild, Petropoulos, Razbash, Wang, and Yasmeen, 2020; Hynd-
man and Khandakar, 2008).

Discussion Question 18.5 (time series CV). You have T = 300 daily observations Yt,
t = 1, . . . , 300. You want to know if an AR(1) or AR(2) model gives better predictions.
You deem t = 241, . . . , 300 the validation data.
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a) How do you compute the AR(1) and AR(2) “forecasts” for Y241, the first observation
in the validation data? You can use high-level descriptions like, “Estimate an AR(1)
model using. . . .”

b) How do you compute the forecasts for Y242?
c) How do you compute the forecasts for Yt, 242 < t ≤ 300?
d) How do you compute the validation-sample average squared forecast error?
e) How can you decide which model produces better forecasts?

18.6 Information Criteria

Many model selection procedures use an information criterion. An information crite-
rion measures “how bad” a model is. Thus, the information criterion value is computed
for each candidate model, and the model with the lowest value is selected as the “best.”

18.6.1 AIC and BIC

The original is the Akaike information criterion (AIC), proposed by Akaike (1974).
Though originally formulated in the context of maximum likelihood and Kullback–Leibler
divergence and written in terms of maximized likelihood L with k parameters, the AIC
can also be written in terms of the sum of squared residuals (SSR) for linear regression
with k coefficients:

AIC =

fit︷ ︸︸ ︷
−2 ln(L)+

penalty︷︸︸︷
2k or

fit︷ ︸︸ ︷
n ln(SSR)+

penalty︷︸︸︷
2k , (18.13)

where n is the sample size. For both “fit” terms, smaller means better fit. More generally,
k could be replaced by the effective number of parameters, like the trace of the linear
smoother matrix.

Minimizing SSR alone results in overfitting, so the AIC adds a penalty for the model’s
flexibility. More flexibility decreases SSR but increases the penalty, so there is a tension.
If the additional flexibility improves the fit greatly, then the decrease in SSR outweighs
the increased penalty, resulting in lower AIC (better model). But if the fit only improves
very slightly, then the penalty outweighs the reduced SSR, and the AIC says it is not
worth it.

The Bayesian information criterion (BIC) (also SIC, SBC, or SBIC) of Schwarz
(1978) has a similar form:

BIC =

fit︷ ︸︸ ︷
−2 ln(L)+

penalty︷ ︸︸ ︷
ln(n)k or

fit︷ ︸︸ ︷
n ln(SSR)+

penalty︷ ︸︸ ︷
ln(n)k . (18.14)

BIC penalizes flexibility more than AIC. The 2 in the AIC’s penalty is replaced by
ln(n) in BIC. Especially with large n, ln(n) is much larger than 2, so a given increase in
k corresponds to a much larger increase in BIC penalty than in AIC penalty.
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Discussion Question 18.6 (AIC vs. BIC). Consider four models for a particular dataset.
Models A and B have k = 2, whereas models C and D have k = 4. Models A and C have
ln(L) = 2; Model B has ln(L) = 4; Model D has ln(L) = 5. Let n = 55, so ln(n) ≈ 4.
Refer to (18.13) and (18.14).

a) Compute the AIC for each model.
b) Rank the models from best to worst according to AIC.
c) Compute the BIC for each model.
d) Rank the models from best to worst according to BIC.
e) Explain which ranking seems more intuitive to you.
f) Would you guess that AIC or BIC generally tends to pick more flexible models?

Why?

The AIC and BIC are often used for lag length selection in (vector) autoregression.

18.6.2 Other IC

There is GIC, FIC, (M)RIC, EAIC, NIC, and more; e.g., see Shao (1997, p. 223).
The focused information criterion (FIC) of Claeskens and Hjort (2003) stands

out by focusing on a particular parameter rather than prediction accuracy and overall fit.
DiTraglia (2016) extends this idea to GMM.

18.7 Comparison

Shao (1997) provides a unified framework for comparing many different model selection
procedures. Although the setting is linear regression with homoskedastic errors (p. 224),
I’d guess the qualitative results still hold for more complex models. Shao (1997) considers
selecting from pn possible regressors, where pn may increase with n. These regressors may
include nonlinear functions of an observed variable, as in Shao’s Example 3; e.g., a model
may include both X and X2. Each of the pn possible regressors can be either included
or excluded in a given model, so there are 2pn possible models.

Shao (1997, p. 235) delineates three classes of model selection procedures and quali-
tatively compares their performance in different settings. Class 1 includes Mallows’ Cp,
AIC, LOOCV, and GCV. Class 2 includes BIC and delete-d CV with d/n → 1. Class 3
includes delete-d CV with d/n → τ ∈ (0, 1), or k-fold CV with fixed k. Shao (1997) says,
“The methods in class 1 are useful in the case where there is no fixed-dimension correct
model,” as generally assumed with nonparametric regression. Also, “Methods in class 2
are useful in the case where there exist fixed-dimension correct models.” Class 3 methods
lie in between Classes 1 and 2.

For details most closely related to nonparametric regression, see Example 3 and The-
orems 1(i), 3(i), 4(i,ii), and 5.
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18.8 Model Averaging and Ensemble Methods

Instead of trying to pick a single best model (as in model selection), model averaging
assigns weights to different models. The final prediction is the weighted average of all
the models’ predictions. Actually, model selection is a special case of model averaging
where one model has weight 1 and all other models have weight 0. In many cases, model
averaging produces more accurate predictions than model selection. For example, see
Chapter 7 of Claeskens and Hjort (2008), who discuss both frequentist and Bayesian
model averaging.

More generally, ensemble methods combine multiple simpler models or predictions
into a more complex final prediction. Such ensemble methods include bagging (Breiman,
1996) and random forest (Breiman, 2001; Ho, 1995).
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Appendix to Chapter 18

18.A LOOCV for Linear Smoothers

These are the steps to derive (18.8). Let m̂(x) =
∑n

j=1Wj(x)Yj . This implies

m̂(Xi) =
n∑

j=1

Wj(Xi)Yj = Wi(Xi)Yi +
∑
j ̸=i

Wj(Xi)Yj .

The LOOCV estimator is

m̂−i(Xi) =
∑
j ̸=i

Wj(Xi)Yj/
∑
j ̸=i

Wj(Xi).

Then, since 1 =
∑n

j=1Wj(Xi) = Wi(Xi) +
∑

j ̸=iWj(Xi),

m̂−i(Xi) =
m̂(Xi)−Wi(Xi)Yi

1−Wi(Xi)
,

LOOCV = n−1
n∑

i=1

[Yi − m̂−i(Xi)]
2 = n−1

n∑
i=1

[
Yi −

m̂(Xi)−Wi(Xi)Yi
1−Wi(Xi)

]2
= n−1

n∑
i=1

(
Yi − m̂(Xi)

1−Wi(Xi)

)2

.
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Chapter 19

Multiple Regressors

Unit learning objectives for this chapter

19.1. Develop intuition for the curse of dimensionality and how to address it [TLO 2]

19.2. Describe different functional form restrictions that help reduce the curse of dimen-
sionality [TLO 1]

19.3. Judge which multivariate nonparametric regression model seems most appropriate
in a given example [TLO 3]

Unlike with OLS, it is not trivial to simply another regressor to a nonparametric
regression model. This chapters describes the difficulty and some approaches.

Optional resources for this chapter

• Textbook: Hastie, Tibshirani, and Friedman (2009) Chapter 9 and Sections 5.7
and 6.4

19.1 Curse of Dimensionality

Discussion Question 19.1 (curse of dimensionality 0). Let n = 1000. Let X =
(X1, . . . , X6), where X1, X2, X3, and X4 are binary, X5 ∈ {North, South, East, West}
(geographic region), and X6 ∈ {no high school, high school, college, graduate}. We wish
to nonparametrically estimate E(Y | X = x) for all possible values of x, by taking the
sample mean of the values Yi for which Xi = x; i.e., taking the sample mean within each
“cell.” Denote subsample sizes as Nx ≡

∑n
i=1 1{Xi = x}.

a) Among all possible samples, what’s the largest possible value of minxNx?
b) Is n = 1000 big enough for asymptotic approximations to be reasonable?

209
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Discussion Question 19.2 (curse of dimensionality 1). Consider a kernel regression es-
timator using a uniform kernel, first in one dimension (scalar X), then higher dimensions.
Interest is in m(x0) = E(Y | X = x0). Let x0 = 0.05 with bandwidth h = 0.1. Let n
denote sample size.

a) Let Xi ∼ Unif(0, 1). What’s the probability that a single Xi falls in the uniform
kernel window [x0 − h/2, x0 + h/2]? That is, what’s P(Xi ∈ [x0 − h/2, x0 + h/2])?

b) Let Xi ∼ Unif([0, 1]2), the uniform distribution over the unit square [0, 1] × [0, 1];
i.e., the PDF of Xi is f(x) = 1 if x ∈ [0, 1]2 and f(x) = 0 elsewhere. What’s the
probability that a single Xi falls in the window [x0−h/2, x0+h/2]× [x0−h/2, x0+
h/2]?

c) What’s the probability of falling in [x0−h/2, x0+h/2]3 if Xi is uniformly distributed
over the unit cube [0, 1]3?

d) What’s the probability of falling in the window [x0−h/2, x0+h/2]d if Xi is uniformly
distributed over the d-dimensional hyper-cube [0, 1]d?

e) For general h, if 0 ≤ x0−h/2 < x0+h/2 ≤ 1 and again Xi is uniformly distributed
over [0, 1]d, then what’s P(Xi ∈ [x0 − h/2, x0 + h/2]d)?

Discussion Question 19.3 (curse of dimensionality 2). Continue from DQ 19.2.
a) Let N0 =

∑n
i=1 1

{
Xi ∈ [x0 − h/2, x0 + h/2]d

}
be the local sample size. Explain

why the mean local sample size E(N0) is proportional to nhd with iid sampling.
Hint: Bi ≡ 1{Xi ∈ window} is a Bernoulli random variable, so under iid sam-
pling,

∑n
i=1Bi has a binomial distribution with parameters n (sample size) and

p = P(Xi ∈ window); the mean of a Binomial(a, b) rv is ab.
b) Given the same h, do you think the variance of the local constant regression esti-

mator is smaller, larger, or the same with large d compared to d = 1? Why?
c) Given the same h, do you think the bias of the local constant regression estimator

is smaller, larger, or the same with large d compared to d = 1? Why?
d) Compared to the AMSE-optimal h∗ with d = 1, do you think the AMSE-optimal

bandwidth with large d is smaller, larger, or the same? Why?
e) With the AMSE-optimal bandwidth, do you think the AMSE is smaller, larger, or

the same with large d compared to d = 1? Why?

Generally, when there are d regressors instead of a single X, the (second-order) kernel
regression estimator’s convergence rate slows from

√
nh to

√
nhd. The latter is smaller

because h ↓ 0. The adverse effect of the dimension d on the convergence rate is called the
curse of dimensionality for nonparametric estimators. Given the same bandwidth, this
means a larger order of magnitude of standard errors, which are proportional to 1/

√
nhd.

One interpretation is that now we only have nhd relevant observations within h/2 of the
point of interest x. Sieve estimators suffer similarly in larger dimensions.

Parametric CEFs do not suffer this curse because they impose enough structure that
all observations are informative about m(x), no matter how far away Xi is from x.

To alleviate the curse of dimensionality, one approach is to impose more structure
than a fully flexible nonparametric CEF but less than a parametric CEF. Some examples
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follow in Sections 19.2–19.4. Alternatively, even with a fully flexible nonparametric CEF,
a
√
n convergence rate is possible for certain finite-dimensional objects of interest.

19.2 Additive Model

One way to impose structure is to exclude interaction terms between certain pairs of
regressors. If X = (X1, X2), then instead of the fully general m(x1, x2), excluding
interactions yields m(x1, x2) = g1(x1) + g2(x2). More generally, with k regressors in
x = (x1, . . . , xk)

′ and no interactions, the additive model is

m(x) =
k∑

j=1

gj(xj). (19.1)

Although this initially seems more difficult because there are now k unknown functions
gj(·) instead of a single unknown m(·), it is easier because each is a function of a scalar.

As a compromise, some interactions can be maintained, like

m(x) = g1(x1) + g2(x2) + g3(x3, . . . , xk), m(x) =

k/2∑
j=1

gj(x2j−1, x2j), etc. (19.2)

Discussion Question 19.4 (additive wage model). Consider a CEF model of log wage
in terms of education, experience, IQ score, and a dummy for being male.

a) For each of the (4)(3)/2 = 6 possible interactions between pairs of regressors, say
why you think it is important or not.

b) Do you need to model interactions with the male dummy nonparametrically? Ex-
plain.

19.3 Partially Linear Model

Another alternative is to specify part of m(·) parametrically. Let x = (x′
1,x

′
2)

′. The
partially linear model (PLM) has

m(x) = x′
1β + g(x2). (19.3)

The interpretation of (19.3) is simple if interest is only in the slopes for x1, i.e.,
if x2 only contains control variables. That is, the slope wrt any element of x1 is the
corresponding element of β.

The
√
n convergence rate for β̂ is another benefit.

However, the usual drawback applies: the less flexible structure may be less realistic.
The PLM in (19.3) excludes interactions involving any x1 variable, and it imposes linearity
in certain dimensions. The vector x1 could be augmented to include certain nonlinear-
in-variables terms (nonlinear functions of observed variables, and interactions between
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observed variables), but it still precludes interactions with the x2 control variables, and
it imposes a parametric structure of the part of the CEF involving x1.

In principle, the PLM can be combined with the additive model approach, like

m(x) = β1x1 + β2x2 + β3x1x2 +

k∑
j=3

gj(xj). (19.4)

If the entire function m(·) is of interest, then this helps. If only β is of interest, then the
additional additive structure within g(·) does not improve the convergence rate.

19.4 Single Index Model

The single index model keeps a nonparametric transformation but restricts x to enter
through a (single) linear index of the form x′β:

m(x) = h(x′β), (19.5)

where h(·) is an unknown function. As in the additive model, this reduces the domain of
the unknown function from Rd to R, staving off the curse of dimensionality.

Single index models for binary response models were proposed by Ichimura (1993)
and Klein and Spady (1993), to allow the probit model’s normal CDF Φ(·) or the logit’s
Λ(·) to be replaced by an unknown function.

19.5 Product Kernels and Bases

To estimate a nonparametric function of multiple variables, usually a product kernel
or tensor product basis is used. This means multiplying together univariate kernel or
basis functions. See page 5573 of Chen (2007) for examples of tensor product bases and
their approximation error rates.

There is also the bother of having multiple smoothing parameters, one for each di-
mension. For simplicity, you could use the same smoothing parameter value everywhere,
but this may not work if the dimensions are scaled very differently (kernel) or have very
different smoothness.
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Exercises

Exercise E19.1. Find a paper that uses nonparametric regression (including as an in-
termediate step to computing a finite-dimensional functional of interest), or a partially
linear CEF; provide a link to the paper. The paper must be either published in a re-
spectable economics journal1 or be unpublished but have an author who has previously
published in such a journal (like any Mizzou econ professor); or if you really want, you
can use an example from an econometrics textbook. Provide a critique (not “criticism”)
of the paper’s application, including the following.

a. Replicate one of the regression results using the paper’s data and (if provided) code.

b. What is the “economic” meaning of the estimate? How/does this help address the
paper’s economic question?

c. How much bigger or smaller would the smoothing parameter have to be to substan-
tially change the economic meaning of the results? (“Smoothing parameter” being
the bandwidth for local/kernel regression, or the penalty and/or number of terms
for sieve regression.)

d. Use an alternative model selection procedure (that wasn’t used in the paper) to se-
lect the optimal smoothing parameter. How different is it from the paper’s smooth-
ing parameter? How different are the corresponding estimates?

Exercise E19.2. a. Find a paper that uses nonparametric regression (including as
an intermediate step to computing a finite-dimensional functional of interest), or
a partially linear CEF; provide a link to the paper. The paper must be either
published in a respectable economics journal2 or be unpublished but have an author
who has previously published in such a journal (like any Mizzou econ professor); or
if you really want, you can use an example from an econometrics textbook.

b. Get their data and (if available) code, and replicate one of their estimates.

c. Construct a simulation DGP based on the empirical distributions in the data. You
can make small changes to simplify the DGP, but it should be plausible that the
observed data came from the DGP.

d. With your DGP, run 1000 simulation replications. In each replication, draw a new
dataset from the DGP, run the paper’s estimator, and also run the same estima-
tor but with a different model selection procedure (and thus different bandwidth,
penalty, and/or number of terms), like LOOCV, GCV, etc.

e. Compute the simulated RMSE for both estimators. If the object of interest is a
scalar, then take the square root of the simulated MSE, where MSE is variance
plus squared bias. If the object is a function, then take the root integrated MSE

1For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html
2For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html

https://ideas.repec.org/top/top.journals.all.html
https://ideas.repec.org/top/top.journals.all.html
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(RIMSE); you can just average the MSE over a grid of x values instead of actually
doing an integral.

f. Report and briefly discuss the performance of the original estimator and your
(slightly) modified estimator.

Exercise E19.3. Find a paper that reports a result that can be replicated with OLS;
provide a link to the paper. The paper must be either published in a respectable eco-
nomics journal3 or be unpublished but have an author who has previously published in
such a journal (like any Mizzou econ professor); or if you really want, you can use an
example from an econometrics textbook. This includes not only OLS for a cross-sectional
regression, but linear probability models (LPM) for binary choice and FE/FD estimators
(which essentially are running OLS after applying the FE or FD transformation to the
data), and maybe other examples.

a. Get the paper’s data and (if available) code and replicate one regression result (like
one column in one table).

b. Discuss one particular coefficient estimate value (like, the coefficient on education):
what is the statistical interpretation, and the (hoped for) economic interpretation?

c. With the same data and regressors, use nonparametric regression. You can choose
kernel or sieve, choose your favorite model selection procedure, choose an appro-
priate structure (additive, partially linear, fully interactive, some combination).
Explain why you choose the structure you do; why is it important to allow the
flexibility you allow, and why is it not important to allow even more flexibility?

d. Compute a value that can be compared to the original estimate from part (b) above.
For example, if part (b) is a coefficient in a linear-in-variables model, then you
should not just take the coefficient from that regressor in a sieve/series regression,
but instead compute something like an average partial effect (APE). How does the
nonparametric estimate compare to the original estimate, in terms of the economic
meaning?

3For example, in top 500 of https://ideas.repec.org/top/top.journals.all.html

https://ideas.repec.org/top/top.journals.all.html


Chapter 20

Nonparametric Regression in R

Unit learning objectives for this chapter

20.1. Become familiar with some nonparametric regression estimators in R [TLO 4]

This chapter contains a few simple examples with different packages in R.

Optional resources for this chapter

• James et al. (2013) Sections 7.8 and 8.3

20.1 Splines

20.1.1 Natural Cubic Splines

The following code generates an iid dataset and fits seven natural cubic B-spline models
with different degrees of freedom, using function ns() in the splines package, which is
part of core R (R Core Team, 2022). The SSR and then GCV is computed for each fit.
The lowest GCV corresponds to the “best” model. As the flexibility increases, initially
GCV decreases (better model), but then GCV starts to increase again when the model
gets “too flexible.” The caret package (Kuhn, 2020) is also used to run 5-fold cross-
validation. The same model is chosen, with the same decreasing-then-increasing pattern.
The numbers are differently scaled because validation root mean squared error (RMSE)
is reported for 5-fold CV instead of penalized SSR.

Figure 20.1 shows the dataset and fit.
library(caret); library(splines)
set.seed(112358)

215
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CEF <- function(x)sin(1.5*x)
n <- 100; X <- rnorm(n); Y <- CEF(X)+rnorm(n)
tc <- trainControl(method="cv", number=5)
DFs <- 1:7
cvRMSEs <- GCVs <- rep(NA,length(DFs))
for (iDF in 1:length(DFs)) {
df <- DFs[iDF]
cvRMSEs[iDF] <-
train(x=ns(x=X, df=df), y=Y, method="lm",

metric="RMSE", trControl=tc)$results$RMSE
ret <- lm(Y~ns(x=X,df=df))
SSR <- sum(ret$residuals^2)
GCVs[iDF] <- (n/(n-ret$rank))^2 * SSR

}
(dfstar <- DFs[which.min(cvRMSEs)])
print(GCVs)
## [1] 138 136 121 117 120 120 123
print(cvRMSEs)
## [1] 1.17 1.16 1.12 1.06 1.09 1.09 1.07

−2 −1 0 1 2 3

−
2

0
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3

Figure 20.1: Natural cubic B-spline fit chosen by GCV (green) and true CEF (black).

20.1.2 Smoothing Spline

The following code generates the same iid data as in Section 20.1.1 but fits four cubic
smoothing splines using the built-in function smooth.spline(). The smoothing spline
controls flexibility by penalizing the (integrated) second derivative of the fitted function.
The argument cv=FALSE tells it to choose the “model” (i.e., the second derivative penalty
smoothing parameter) that minimizes the GCV criterion. Setting cv=TRUE instead uses
LOOCV. The third model is too flexible (df=n). The fourth model is not flexible enough
(df=2).
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Figure 20.2 plots the dataset and the four fitted smoothing splines.
set.seed(112358)
CEF <- function(x)sin(1.5*x)
n <- 100; X <- rnorm(n); Y <- CEF(X)+rnorm(n)
df <- data.frame(X=X, Y=Y)
rets <- list()
titles <- c('GCV','LOOCV','Undersmoothed','Oversmoothed')
rets[[1]] <- smooth.spline(x=df$X, y=df$Y, cv=FALSE) #GCV
rets[[2]] <- smooth.spline(x=df$X, y=df$Y, cv=TRUE) #LOOCV
rets[[3]] <- smooth.spline(x=df$X, y=df$Y, df=n)
rets[[4]] <- smooth.spline(x=df$X, y=df$Y, df=2)
xx <- seq(from=-3, to=3, by=0.005)
mhatLOOCV <- predict(rets[[2]], x=xx) #has x and y
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Figure 20.2: Smoothing spline estimates with same data but different penalties.

20.2 Local Polynomial Kernel Regression

The following code shows examples of local polynomial kernel regression with the same
simulated data as in Sections 20.1.1 and 20.1.2. First, function locpoly in package
KernSmooth (Wand, 2019) is used, with function dpill() for bandwidth selection. Sec-
ond, function npreg in package np (Hayfield and Racine, 2008) is used, with function
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npregbw for bandwidth selection. Since exdat=xx is specified when calling npreg(), the
object returned from npreg() includes component mean with the estimated CEF eval-
uated at each point in xx. Although np is a bit more complicated, it can handle much
more complex models, with many regressors, mixed data types (continuous, discrete,
categorical), partially linear models, etc.

Figures 20.3 and 20.4 plot the different estimated CEFs.
library(KernSmooth)
set.seed(112358)
CEF <- function(x)sin(1.5*x)
n <- 100; X <- rnorm(n); Y <- CEF(X)+rnorm(n)
df <- data.frame(X=X, Y=Y)
rets <- list()
titles <- c('Local linear','Local cubic')
h <- dpill(x=df$X, y=df$Y) #for local linear only
h3 <- h*n^(4/45) #ad hoc--not recommended!
# below, degree=1 is local linear, =3 is local cubic
rets[[1]] <- locpoly(x=df$X, y=df$Y, degree=1, bandwidth=h)
rets[[2]] <- locpoly(x=df$X, y=df$Y, degree=3, bandwidth=h3)
xx <- seq(from=min(X),to=max(X),by=0.05)
for (ifig in 1:2) {
if (ifig==2) par(mar=c(2,3,0.3,0.1))
plot(x=df$X, y=df$Y, type='p', pch=16, cex=1, xlab='',

ylab='', main='',cex.axis=CEXAXIS, cex.lab=CEXLAB)
lines(x=xx, y=CEF(xx), col=1, lwd=1)
lines(rets[[ifig]], col=ESTCOL, lwd=LWD)
title(main=titles[ifig], line=-1, adj=0.1)

}

library(np)
set.seed(112358)
CEF <- function(x) sin(1.5*x)
n <- 100; X <- rnorm(n); Y <- CEF(X)+rnorm(n)
df <- data.frame(X=X, Y=Y)
xx <- seq(from=min(X),to=max(X),by=0.05)
bw <- npregbw(formula=Y~X, data=df, regtype='ll',

ckertype='epanechnikov')
ret <- npreg(bws=bw, gradients=TRUE, exdat=xx)
summary(ret) #output not shown

20.3 Random Forest and Neural Networks

The following example uses the same data as before but estimates the CEF with random
forest or neural networks, using package caret for 5-fold CV model selection. (To clarify,
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Figure 20.3: Local polynomial regression example, package KernSmooth.
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Figure 20.4: Local linear regression example, package np.
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“neural network” is not a single CEF estimator, but an approach that includes many
different variations with different strengths and different purposes.) With more than one
X, caret could be used to select the tuning parameter mtry for randomForest, which is
method='rf'.

Figure 20.5 shows the CEF estimates.
library(randomForest); library(nnet); library(caret)
set.seed(112358)
CEF <- function(x)sin(1.5*x)
n <- 100; X <- rnorm(n); Y <- CEF(X)+rnorm(n)
df <- data.frame(X=X, Y=Y)
xx <- seq(from=min(X),to=max(X),by=0.05)
rets <- list()
titles <- c('Random Forest','Neural Network')
rets[[1]] <- randomForest(x=df$X, y=df$Y, ntree=n*3)
trC <- trainControl(method='cv', number=5) # 5-fold cv
tg <- expand.grid(size=3+0:2*4, decay=10^(-2:0))
nf <- train(form=Y~X, data=df, method='nnet', maxit=100,

tuneGrid=tg, trace=F, metric='RMSE', trControl=trC)
bt <- nf$bestTune
rets[[2]] <- nnet(formula=Y~X, data=df, linout=TRUE,

size=bt$size, decay=bt$decay, trace=FALSE)
mhat1 <- predict(object=rets[[1]], newdata=data.frame(X=xx))
mhat2 <- predict(object=rets[[2]], newdata=data.frame(X=xx))
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Figure 20.5: Random forest and neural network regression.

20.4 Multiple Regressors

The following code shows examples of partially linear and additive nonparametric regres-
sion. You can call plot() on the returned objects.
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library(mgcv); library(splines)
set.seed(112358)
n <- 50
g1add <- function(x) { x^2 }
g1plm <- function(x) { x }
CEFadd <- function(x1,x2,x3) { g1add(x1)+x2^2+x3^2 }
CEFplm <- function(x1,x2,x3) { g1plm(x1)+(x2-x3)^2 }
df.add <- df.plm <- data.frame(X1=runif(n), X2=runif(n), X3=runif(n))
df.add$Y <- CEFadd(df.add$X1, df.add$X2, df.add$X3) + 0.1*rnorm(n)
df.plm$Y <- CEFplm(df.plm$X1, df.plm$X2, df.plm$X3) + 0.1*rnorm(n)
retadd.dfadd <- gam(Y~s(X1)+s(X2)+s(X3), data=df.add)
retadd.dfplm <- gam(Y~s(X1)+s(X2)+s(X3), data=df.plm)
retplm.dfadd <- gam(Y~X1+te(X2,X3), data=df.add)
retplm.dfplm <- gam(Y~X1+te(X2,X3), data=df.plm)
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Part VI

Partial Identification
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Introduction

This part concerns identification, which here means: what does the population joint
distribution of observable variables tell us about our parameter of interest?

Why do we assume we know the joint distribution of all observable variables? With iid
sampling, this distribution can be learned asymptotically. That is, with large enough n,
we essentially “know” the joint distribution of observables. With certain non-iid types of
sampling, it may not be reasonable to assume we learn this full distribution. For example,
with covariance stationary time series, the (auto)covariances (but not necessarily other
distributional features) can be learned asymptotically, so they are a more reasonable
starting place for identification.

However, even knowing the joint population distribution may not be enough to learn
θ. For example, “correlation does not imply causation”: without additional assumptions,
we cannot learn about causal parameters θ from regression slopes or even the full joint
distribution of (Y,X).

Previously, “identification” has meant point identification. As in Definition 4.2,
point identification means the population distribution of observables uniquely determines
a single possible value (point) of the parameter θ. For example, the population median
is point identified: the distribution of Y uniquely determines the median Q0.5(Y ).

If the population distribution of observables does not uniquely determine θ, but we
can still learn something about θ, then it’s called partial identification or set identi-
fication. (I’ve been convinced that “set identification” is the more proper term, but it
seems “partial identification” is more popular, so I may use both.) That is, the population
distribution narrows down the possible values of θ to some interval or set.

Partial identification results have been found in many econom(etr)ic fields, like game
theory (IO, auctions), duration models, ordinal data models, and missing data, among
others. I illustrate some basic concepts through examples.

The modern work on partial identification most directly comes from work by Manski
starting in the late 1980s, although there were (much) earlier works that discussed the
idea. Tamer (2010) provides a recent review.
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Chapter 21

Missing Data

Unit learning objectives for this chapter

21.1. Develop intuition for when and why missing data can be problematic [TLO 2]

21.2. Describe how to construct and interpret worst-case bounds [TLO 1]

21.3. Judge whether missing data seems problematic in a particular setting [TLO 3]

Missing data is common in economics. For example, with survey data, sometimes
people don’t answer all the questions; somebody might report their age and education
but not wage, for whatever reason. Or, in the FBI uniform crime reporting data, certain
municipalities are missing certain categories of crime in certain years because they did
not use the correct category definition (as Lonnie Hofmann found).

Notationally, consider Yi and Xi for i = 1, . . . , n, with Si = 1 if both Yi and Xi are
observed for individual i, and Si = 0 if either Yi or Xi is missing. That is, Si is an
indicator of missing data for individual i. The magnitude of the missing data problem
depends on the relationship between Si and (Yi,Xi).

There are at least three ways to deal with missing data. First, complete case anal-
ysis uses only observations i with no missing variable values, i.e., uses only observations
with Si = 1. Second, imputation tries to predict (impute) the missing values given
observed values, and then computes estimates based on the “full” (imputed) data. Third,
instead of a single point estimate, worst-case bounds provide a range of estimates that are
collectively robust to a wide range of assumptions about the missing data. This approach
goes back to Manski (1989). The benefit is that it requires less strict assumptions than
complete case analysis or imputation.

Below, the focus is whether or not complete case analysis is appropriate under different
mechanisms causing the missing data, and then the bounds approach is explored.
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Optional resources for this chapter

• Textbook: MAR in Sections 19.4 and 19.8 of Wooldridge (2010)

• There is a fun dialog about MCAR and MAR between a fictional medi-
cal researcher and statistician here: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4121561/

• Textbook: Hastie, Tibshirani, and Friedman (2009) Section 9.6 (“Missing Data”)

• Textbook: Kaplan (2022b) Section 12.3.5

21.1 Best Case: MCAR

Complete case analysis works with data missing completely at random (MCAR),
meaning that whether or not a value is missing is unrelated to either Y or X. In our
notation,

Si ⊥⊥ Yi,Xi or equivalently P(Si = 1 | Yi,Xi) = P(Si = 1). (21.1)

Selecting observations with Si = 1 is essentially taking a random sample from within our
original random sample.

Figure 21.1 shows how complete case analysis works well under MCAR. Here, Y is
earnings and X = 1 if an individual has a college degree (and X = 0 otherwise). Everyone
reports Xi. Some decide not to report Yi, but the decision is unrelated to Yi or Xi, i.e.,
MCAR holds as in (21.1). In the graphs, the blue shows the observed (non-missing)
data and corresponding complete case OLS estimated CEF and (unconditional) complete
case sample mean. The black shows the result if instead all Yi were observed. The blue
and black estimates are extremely similar, illustrating how complete case analysis is not
biased by MCAR.

21.2 Fixable: MAR

Continue the example with college dummy X always observed but earnings Y sometimes
unobserved, in which case S = 0.

Consider a weaker, conditional version of MCAR, where independence only holds
within each X subpopulation (college, not). Formally,

S ⊥⊥ Y | X. (21.2)

(“Conditional on X, S and Y are independent,” or “S and Y are conditionally independent
given X.”) That is, within the X = 0 subpopulation, missingness (S = 0) is independent
of Y ; and this is also true in the X = 1 subpopulation. This is an example of missing

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121561/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121561/
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Figure 21.1: Missing completely at random: no bias of complete case analysis.

at random (MAR), where missingness (S = 0) is “random” (unrelated to the missing
values) conditional on certain variables that are always observed.

21.2.1 Complete Case Estimation

With MAR, complete case CEF estimation is consistent, but the complete case sample
mean is not. But, the CEF can be manipulated to get the unconditional mean (Sec-
tion 21.2.2). Unfortunately, complete case linear projection is also biased (Section 21.2.3).

Figure 21.2 (right panel) illustrates the following example in which the complete case
sample mean is biased. Everyone with Xi = 0 reports Yi, but many individuals with
Xi = 1 do not. Because individuals with a college degree tend to have higher earnings,
the missing Yi values tend to be high. Thus, if we only average observed Yi, then our
estimate of E(Y ) has downward bias.

Figure 21.2 also shows that nonparametric CEF estimation is not biased. Because X
is binary, simple OLS estimates the CEF nonparametrically, but more generally this result
only holds for nonparametric regression. From (21.2), within the X = 1 subpopulation,
missingness of Y is unrelated to the value of Y , so the complete case subpopulation mean
earnings E(Y | X = 1, S = 1) equals the true subpopulation mean earnings E(Y | X = 1).
Generally, S ⊥⊥ Y | X implies that for any x subpopulation, the distribution of Y is the
same for individuals who report their value (S = 1) and those who don’t (S = 0), so

CEF among “reporters”︷ ︸︸ ︷
E(Y | X = x, S = 1) =

CEF for everyone︷ ︸︸ ︷
E(Y | X = x) . (21.3)
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Figure 21.2: Missingness of Y based on X: example with sample mean biased, OLS not.

Fundamentally, complete case nonparametric regression consistently estimates E(Y |
X = x, S = 1), and the identification result in (21.3) says this is the same as E(Y | X = x)
given MAR.

21.2.2 Inverse Probability Weighting

Although the sample mean is biased, the conditional means can be combined to recover
the unconditional mean. In our binary X example, given MAR,

E(Y ) = E(Y | X = 0)P(X = 0) + E(Y | X = 1)P(X = 1)

= E(Y | X = 0, S = 1)P(X = 0) + E(Y | X = 1, S = 1)P(X = 1).
(21.4)

All four terms on the right-hand side are observable because X is always observable (and
Y is always observable conditional on S = 1). The probability P(X = 1) can be estimated
by the sample proportion of observations with Xi = 1 (regardless of whether or not Yi is
observed). Similarly, the sample proportion with Xi = 0 estimates P(X = 0). Complete
case OLS can estimate E(Y | X = 0, S = 1) and E(Y | X = 1, S = 1). Then, we estimate
E(Y ) by plugging in these estimates for the four right-hand side terms in (21.4).

This approach is a special case of inverse probability weighting (IPW). Consider
Figure 21.2. The number of sampled individuals with Xi = 0 equals the number with
Xi = 1. To make the math easier, say there are 4 of each. Now, Yi is observed for all
sampled individuals with Xi = 0, but only for 1 individual with Xi = 1 (out of 4). The
complete case sample mean averages 4 values of Yi from no-college individuals with only
1 value of Yi from college individuals, even though there are equal numbers of college
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and no-college individuals in the sample. The probability weighting is a way to fix this
discrepancy. The one value of Yi essentially represents all 4 individuals with a college
degree. So, instead of counting it once, we could count it 4 times. That is, if Xi = 0 for
i = 1, 2, 3, 4 and Xi = 1 for i = 5, 6, 7, 8, and Yi is observed only for i = 1, 2, 3, 4, 5, then
our estimate could be

1

8
(Y1 + Y2 + Y3 + Y4 + Y5 + Y5 + Y5 + Y5) =

1

8
(Y1 + Y2 + Y3 + Y4 + 4Y5). (21.5)

This is essentially a type of imputation, filling in the missing Yi with our best guess, which
is the Yi for another individual from the same group. With MAR, this guess is justified;
without MAR, it may be a bad guess.

The weight of 4 on Y5 in (21.5) can be interpreted as an inverse probability of S = 1
(Y is observed) given X = 1. There are 4 individuals with Xi = 1, of whom only one has
observed Yi (Si = 1), so the probability of having observed Y (i.e., having S = 1) among
the X = 1 subpopulation is estimated to be 1 out of 4, or 1/4. That is,

P̂(S = 1 | X = 1) = 1/4,
1

P̂(S = 1 | X = 1)
= 4, (21.6)

where the inverse probability 4 is the weight that appears in (21.5). The expression
P̂(S = 1 | X = 1) is the estimated probability of having an observable Y value (S = 1)
given X = 1.

More generally, the IPW estimator of E(Y ) is

1

n

n∑
i=1

SiYi

P̂(S = 1 | X = Xi)
. (21.7)

21.2.3 Linear Projection Estimation

Unless the CEF is properly specified (like with a single binary X), complete case OLS is
not consistent for the population linear projection. Even if (21.2) holds, different amounts
of missing Yi can lead to (very) different OLS slope estimates.

For example, let X ∈ {0, 1, 2} with CEF values m(0) = m(1) = 40 and m(2) = 60.
The population CEF slope can be anywhere between 0 and 20; if most individuals have
X = 0 or X = 1, then it’s close to m(1) − m(0) = 0, whereas if most individuals have
X = 1 or X + 2, then it’s closer to m(2)−m(1) = 20. However, (21.2) does not restrict
the relationship between X and S. If everybody with Xi = 0 or Xi = 1 reports her Yi,
but nobody with Xi = 2 does, then OLS estimates a slope near zero. If nobody with
Xi = 0 reports Yi, but everybody with Xi = 1 or Xi = 2 does, then OLS estimates
a slope near 20. Both examples satisfy (21.2), yet OLS β̂1 is very different. Generally,
even with MAR, conditioning on S = 1 affects the linear projection if X has a different
distribution in the S = 1 and S = 0 subpopulations, in which case complete case OLS is
not consistent.
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21.3 Worst Case: Non-Ignorable

The term “non-ignorable” suggests we can’t ignore the missing data problem. Sec-
tion 21.3.1 explains why, and Section 21.3.2 suggests one way to cope.

21.3.1 The Problem

If data are missing in a way that relates to the missing values themselves, then it is
very difficult or impossible to avoid bias. This type of missing data is sometimes called
non-ignorable.

Consider non-ignorable missing data in our example from before. Again, let X = 1 if
somebody has a college degree and X = 0 otherwise, and Y is annual earnings, which is
generally higher when X = 1 than X = 0. You have survey data where everyone reports
X (accurately), but some people do not report Y . Specifically, people with very high
earnings are less likely to report it. So, whether or not Y is missing depends on the value
of Y : missingness is non-ignorable.

In this example, unlike with MCAR or MAR, even the CEF is biased. For both
X = 0 and X = 1 subpopulations, the highest Y values are missing, so the observable
conditional means are lower than the true conditional means. Further, most people with
very high earnings (Y ) have a college degree (X = 1), so this bias affects E(Y | X = 1)
more than E(Y | X = 0). Thus, the CEF slope E(Y | X = 1) − E(Y | X = 0) is also
downward biased.

Figure 21.3 illustrates this example. With complete case analysis, both the OLS slope
and sample mean are biased downward. The OLS intercept is very slightly downward
biased, too, because the very top Yi when Xi = 0 are missing.

21.3.2 Worst-Case Bounds

This section uses the following notation and setup. Let scalar rv Y ∗ have CDF F ∗
Y (·). Let

S = 1 if Y ∗ is observed, and S = 0 if Y ∗ is missing. Individuals are randomly sampled
from the population, so (Y ∗

i , Si) are iid, but Y ∗ is not always observed. The observable
variables are Si and Yi, where Yi = Y ∗

i if Si = 1 but Yi is missing if Si = 0.
We want to learn about the population distribution of Y ∗ without imposing any

assumption like MCAR or MAR. Unfortunately, without any such assumptions, the joint
population distribution of observables (Y, S) does not uniquely determine the mean of
Y ∗. Instead, it determines a set of values, i.e., there is set identification. The best we
can do is to learn about this identified set (the population object of interest) from the
imperfect data.

Identification refers to population distributions and values, but intuition can be devel-
oped thinking about samples. (Recall samples can be thought of as discrete population
distributions.) Hence, DQs 21.1 and 21.2 are not about “identification” per se but hope-
fully illuminate relevant concepts.
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Figure 21.3: Non-ignorable missing data: bias of both OLS and sample mean.

Discussion Question 21.1 (bounds for binary sample mean). Let binary unobserved
Y ∗ = 1{employed}. You observe n = 5 values of Yi: (1, 1, 0, 1, NA). (So the Si are
(1, 1, 1, 1, 0).)

a) What are the values of Y ∗
i for i = 1, 2, 3, 4?

b) What are the possible values of Y ∗
5 ?

c) What’s the smallest possible value of Ȳ ∗ ≡ (1/5)(Y ∗
1 + Y ∗

2 + Y ∗
3 + Y ∗

4 + Y ∗
5 )?

d) What’s the largest possible value of Ȳ ∗?

Discussion Question 21.2 (bounds for sample mean education). Let unobserved Y ∗ be
years of education, where 0 ≤ Y ∗ ≤ 21. You observe n = 5 values of Yi: (12, 12, 11, 18, NA).
(So the Si are (1, 1, 1, 1, 0).)

a) What are the values of Y ∗
i for i = 1, 2, 3, 4?

b) What are the possible values of Y ∗
5 ?

c) What’s the smallest possible value of Ȳ ∗ ≡ (1/5)(Y ∗
1 + Y ∗

2 + Y ∗
3 + Y ∗

4 + Y ∗
5 )?

d) What’s the largest possible value of Ȳ ∗?

Discussion Question 21.3 (bounds for sample median). Consider the “true” sample
median Q̂0.5(Y

∗). (With n = 5, this is the “middle” observation when sorted from low to
high.)

a) In the setup of DQ 21.1, what are the smallest and largest possible values of the
sample median of Y ∗?

b) In the setup of DQ 21.2, what are the smallest and largest possible values of the
sample median of Y ∗?

c) Repeat (b) but if it’s possible to get up to 120 years of education, so 0 ≤ Y ∗ ≤ 120.
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d) Imagine there are no bounds on Y ∗, −∞ < Y ∗ < ∞, and Yi = 10 for i = 1, 2, 3, 4,
but Y5 = NA (missing). Is it still possible to get a lower and/or upper bound for the
sample median? How?

The type of bounds in DQs 21.1 and 21.2 are called worst-case bounds, an idea from
Manski. “Worst-case” suggests that they are probably conservative: they use the most
extreme possible pattern of missing values, like assuming that all missing values were
from unemployed individuals, and then alternatively assuming all were from employed
individuals. But, for the same reason, they are very robust.

The worst-case bounds can be “more informative” (“tighter” bounds) in larger samples
with a smaller proportion of missing values. For example, let n = 1000, among whom
900 are employed, 80 are not, and 20 do not answer the survey question (or do not reply
at all to our request that they take the survey). Then, the bounds are more informative:
900/1000 ≤ Ȳ ∗ ≤ (900 + 20)/1000, i.e., 0.90 ≤ Ȳ ∗ ≤ 0.92. For comparison, the complete
case sample average is 900/(900 + 80) = 0.918. This single value is more specific, but
its validity requires the very strong MCAR assumption about why data are missing.
Conversely, if we think it’s crazy to allow all 20 non-responses to be unemployed, then
we may feel the 0.90 lower bound is too conservative.

Discussion Question 21.4 tries to use our insights from DQ 21.1 to find bounds for the
population employment probability, i.e., find a partial identification result.

Discussion Question 21.4 (bounds for binary population mean). Same as DQ 21.1,
but in the population. We know the population distribution of (Y, S) but not binary Y ∗.
(Recall that this implies we also know the marginal and conditional distributions of Y
and S.) What are the worst-case bounds on P(Y ∗ = 1) = E(Y ∗), i.e., bounds that do
not assume anything about why/how data are missing? That is, find a and b such that
a ≤ P(Y ∗ = 1) ≤ b, where a and b are determined by the (Y, S) distribution. Hint:
E(Y ∗) = E(Y ∗ | S = 1)P(S = 1) + E(Y ∗ | S = 0)P(S = 0).

Discussion Question 21.5 (bounds for population mean). Same setup as DQ 21.4;
consider different types of Y ∗ variables.

a) What are bounds on E(Y ∗) if Y ∗ is a binary employment indicator? Hint: recall
DQs 21.1 and 21.4.

b) What are bounds on E(Y ∗) if Y ∗ is years of education? Hint: recall DQ 21.2.
c) Same but Y ∗ is annual household consumption.
d) Same but for any variable Y ∗ ∈ R with unbounded support (no maximum or mini-

mum value).

Discussion Question 21.6 (bounds for population median). Like DQ 21.5 but for the
median. Hint: recall DQ 21.3.

a) What are bounds on Q0.5(Y
∗) if Y ∗ is a binary employment indicator?

b) Same as (a) but Y ∗ is years of education.
c) Same as (a) but Y ∗ is consumption.
d) Same as (a) but for any variable Y ∗ with unbounded support R.
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Discussion Question 21.7 (bounds for population CDF). Let Y ∗ ∈ R. For a fixed
value y, let W ∗ ≡ 1{Y ∗ ≤ y}.

a) Bounds on P(W ∗ = 1)?
b) Bounds on P(Y ∗ ≤ y)?
c) Bounds on F ∗

Y (·)? (A lower bound for a function is itself a function, as is the upper
bound function.)

Discussion Question 21.8 (IQR bounds). Assume F1(·) ≤ F ∗(·) ≤ F2(·).
a) Bounds for Q0.75(Y

∗)?
b) Bounds for Q0.25(Y

∗)?
c) Bounds for the interquartile range, Q0.75(Y

∗)−Q0.25(Y
∗)?

Stoye (2010) gives more results like DQ 21.8.
Often, worst-case bounds are computed in addition to point estimates that require

stronger assumptions. In the previous examples, worst-case bounds could be computed in
addition to the complete case average (assuming MCAR) or the IPW estimator (assuming
MAR). This shows the worst-case bounds that come “only from the data,” and lets us see
how much this changes under the stronger assumption. Of course, the stronger assumption
may indeed be correct. However, we may want to think more critically about it if the
assumption (rather than “just the data”) is primarily driving the final result. (Similar to
comparing OLS-type results with nonparametric results.)

The worst-case bounds approach can be extended to conditional distributions and
regression. For example, consider binary Xi ∈ {0, 1} representing low or high education.
Again let Yi = 1 if individual i is employed. Assume Xi is always observed but some Yi
are missing. To compute an upper bound for the OLS slope, plug in Yi = 0 for all missing
Yi values when Xi = 0, and plug in Yi = 1 for missing values when Xi = 1; then run
OLS. To compute a lower bound, plug in Yi = 1 when Xi = 0 and Yi = 0 when Xi = 1;
then run OLS. This approach can probably be extended to non-binary and/or multiple
X, too, although I admit I don’t know for sure.

21.4 R Code

Caution: by default, most commands in Stata and functions in R drop all observations
(rows in your dataset) with any missing variable(s) automatically, without any error or
warning message. That is, they assume you want complete case analysis. You can still
figure out whether or not any observations were dropped. You can also tell R to behave
differently if it encounters NA values. You can either do this through options() to change
the default, or for a specific lm (or whatever function) call through the na.omit argument.
See the code below.
n <- 5; set.seed(112358); options(digits=3)
Y <- rnorm(n); X <- rnorm(n)
Y[2] <- X[3] <- NA #missing values
r <- lm(Y~X) #no hint of missing/dropped obs
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coef(r) #still no hint:
## (Intercept) X
## 0.591 0.704

nrow(r$model) #aha: not n rows!
## [1] 3

#summary(r) #"(2 observations deleted due to missingness)"
options("na.action") #print current default (usually na.omit)
## $na.action
## [1] "na.omit"

predict(lm(Y~X, na.action=na.omit)) # complete case
## 1 4 5
## -0.7037 -0.0139 1.1147

predict(lm(Y~X, na.action=na.exclude)) #fill in NA
## 1 2 3 4 5
## -0.7037 NA NA -0.0139 1.1147

lm(Y~X, na.action=na.fail) # give an error if NAs in data
## Error in na.fail.default(list(Y = c(-0.471, NA, 0.530, :
## missing values in object

options(na.action=na.fail) #set default to na.fail
lm(Y~X) #now gives error as default (if NA values)
## Error in na.fail.default(list(Y = c(-0.471, NA, 0.530, :
## missing values in object
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Exercises

Exercise E21.1. Consider scalars Y and X, where either Y or X or both may be missing.
Let Y ∗ and X∗ be the true values that are never missing. So, either Y = Y ∗ or Y is
missing; similarly, either X = X∗ or X is missing. Assume iid sampling, i = 1, . . . , n.
It may be helpful to play around with example datasets (that you create) in R; show
the data scatterplot, run lm() and rq(), change one point’s value, etc. Below, “bounds”
means “worst-case bounds.” Section 4.6 may be helpful.

a. Imagine Yi is missing for a single i. How/can you compute bounds for the sample
average Ȳ ∗? How/do the bounds depend on the assumed bounds of Y (i.e., its
support)?

b. Imagine Yi is missing for a single i. How/can you compute bounds for the sample
median Q̂0.5(Y

∗)? How/do the bounds depend on the assumed bounds of Y (i.e.,
its support)?

c. Assume binary X ∈ {0, 1}. Imagine a single Yi is missing, but all Xi are observed.
How/can you compute bounds for the OLS slope estimate based on the true Y ∗

i and
X∗

i ? Hint: recall that with binary X, the OLS slope can be written as a difference
of conditional means, β̂OLS = Ê(Y | X = 1)− Ê(Y | X = 0).

d. Assume binary X ∈ {0, 1}. Imagine a single Yi is missing, but all Xi are observed.
How/can you compute bounds for the τ = 0.5 QR slope estimate based on the true
Y ∗
i and X∗

i ? Hint: recall that with binary X, the QR slope can be written as a
difference of conditional quantiles, β̂τ = Q̂τ (Y | X = 1)− Q̂τ (Y | X = 0).

e. Answer parts (c) and (d) if instead a single Xi is missing (and no Yi are missing).

f. Imagine n = 2, X1 = Y1 = 0, Y2 = 1 but X2 is missing. Assume a ≤ X2 ≤ b.
What are lower and upper bounds on the OLS slope estimate based on Y ∗

i and
X∗

i ? Explain, including why either bound does/not depend on (a, b). Hint: draw a
picture.

g. Imagine n = 2, X1 = 0 but Y1 is missing, Y2 = 1 but X2 is missing. Assume
a ≤ X2 ≤ b and c ≤ Y1 ≤ d. What are lower and upper bounds on the OLS
slope estimate based on Y ∗

i and X∗
i ? Explain, including why either bound does/not

depend on (a, b, c, d). Hint: draw a picture.

h. Imagine a dataset (with n > 500) with a single missing Xi and all Yi observed.
Qualitatively (e.g., infinity, zero, big positive, small negative), what are the lower
and upper bounds on the OLS slope estimate based on Y ∗

i and X∗
i ? Hint: draw a

picture.
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Chapter 22

Interval Data

Unit learning objectives for this chapter

22.1. Develop intuition for learning from interval-valued data, in the population and in
the sample [TLO 2]

22.2. In simple examples, describe the identified set and how to estimate it, and interpret
both [TLO 1]

Sometimes variables are reported as intervals instead of values. For example, instead
of somebody reporting exact hourly wage, they report whether it’s in the interval [5, 10)
or [10, 15) or something. That is, instead of observing the true value Y ∗, the observed
variables are (Y1, Y2), where Y1 ≤ Y ∗ < Y2. Assume Y ∗ is continuous so we won’t worry
about ≤ versus <.

Discussion Question 22.1 (interval-valued mean: identification). The following is
somewhat similar to DQ 21.4. Continute the notation where Y ∗ is the true but un-
observed value, and the observed variables (Y1, Y2) satisfy Y1 ≤ Y ∗ < Y2.

a) Is E(Y ∗) point identified from the distribution of (Y1, Y2)? Why not?
b) What are bounds for E(Y ∗) given the distribution of (Y1, Y2)?

Discussion Question 22.2 (interval-valued mean: estimation). Continue the setup and
notation from DQ 22.1.

a) Given DQ 22.1, how would you estimate the bounds? (That is, given the population
“identified set” you proposed before, how would you estimate it from data?)

b) How would you interpret your proposed estimator? Is it like a confidence interval,
or different?

Discussion Question 22.3 (interval regression: identification). Now, scalar X is also
observed. For identification, assume the joint distribution of (Y1, Y2, X) is known.

239
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a) What are bounds for the CEF evaluated at a single point, i.e., for m(x) = E(Y ∗ |
X = x) for a single x?

b) What are bounds for the CEF (as a function), m(·)?

Discussion Question 22.4 (interval regression: estimation). Continue from DQ 22.3.
a) How could you estimate your proposed bounds from DQ 22.3?
b) How do you interpret your estimated bounds? Is it like a uniform confidence band,

or something else?

Discussion Question 22.5 (interval regression slope: identification). Use your results
from DQ 22.3 below. Let x2 > x1 be two points of evaluation. Assume m(·) is continu-
ously differentiable.

a) What are bounds for E(Y ∗ | X = x2)− E(Y ∗ | X = x1)?
b) What are the limits of your bounds as x2 ↓ x1?
c) What are bounds for m′(x)? Hint: m′(x) = limx2↓x1 [m(x2)−m(x1)]/(x2 − x1).
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Exercises

Exercise E22.1. Assume scalar X ≥ 0. Define vector X = (1, X)′. The observables
are (Y1, Y2, X) with Y1 ≤ Y ∗ ≤ Y2 for latent Y ∗. Assume iid sampling. For vectors
a and b, let a ≤ b mean that the inequality holds element-wise, i.e., aj ≤ bj for each
j = 1, . . . ,dim(a).

a. Consider the linear projection model in error form, Y ∗ = X ′β+U with E(XU) = 0,
where β = (β0, β1)

′. Show that E(XY ∗) = E(XX ′)β.

b. Propose bounds for E(XY ∗) using any feature(s) of the population joint distribution
of observables. Hint: separately consider the two elements of the vector E(XY ∗) =
[E(Y ∗),E(XY ∗)]′, and remember X ≥ 0.

c. Denote your bounds in part (b) as µL and µU , where µL ≤ E(XY ∗) ≤ µU . Given
part (a), your bounds imply

µL ≤ E(XX ′)β ≤ µU . (22.1)

Re-write (22.1) as four inequalities of the form β1 ≤ a− bβ0 or β1 ≥ a− bβ0, where
the “intercept” a and “slope” b are in terms of (moments of) observable variables
(i.e., not Y ∗).

d. Draw an example graph of your four inequalities in part (c). That is, your graph’s
horizontal axis is β0, the vertical axis is β1; draw the four lines of the form β1 =
a − bβ0 (the boundaries of the inequalities), and shade/fill in the region where all
four inequalities are satisfied.

e. If we are only interested in the slope β1, can we get bounds on β1 using this ap-
proach? You don’t have to derive such bounds, just explain why or why not.

f. With β ∈ R2, the bounds generate four lines in R2 that determine a quadrilateral
subset of R2 containing all values of β consistent with the joint distribution of
observables, i.e., the identified set for β. Without necessarily solving for the bounds
exactly, what is the corresponding geometry of the bounds when instead β ∈ Rk

for general k > 2? Is it still possible to get bounds for a single coefficient like β1?
Think about the structure of the generalization of (22.1) in that case; how many
equations, what shape, etc. Hint: to develop intuition, you could start with k = 3.

Exercise E22.2. Assume binary X ∈ {0, 1}. The observables are (Y1, Y2, X, Z) with
Y1 ≤ Y ∗ ≤ Y2 for latent Y ∗. Assume iid sampling. Write the τ -CQF as qτ (·), where
qτ (x) = Qτ (Y

∗ | X = x).

a. Explain why qτ (0) and qτ (1) are not point identified.

b. Propose bounds for qτ (0) and qτ (1), in terms of (features of) the population joint
distribution of observables.

c. Propose estimators for your bounds in part (b).
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d. Propose bounds on the quantile regression “slope” qτ (1)− qτ (0).

e. Propose estimators of your bounds in part (d) based on quantile regression coeffi-
cient estimates.

Now additionally define observable binary instrument Z ∈ {0, 1}.

f. Consider the local average treatment effect (LATE) estimand, [E(Y ∗ | Z = 1) −
E(Y ∗ | Z = 0)]/[E(X | Z = 1) − E(X | Z = 0)]. For simplicity, assume the
denominator is strictly positive. Propose bounds for the LATE.

g. Propose estimators of your LATE bounds.



Chapter 23

Ordinal Data

Unit learning objectives for this chapter

23.1. Develop intuition about what can be learned from ordinal data about continuous
latent distributions [TLO 2]

23.2. Describe which types of latent relationship are identified with ordinal data under
certain assumptions, and describe the assumptions [TLO 1]

Optional resources for this chapter

• Kaplan and Zhao (2022) is the basis of this chapter

• R code: https://kaplandm.github.io

23.1 Latent Variable Framework

Imagine you observe an ordinal random variable H: its possible values are categories
that are ordered (from low to high, or worst to best) but do not have a cardinal value
(like 7 dollars or −90 utils). For example, H could be self-reported health status, with
possible values “poor,” “fair,” “good,” “very good,” and “excellent.” For convenience these
may be coded as H = 1 through H = 5, but such numbers have no cardinal meaning; e.g.,
the fact that 4/2 = 2 does not mean “very good” is exactly twice as good as “fair.” Other
ordinal variables include bond ratings, political indices (like democracy or civil rights),
subjective well-being (happiness), consumer confidence, and public school ratings.

Imagine ordinal H is based on an underlying, latent (unobserved), continuously dis-
tributed variable H∗. There are thresholds γj with −∞ = γ0 < γ1 < · · · < γJ = ∞ such
that H = j iff γj−1 < H∗ ≤ γj .
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The CDF of ordinal H is F (·), and the CDF of latent H∗ is F ∗(·):

F (j) ≡ P(H ≤ j) for j ∈ {1, . . . , J}, F ∗(r) ≡ P(H∗ ≤ r) for r ∈ R. (23.1)

There are J − 1 unknown ordinal distribution parameters, F (j) for j = 1, . . . , J − 1,
because F (J) = 1 by definition.

Discussion Question 23.1 (ordinal: known thresholds 1). Assume (unrealistically) that
the γj are known. For “identification,” imagine we fully know F (·) and now want to learn
about F ∗(·).

a) Explain why the events H = 1 and H∗ ≤ γ1 are identical, i.e., either both occur or
neither occurs.

b) Explain why consequently F ∗(γ1) = F (1). Hint: write out F (1) as a probability
involving H, and then write out F ∗(γ1) as a probability involving H∗.

c) Is F ∗(r) point identified (i.e., uniquely determined by F (·)) for any other r? Explain.

Discussion Question 23.2 (ordinal: known thresholds 2). Continue from DQ 23.1.
a) Consider any r < γ1. Since F ∗(·) is a CDF, we know 0 ≤ F ∗(r) ≤ 1 for any r ∈ R.

If we know F (·), can we get more informative (i.e., tighter, shorter interval) bounds
than F ∗(r) ∈ [0, 1]? Hint: we know F ∗(γ1) = F (1), and CDFs are non-decreasing.

b) Consider γ1 < r < γ2. Propose lower and upper bounds for F ∗(r) that are not just
[0, 1] but use information from F (1) and F (2).

c) Most generally: find lower bound and upper bound functions F ∗
L(·) and F ∗

U (·) such
that F ∗

L(·) ≤ F ∗(·) ≤ F ∗
U (·), i.e., F ∗

L(r) ≤ F ∗(r) ≤ F ∗
U (r) for all r ∈ R. Hint: draw

it.

23.2 Inequality: Introduction

Now imagine comparing two latent population distributions represented by H∗ and G∗,
with CDFs F ∗

H(·) and F ∗
G(·). For identification, assume we know FH(·) and FG(·), the

marginal CDFs of ordinal H and G.
Consider two types of inequality: within-group and between-group. Within-group

inequality means dispersion, often quantified by interquantile ranges (differences between
two quantiles). For example, to study whether “income inequality” in the U.S. has in-
creased over time, the 90–10 interquantile range has been used to measure dispersion
within the income distribution in a given year. Between-group inequality means whether
one group is better off or worse off than another. For example, “racial inequality” in
health means one racial group tends to have better health than another.

Sections 23.3 and 23.4 consider learning about these two types of inequality in the
latent distributions, given knowledge of the ordinal distributions.

23.3 Between-Group Inequality

For between-group inequality, we want to learn if H∗ is “better” than G∗.
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Assume the γj are the same for both populations. This is critical: if one population
has lower thresholds, then the ordinal values can look better even if the latent values are
not. Having the same γj makes the ordinal distributions comparable, even if we don’t
know the γj values themselves.

23.3.1 Quantiles

Although latent means essentially cannot be compared (Bond and Lang, 2019), certain
latent quantiles can be compared.

Discussion Question 23.3 (latent quantile comparison). Assume the same γj generate
G and H.

a) For any continuous CDF F ∗(·), imagine F ∗(r) = b. Let c > b; can we know if the
c-quantile of the distribution is above, below, or equal to r? Explain.

b) Again F ∗(r) = b as in (a), but now a < b: what do we know about the a-quantile?
Explain.

c) Let a < b < c with a = FG(1) and c = FH(1). Is the b-quantile of G∗ above, below,
or equal to γ1? Is the b-quantile of H∗ above, below, or equal to γ1? Explain.

d) Generalize your insights: if FG(j) < FH(j) for some j ∈ {1, . . . , J − 1}, then which
latent quantiles are larger for G∗ than H∗? Explain.

23.3.2 Stochastic Dominance

One strong definition of “better” is first-order stochastic dominance (SD1). (Recall Chap-
ter 10.) SD1 of G∗ over H∗ is written G∗ SD1 H

∗.
There are three ways to characterize G∗ SD1 H

∗. First, G∗ has higher expected utility:
E[u(G∗)] ≥ E[u(H∗)] for all (non-decreasing) utility functions u(·). Second, the CDF of
G∗ is below the CDF of H∗: F ∗

G(·) ≤ F ∗
H(·), i.e., F ∗

G(r) ≤ F ∗
H(r) for all r ∈ R. Third, the

quantiles of G∗ are all higher than the corresponding quantiles of H∗: Qτ (G
∗) ≥ Qτ (H

∗)
for all τ ∈ [0, 1], or QG∗(·) ≥ QH∗(·).

A weaker version of SD1 is the restricted SD1 concept of Atkinson (1987, Condition
I, p. 751). If F ∗

G(r) ≤ F ∗
H(r) for all r ∈ [r−, r+], then there is restricted SD1 of G∗ over

H∗ on the interval [r−, r+]. Being weaker than SD1 makes it less helpful economically
but more tractable statistically. In particular, it does not require knowledge of distribu-
tions’ tails, which are especially difficult (and in this setting impossible) to learn about
statistically. Atkinson (1987) originally thought about comparing income or consumption
distributions: given poverty line r, G∗ has lower “headcount poverty ratio” (proportion
of population in poverty) if F ∗

G(r) < F ∗
H(r). Restricted SD1 says G∗ has lower poverty

given any poverty line r ∈ [r−, r+].

Discussion Question 23.4 (testable implication). Assume the same γj generate G
and H. Hint: draw a picture (with latent values on the horizontal axis and cumulative
probabilities [CDF values] on the vertical axis).
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a) Imagine FG(j) ≤ FH(j) for all j, i.e., G SD1 H. Does this imply that G∗ SD1 H∗,
i.e., that F ∗

G(r) ≤ F ∗
H(r) for all r ∈ R? Why/not? Hint: focus on the range [γ1, γ2],

and which latent CDFs are consistent with the bounds implied by the ordinal CDF
values FG(1), FG(2), FH(1), and FH(2).

b) Imagine F ∗
G(r) ≤ F ∗

H(r) for all r ∈ R, i.e., G∗ SD1 H∗. Does this imply that
G SD1 H, i.e., that FG(j) ≤ FH(j) for all j = 1, . . . , J? Why/not?

c) Imagine G does not SD1 H: there is at least one j for which FG(j) > FH(j). Does
this imply anything about latent SD1 between G∗ and H∗? (In either direction,
either that it does or does not hold.) What/why?

Discussion Question 23.5 (super SD1). Imagine FG(j + 1) ≤ FH(j) for all j. What
(if anything) does this imply about restricted SD1 between G∗ and H∗ over the interval
[γ1, γJ−1]? Hint: draw a picture of bounds for the latent CDFs.

23.4 Within-Group Inequality: Dispersion

Now we wish to learn whether G∗ or H∗ has more within-group inequality, i.e., is more
dispersed. Dispersion could be measured by variance, but variance is sensitive to the
extreme tails, which we cannot learn about here. Dispersion can also be measured by
interquantile ranges, which are not sensitive to the tails. This is similar to the reason
for using the 0.9–0.1 interquantile range as a measure of income inequality when income
data are top-coded; see Section 4.5.

To start, assume G and H share the same γj thresholds. For simplicity, assume both
F ∗
G(·) and F ∗

H(·) are strictly increasing, so the quantile function is the inverse CDF.

Discussion Question 23.6 (latent quantiles). Section 4.2 may be helpful here; e.g., how
to find a quantile value on a CDF graph.

a) Explain why γ1 is the FG(1)-quantile of G∗.
b) Explain why γ2 is the FG(2)-quantile of G∗.
c) Imagine you know the τ2-quantile of continuous random variable Y ∗, and you know

its τ1-quantile, but nothing else. Given τ1 ≤ τ ≤ τ2, explain why Qτ1(Y
∗) ≤

Qτ (Y
∗) ≤ Qτ2(Y

∗).
d) Let FG(1) < τ < FG(2). Using (a)–(c), provide bounds for the τ -quantile of G∗.

The following are less directly related to DQ 23.7, but helpful for intuition.
e) What is the FH(j)-quantile of H∗? Why?
f) If F ∗

G(r) ≤ F ∗
H(r) for all r ∈ R, which distribution has the bigger τ -quantile? Why?

Discussion Question 23.7 (single crossing). Your thoughts from DQs 23.3 and 23.6 will
help greatly here; pictures also help. Imagine the ordinal CDFs cross: FG(1) < FH(1)
but FG(2) > FH(2).

a) What is the FH(1)-quantile of H∗?
b) Derive (and explain) bounds for the FH(1)-quantile of G∗.
c) Explain why G∗ has a larger FH(1)-quantile than H∗.
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d) What is the FH(2)-quantile of H∗?
e) Derive (and explain) bounds for the FH(2)-quantile of G∗.
f) Explain why H∗ has a larger FH(2)-quantile than G∗.
g) Use your previous results to argue that there is evidence of H∗ being “more dis-

persed” than G∗. Specifically, explain why H∗ has a larger FH(2)–FH(1) interquan-
tile range. (Recall Qb(Y

∗)−Qa(Y
∗) is the b–a interquantile range of Y ∗.) That is,

show that QFH(2)(H
∗)−QFH(1)(H

∗) is greater than QFH(2)(G
∗)−QFH(1)(G

∗).

Discussion Question 23.8 (single crossing with shift). Now let G and H have different
thresholds. The thresholds for G are γGj , and the H thresholds are γHj = γGj +∆, where
possibly ∆ ̸= 0 but ∆ does not depend on j. Do the results from DQ 23.7 still hold?
Why/not? Hint: if you shift a distribution left or right, does that change its dispersion?
Or if you add c to all quantiles, does that change its interquantile ranges?

Kaplan and Zhao (2022) also discuss frequentist and Bayesian inference (using Kaplan
and Zhuo, 2021) and provide some R code. “Regression” is also discussed but not detailed.

23.5 Parametric Approach

Alternatively, the latent distributions could be specified parametrically, in which case
maximum likelihood can be run. This is similar to a probit model with latent Y ∗ and
observed Y = 1{Y ∗ > 0}, but now there are multiple categories. This yields an “ordered
probit” model. The ordered probit approach can be used for regression or simply uncon-
ditionally. As with the probit, the scale parameter is not identified; changing the latent
variables scale (standard deviation) is observationally equivalent to scaling the γj by an
equivalent amount.

Bond and Lang (2019) point out why ordered probit is not a great approach for
happiness (and health, etc.). As you guessed, results are sensitive to the parametric
(mis)specification. (They show how simply adding skewness to the specified parametric
distribution can reverse the +/− sign of estimates from several prominent published pa-
pers on happiness.) And since latent variables are by definition unobserved, it’s impossible
to learn the true shape of their distributions.

23.6 Inequality Indices

There is a literature about computing an inequality index from an observed ordinal dis-
tribution. This provides a single number that (supposedly) measures how much inequality
there is in the distribution, which is convenient. Thus, you can definitively compare any
two ordinal distributions. However, there are many such indices, and sometimes “one”
index requires you to choose the value of some parameter(s), so really there is not a single
definitive number after all. And if any justification is given, it often presumes the latent
variable has only J possible different values (i.e., not continuous), which does not seem
realistic.
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There is a Stata .ado program ineqord available from SSC (ssc install ineqord)
that calculates a slew of ordinal inequality indices, as described nicely by Jenkins (2020).
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Exercises

Exercise E23.1. a. Find a published paper that at some point compares two (or
more) ordinal distributions, like for self-reported health status or happiness.

b. Replicate one of their comparisons (ideally using their provided code and data).
If they only have “regression” results (like ordered probit), then you could try to
discretize the X and/or drop certain regressors to see if you can get a qualitatively
similar result. For example: if an ordered probit has ordinal happiness as Y , and
X includes an individual’s education, sex, and height, you could do something like
drop height and make a dummy for high (vs. low) education, which leaves four Y
distributions to compare, i.e., when the new simplified “X” is (0, 0), (0, 1), (1, 0),
(1, 1).

c. Compare the two ordinal distributions with some of the methods from Kaplan
and Zhao (2022), optionally using the R or Stata code at https://kaplandm.
github.io/. Most importantly, verbally interpret your results clearly in terms of
the underlying latent distributions. The empirical illustrations from Kaplan and
Zhao (2022) may be helpful examples for reference.

d. Discuss similarities and differences between the original results and your new results.

https://kaplandm.github.io/
https://kaplandm.github.io/
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k-fold cross-validation, 202

ABC, see approximate bootstrap confi-
dence

AD, see Anderson–Darling
additively separable, 84
AIC, see Akaike information criterion
Akaike information criterion, 203
analogy principle, 63, 126
Anderson–Darling, 99
approximate bootstrap confidence, 139
approximation error, 190
ASF, see average structural function
ATE, see average treatment effect
average structural function, 167
average treatment effect, 78

bandwidth, 178
infeasible, 198
pilot, 199
plug-in, 199

basis, 192
basis function, 193
Bayes’ Theorem, 148
Bayesian information criterion, 203
BCa, see bootstrap
belief, 148
Bernoulli distribution, 150
Bernstein–von Mises theorems, 156
bias–variance tradeoff, 175
BIC, see Bayesian information criterion
bin, 178

Bonferroni adjustment, 116
Bonferroni corrrection, 116
bootstrap

Bayesian, 138
bias-corrected and accelerated, 139
circular block, 144
double, 136
empirical, 130
exchangeable weights, 137
m-out-of-n, 138
moving blocks, 143
multinomial, 130, 138
nonparametric, 130
pairs, 130
parametric, 139
percentile, 136
stationary, 144
wild, 139

bootstrap world, 129
boundary point, 179
bridge estimator, 194

CEF, see conditional expectation func-
tion

censored, 64
check function, 62
complete case analysis, 227
conditional expectation function, 70, 167
conditional quantile function, 70
conjugacy, 152
conjugate prior, 152
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contrapositive, 53, 54
converse, 53
coverage probability, 132
CP, see coverage probability
CQF, see conditional quantile function
Cramér–von Mises, 99
cross-validation, 200
curse of dimensionality, 210
CV, see cross-validation
CvM or CM, see Cramér–von Mises

design bias, 184
Dirichlet distribution, 152
Dirichlet process, 154
Dirichlet–multinomial model, 153

ECDF, see empirical CDF
effective degrees of freedom, 197
effective dimension, 197
effective number of parameters, 197
effective sample size, 175
EL, see empirical likelihood
elastic net, 194
empirical CDF, 98
empirical likelihood, 148
ensemble, 205
equal-tailed, 132
equivalent number of parameters, 197
equivariance, 83
exchangeable, 138
expected loss, 61

false discovery proportion, 118
false discovery rate, 118
familywise error rate, 116
FCLT, see functional central limit theo-

rem
FDP, see false discovery proportion
FDR, see false discovery rate
FIC, see focused information criterion
first-order stochastic dominance, 110
focused information criterion, 204
functional central limit theorem, 103

FWER, see familywise error rate
strong control of, 117
weak control of, 117

Gaussian process, 74
GCV, see generalized cross-validation
generalized cross-validation, 201
GOF, see goodness-of-fit
goodness-of-fit, 98

identification, 65, 225
partial, 225
point, 225
set, 225

identified, 65
if, 52
if and only if, 52
implied by, 52
implies, 52
imputation, 227
impute, 64
index, 212
inequality index, 247
infeasible bandwidth, see bandwidth
infinite-dimensional parameter, 171
information criterion, 203
instrumental variables quantile regres-

sion, 87
inverse, 53
inverse probability weighting, 230
IPW, see inverse probability weighting
IVQR, see instrumental variables quan-

tile regression

k-nearest neighbor, 178
kernel

Bartlett, 186
Epanechnikov, 186
Gaussian, 186
higher-order, 187
of PDF, 158
second-order, 186
tent, 186
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triangle, 186
uniform, 185

kernel function, 185
kernel regression, 178, 185
kNN, see k-nearest neighbor
knot, 193
Kolmogorov–Smirnov, 99
KS, see Kolmogorov–Smirnov

lasso, 194
latent, 243
leave-d-out cross-validation, 202
leave-one-out cross-validation, 200
likelihood, 147
linear smoothers, 188
local constant, 179
local linear regression, 184
local polynomial regression, 178, 185
local quantile treatment effect, 90
local sample size, 175
LOOCV, see leave-one-out cross-

validation
loss function, 61
LQTE, see local quantile treatment effect

MAR, see missing at random
MCAR, see missing completely at ran-

dom
mean squared prediction error, 61
method of sieves, 193
missing at random, 229
missing completely at random, 228
model averaging, 205
monotonicity, 82
MSPE, see mean squared prediction er-

ror
MTP, see multiple testing procedure
multiple testing procedure, 116

necessary, 52
non-ignorable, 232
nonparametric, 171
nonparametric regression

local approach, 178
nonseparable, 84

only if, 52
ordinal, 243
oversmoothing, 183

parametric, 171
partial ordering, 110
partially linear model, 211
partitioning estimators, 178
percentile, see quantile
permutation test, 106
pivotal, 133
PLM, see partially linear model
plug-in principle, 63, 126
pointwise confidence band, 101
posterior, 148
posterior expected loss, 151
posterior mean, 151
potential outcome, 78
pre-test procedure, 118
prior, 147

improper, 154
matching, 154
proper, 154

prior elicitation, 148
product kernel, 212

QR, see quantile regression
QTE, see quantile treatment effect
quantile, 60
quantile function, 60
quantile index, 60
quantile level, 60
quantile regression, 69
quantile treatment effect, 79

R
arguments, 37
coerce, 33
command prompt, 31
comments, 32
console, 31
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counter, 44
data frame, 34
data type, 33
double, 33
editor pane, 31
else if, 42
errors, 44
escape character, 37
for loops, 44
hard coded, 48
if-else statement, 42
index, 34
list, 34
logical, 34
lossless, 41
lossy, 41
packages, 30
panes, 31
parameters, 37
plots, 31
return, 37
try-catch statements, 45
variables, 33
warnings, 44
while loops, 44
working directory, 38

random coefficients, 80
randomization test, 106
real world, 129
ridge regression, 193
risk, 61
root, 134
root method, 134

sample analog, 63
sample paths, 103
sample quantile, 64

SD1, see first-order stochastic dominance
semi-nonparametric, 171
semiparametric, 171
series regression, 193
shrinkage estimator, 194
sieve, 193
sieve space, 193
single index model, 212
smoothing parameter, 191
statistics, 2
stepdown procedure, 118
stochastic dominance

restricted, 245
stronger, 52
Studentized, 133
subsampling, 140
sufficient, 52
symmetric, 132

tensor product basis, 212
test inversion, 100
tick function, 62
top-coding, 64
training sample, 200
treatment effect, 78

unconditional quantile regression, 84
undersmoothing, 183
uniform confidence band, 75, 101
UQR, see unconditional quantile regres-

sion

validation sample, 200

weaker, 52
with replacement, 130
worst-case bounds, 234
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